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1. Introduction

In recent years, many efforts have been made to develop decomposition
techniques in function spaces using atoms, quarks or wavelets as building
blocks. All these techniques have found widespread applications in other
branches of the theory of function spaces and still remain very much alive as
subjects of current research. For a deeper discussion of these techniques, the
reader is referred to the recent monograph [13].

In the present paper we are concerned with non-smooth atomic decom-
positions of special anisotropic function spaces of Besov type. Using these
non-smooth atoms one can also improve the smoothness assumptions for
classical smooth anisotropic atoms according to Farkas [3] in a natural way.
The problem of extending the theory of non-smooth isotropic atoms to the
anisotropic case was posed by H. Triebel in [13, Remark 5.16]. The sec-
ond purpose of this work is to study pointwise multipliers in these function
spaces. We now describe briefly the contents of the paper. In Section 2 we set
up notation and terminology and summarize some basic facts on anisotropic
function spaces. In Section 3 the homogeneity properties of anisotropic func-
tion spaces are presented. Section 4 is concerned with the non-smooth atomic
decomposition in some anisotropic spaces of Besov type. These results are
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used in Section 5 to obtain some new assertions on pointwise multipliers in
anisotropic function spaces.

2. Preliminaries

2.1. Notation and Conventions. For a real number a, let a, := max(a,0).
By ¢, c¢1, co, etc. we denote positive constants independent of appropriate
quantities. For two non-negative expressions (i.e. functions or functionals)
A, B, the symbol A < B (or A 2 B) means that A < ¢B (or ¢ A > B). If
A < B and A 2 B, we write A ~ B and say that A and B are equivalent.
For p € [1, 00], the conjugate number p’ is defined by 1/p+ 1/p’ = 1 with
the convention that 1/0co = 0. Given two quasi-Banach spaces X and Y,
we write X — Y if X C Y and the natural embedding is bounded. In the
following let both dz and | - | stand for the Lebesgue measure in R". Let

(A (@) = flz+h) = fx), (AP f) () = A AT ) (@) (1)

with , h € R” and m € N be the iterated differences in R"”. For x € R" and
B,v € Nj we put

By=nB=7) b and 2" =a] .1
j=1

Let S(R") stand for the Schwartz space of all complex-valued rapidly de-
creasing C'* functions on R". Further, we denote by &'(R") its topological
dual, the space of all tempered distributions.

2.2. Anisotropic function spaces. In this subsection we introduce the
anisotropic Besov and Triebel-Lizorkin spaces and describe some important
properties. Let us start by recalling briefly the basic ingredients needed to
introduce these spaces by the Fourier-analytical approach. Throughout the
paper we call the vector

a=(ag,...,0,) with 0<oy<...<a,<o0 and Zozj:n (2)
j=1
an anisotropy in R". For ¢t >0, r € R and x = (x1,...,x,) € R" we put

t% = (%, ... t%x,) and "z = (t")x.
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For x = (xy1,...,2,) € R", z # 0, let |x|, be the unique positive number ¢
such that
2 2
L1 L, -
ar Tt =1 (3)

and put |0], = 0. It turns out that | - |, is an anisotropic distance function
according to [3, Definition 2.1] in C*°(R™)\{0}. Note that in the isotropic
case, which means a; = -+ = a;, = 1, |z], is the Euclidean distance of = to
the origin.

Let ¢* € S(R") be a function such that
*(x)=1 for |z[o <1 and suppp®C{zeR": |z, <2}. (4)
For each 7 € N we define
f(x) = (277) — (27U V%), e R, ()

and put ¢f = ¢*. Then since Z;io ¢ (z) =1 for all z € ]R"/,\ the sequence

(¢%)jen, is an anisotropic resolution of unity. Recall that (¢$f)" is an entire

function on R".

Definition 2.1. Let a be an anisotropy as in (2) and let p* = (¢})en, be

an anisotropic dyadic resolution of unity in the sense of (5).

(i) For 0 < p,q < oo and s € R the anisotropic Besov space B,:*(R") is
defined to be the set of all tempered distributions f € S'(R") such that

oo

1/q
I 15 @ = (32 ey o
=0

is finite. In the limiting case ¢ = oo the usual modification is required.
(ii) For 0 < p < 00, 0 < ¢ < 0 and s € R the anisotropic Triebel-Lizorkin

space F;*(R") is defined to be the set of all tempered distributions f €
S'(R") such that

0 1/q
|f [Fp RM)]| = <22j8q(¢?f)v(-)lq> | Lp(R") (7)

is finite. In the limiting case ¢ = oo the usual modification is required.
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Remark 2.2. We occasionally use the symbol A}*(R") to consider the spaces
By#(R") and F,*(R") simultaneously. It turns out that A>*(R") are quasi-
Banach spaces which are independent of ¢, in the sense of equivalent quasi-
norms, according to either (6) or (7). Taking v = (1, ..., 1) brings us back to
the isotropic case usually denoted by B, (R") and F};, (R"). The above Fourier
analytical approach to anisotropic function spaces is due to H. Triebel [9].

Let us now make a few historical comments on anisotropic function spaces.
A detailed treatment of the history of anisotropic function spaces can be
found in [13, Section 5]. There is quite an extensive literature concerning
anisotropic function spaces, beginning with the work of S. M. Nikol’skij and
O. V. Besov. The key objective is to make the smoothness properties of
an element from some function space dependent on the chosen direction in
R"™. Roughly speaking, elements of B, *(R") and F;*(R") are smooth of
order s/a, in direction of the r-th coordinate with r = 1,...,n. Let us
explain this relationship in detail by discussing classical anisotropic spaces.
Let 1 <p<ooand k= (ky,...,k,) with k, € N,7 = 1,...,n. The subspace
of all f € L,(R") for which the norm

f

7’

|£ RO = £ 1Ly(R")] Ly(R") (8)

is finite is called the classical anisotropic Sobolev space ng (R™). It is easily
seen that if k; = ... = k, = k € N, then the space W}(R") becomes the well-
known isotropic Sobolev space W} (R"). We now describe a generalization

of classical anisotropic Sobolev spaces, replacing the smoothness vector k =
(k1, ..., ky,) consisting only of natural numbers by the vector with real entries.
We consider the anisotropic lift operator /& with ¢ € R, which takes f €

S'(R") to
I5(f) = (

Hy(R") := 1%, L,(R")

> +€3)1/2°‘T] f) -

r=1

Then we refer to

with § = (s1,...,s,) and s, = s/a,, 7 = 1,...,n, as anisotropic Sobolev
spaces or anisotropic Bessel potential spaces. In addition, if s, € N for all
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r=1,...,n, then

H;(R”) = W;(R”)
become the classical anisotropic Sobolev spaces according to (8). We proceed
by describing the classical anisotropic Besov spaces. Let 1 < p < oo and

1 < g < co. Moreover let 5 = (s1,...,s,) with 0 < s, < M, € N and set
M = (M, ..., M,). The classical anisotropic Besov space consists of those

f € L,(R") for which
q dt 1/q
t

n 1
I 1B E] o= 17 )+ ([
r=1 0

is finite. Here AYlf = AJ'f with h = te,, t € R denote the iterated differ-
ences according to (1) in direction of the r-th coordinate and e, stands for
the corresponding unit vector in R". Once again putting s1 = ...s, = s > 0,
we recover the classical Besov spaces as presented for instance in [10, Section
1.2.5]. We now shall discuss the relation between the function spaces intro-
duced in Definition 2.1 and the classical anisotropic function spaces. Given

At,Mff‘Lp(Rn)

an anisotropic smoothness vector 5 = (sg,...,5,), we define the so-called
mean smoothness s and a = (o, ..., ay,) by
1 11 S
_:_Z_ and oy = —, ’]":1,...,77/. (9)
s ni s Sy

This makes it possible to recover in Definition 2.1 the classical anisotropic
function spaces. For instance, restricting the range of involved indices in
Definition 2.1(i) to 1 < p < oo and 1 < ¢ < oo, we obtain B; (R") =
B,#(R™). On the other hand, given a function space A;*(R") with a suit-
able combination of indices, the vector s = (s1,...,s,) is calculated by
s=(s/ai,...,s/ay,). Let s € Rand 1 < p < co. Then it can be shown that

Fy5(R") = H(R")
in the sense of equivalent norms. Moreover, we have the following anisotropic
Paley-Littlewood theorem

0, n n
Fyo (RY) = Ly(R").
We conclude this subsection by discussing some characterizations of the
anisotropic spaces B,;*(R") and F;*(R") with s > 0, in terms of the quasi-
norms of its homogeneous counterparts, denoted by B;;]O‘(R”) and Flféa(R"),
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r_espectively. Recall that the corresponding homogeneous anisotropic spaces
B;;JO‘(R”) and F;éa(R”) are equipped with the quasi-norms given by

(0.9]

1/q
I 15| = (z o (5 )Y |Lp<w>uq> 10

j=—00

and

17 1B @)= || 3 2 Hror) e

Jj=—00

(11)

respectively. Here we have extended the definition of (¢f) given by (5) to all
j € Z with the minor modification i.e. for j = 0, we put ¢f(x) = p*(z) —
©*(2%). Denoting by AZ@“(R") one of the spaces B;;]O‘(R”) or Fgéa(R"), we
may state the next result.

Proposition 2.3. Let 0 < p,q < oo with p < oo in the F'-case and s > o).
Moreover let o be an anisotropy according to (2). Then

145 RO~ [1F LR + ([ f 1455 (R (12)
holds for all f € A5 (R™).

We will also need a ” continuous” version of the above proposition replacing
the homogeneous quasi-norm on the right-hand side of (12) by its integral

counterpart. Note that the Besov space case can be found in [8, Theorem
3.3].

Theorem 2.4. Let 0 < p,q < oo, s > 0, and let a be an anisotropy according

to (2). Moreover, we put p®(t€) = p*(t*¢) — @*((2t)“€), where t > 0 and p“
as in (4). Then

0
X0 /
Hf\Lp(R”)\H( [ e wn L, <R">nth) (13)

(modification for q¢ = 00) is an equivalent quasi-norm in B:*(R").
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(i)

Lf [Zp(R™)]| + (14)

( a t—squpa(t»f)vo)w@) L

t

(modification for q = o) is an equivalent quasi-norm in Fj*(R").

Both Proposition 2.3 and Theorem 2.4 can be proved in the same way as
in [10, Section 2.3.3]. This will be omitted here.

2.3. Classical atomic decompositions in anisotropic function spaces.
As a preparation, we shall recall some basic notations of atomic decomposi-
tions in the anisotropic setting. If v € Ny and m = (my,...,m,) € Z", we
denote by Q)% . the rectangle in R" with sides parallel to the axes of coordi-
nates, centered at 277%m = (27""my,...,27"%m,) and with side lengths
o-w=Dar 9=(=Dan  Tp particular, Q§,, are rectangles of side lengths
201 ...,2% centered at m € Z". If () is a rectangle in R" and d > 0,
then d@ is the rectangle in R" concentric with () and with side length d
times the side length of Q).
We are now in a position to introduce the respective building blocks.

Definition 2.5. Let « be an anisotropy according to (2). Let s € R, 0 <
p< oo, K,L >0and d > 1. A continuous function a : R® — C with all
derivatives D7a for ay < K is said to be an anisotropic (s, p)x -atom if

(i) supp a C d@¢,, for some v € Ny, m € Z",
(i) |IDYa(z)| < 2776579 for ay < K, x € R",
(iii) [go2’a(z)dz =0 for BeNp with fa < L.
If conditions (i) and (ii) are satisfied for v = 0, then a is called an anisotropic
1x-atom.

Remark 2.6. In the sequel, we will write af,, instead of a, to indicate the
localization and size of an anisotropic (s, p)x r-atom a, i.e. if supp a C dQ%,,.
If L =0, then (iii) simply means that there are no moment conditions. In
this case, we shorten the notation by writing (s, p) x-atom instead of (s, p)x o-
atom.

The main advantage of the atomic decomposition approach is that we can
often reduce a problem given in A‘;;]a(R") to the corresponding sequence space.
We shall resrict ourselves to the case A = B and thus define the Besov

sequence spaces.
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Definition 2.7. Let 0 < p,g < ccandput A ={\,,,, € C: v € Ny,m € Z"}.
The Besov sequence space by, is defined as the set

1/p

00 q/p
bpg = S A: || Albpg| = Z(ZAWLV’) < 00

v=0 \meZ"

with the usual modification if either p = oo or ¢ = oco. In what follows , we
shall abbreviate b, to b,,.

In the sequel to shorten the notation we utilize the following abbreviation:

gp:n(%—1>+. (15)

Below we formulate the atomic decomposition characterization of anisotropic
Besov spaces B,;*(R"), following essentially [3, Theorem 3.3].

Theorem 2.8. Let 0 < p,q < 00, s € R and a be an anisotropy according
to (2). Let K, L > 0 with

0 0
K> for s< (16)
s+a, for s>0,

and L > o, — s be fized.
A tempered distribution f € S'(R") belongs to B,*(R") if, and only if, it
can be written as

f= Z Z Ao Ao converging in  S'(R"), (17)
v=0 mez"

where a$,, are anisotropic 1x-atoms (v = 0) or (s,p)k r-atoms (v € N) and
A € byy. Furthermore

inf | A[byqll (18)

where the infimum is taken over all admissible representations (17), is an
equivalent quasi-norm in B, (R™).

As an application of the above smooth atomic decomposition theorem we
obtain the next result. For K € N and a an anisotropy we denote by
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CH(R") the set of all functions f € C(R") such that D°f € C(R") for
B € Ny with fa < K, equipped with the norm given by

If 1CR R = Y IDf | Loo(RY)]]-
Ba<K

Proposition 2.9. Let 0 < p,q < 00, s > 0, and let a be an anisotropy
according to (2). Let K € N with K > s+ «,,. Then there exists a positive
constant ¢ such that

lgf | By R < cllg | CH @M 1f | By (R, (19)
holds for all f € B5*(R") and all g € C*(R").

Proof: Let f € B,*(R") and consider an optimal smooth atomic decompo-
sition
0
F=Y > domag, with [If | By (R")[| ~ [|A | byl
v=0 meZ»

where af,, are anisotropic 1x-atoms (v = 0) or (s,p)g-atoms (v € N) and
A= (Aum)veNmezn € byg. Then, for g € CE2(R™),

gf - Z Z Avm (gagm)' (20)

v=0 mezZn
Note that

supp ga.,. C supp a,, . C dQ" .
and

|D7(gay,,) ()] < ID%al, (z)||DPg(x)]
==X (3)
< (o, K) ||lg | CE®R)|) 27750 (21)

for f with fa < K. Assuming g # 0, otherwise (19) is trivially satisfied, we

can rewrite (20) as
9/ =2 > Ovmbun

v=0 meZ"
with 0., = c(a, K) A\ ||g | CT(R™) || and b, (7) == g(z)a, (z)(c(o, K) A
lg | CH*(R™)||)~! being anisotropic (s, p)x-atoms. Then, by the smooth
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atomic decomposition theorem, it follows that gf € B, (R™) and, moreover,
19/ | By (R")[| < c1 [lo | byqll
<callg | CRARMIA | by
<cz gl CH®MF I Byt (R,

with constants independent of f and g. |

3. Homogeneity property for anisotropic function spaces

The homogeneity property presented below is based on the Fubini property
defined as follows.

Definition 3.1. Let 0 < p,q < oo, s > 0, and let a be an anisotropy
according to (2). Then B, *(R") is said to have the Fubini property if

Sl By @) LR @2

is an equivalent quasi-norm in By, (R").

Note that the inner quasi-norm in (22) is taken only with respect to the
variable z, and s, = s/q;.

Theorem 3.2. Let 0 < p,q < o0, s > 0, and let a be an anisotropy according
to (2). Then the spaces By*(R") have the Fubini property if, and only if,

pP=4q.

For the proof and more details, we refer the reader to [2]. As we will
see below, the Fubini property will play a central role in the proof of the
homogeneity property for anisotropic Besov spaces B;’Q(R"). The following

proposition is a simple consequence of recent results on the homogeneity
property in isotropic function spaces on domains due to A. Caetano et al.

1].

Proposition 3.3. Let 0 < p,q < 0o and s > o,. Furthermore, let f €
B, (R") be such that supp f C {y € R" : [y| < A} for some 0 < A < 1.
Then

LF ) | By (R ~ A2 f [ By, (R, (23)

where the equivalence constants are independent of .
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For a complete treatment of homogeneity property for isotropic Besov and
Triebel-Lizorkin spaces on domains, the reader may consult a recent work of
A. Caetano et al. [1]. The next result describes the homogeneity property
in special anisotropic Besov spaces, when p = ¢. Let us briefly comment
on the anisotropic homogeneity property in Lebesgue spaces L,(R") with
0 < p < 00. A straightforward computation shows that for A > 0

LF ) [Lp(RY) || = A=lattea2| £ L(R™) | = A™7[|f [Ly(R™)]|.  (24)
In the sequel, we utilize the following abbreviation

By*(R") = B, (R"),  where 0 < p <oo,s € R.

Proposition 3.4. Let 0 < p < 00, s > o, and let o be an anisotropy
according to (2). Furthermore, let f € By*(R") be such that supp f C {y €
R™ : |yla < A} for some 0 < XA < 1. Then

LF ) By @R ~ X2 f [ By (R™)]) (25)

where the equivalence constants are independent of \.

Proof: The central idea of the proof is the use of the Fubini property for
anisotropic Besov spaces B;*(R"), to obtain an equivalent quasi-norm mod-
eled only on Besov spaces defined on R, which are isotropic. For these spaces
we shall employ the homogeneity property of isotropic Besov spaces as de-
scribed in Proposition 3.3. Assume that f € B)%(R") with supp f C {y €
R™: |yla < A}. Recall that by virtue of Theorem 3.2 we have

I 1B @~ 3 1t )] B RN Ly
- (26)

It may be worth reminding the reader that by (9) we have that s = a;s, for
r=1,...,n. Applying (26) to f(A*), using (23) and (24) results in
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[£x) 1By (R

3 1O 2 A ) B R LR

~ Z: H()\O‘T')ST'_% ||f()\o‘1£lj'1, ey )\arfll'r—l, . aAar+1xr+17 c )\a"l’n) |B;T(R)|| } LP(Rn_l)H

ayt...tap 1+a 4+1+--tan

~ AT Z [1FC) 1By (R)]| | Ly(R™H]|

= NS 1By R | L@ || ~ X 1) | By (R

which finishes the proof. n
Next, we make full use of Theorem 2.4 to get the following assertion.

Proposition 3.5. Let f € AS*(R") with s > o, (s > 0,4 in the F-case).
Then

LFO) Az (R~ A2 F() JASH R |+ AP F | L,(RY)| - (27)
holds for A > 0. The underlying equivalence constants are independent of \.

Proof: Taking into account the equivalent quasi-norm in A;*(R") given by
(12) with f(A*) in place of f(-) yields

LF ) TARH R~ [LF ) [LpRM] + [LF () [A5 (R
~ AT LR+ (O [AR (R

The last equivalence follows from (24). Recall that p®(t§) = p(t*€) —
©((2t)“€). More precisely,

pr(tE) = e(t™&, .., 17&) — 0((26)M&1, .., (20)™&n).
Therefore, a chain of standard substitutions gives
(P (E)FFON )Y (@) = (0" EA"FF)A™) " (@)
= (P (M) )F(F() () (Xa).
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To establish the proof, we consider the integral part of the equivalent quasi-
norms given by (13) and (14). We state it here for A = B. Then, we obtain

| f(A%) ‘B;&a(R")H ~ </000 154 H(Pa(t)]:(f()\a))())v |Lp(R”)Hq%> 1/q
B </OOO t <Pa(()\t)-)f(.)>v () |L,(R™) qit>1/q
= (/OOO ();\t_):q <po‘((>\t)-)f(-)>v () L, () q%>1/q

v ([Tl (i) o | 2)

~ N B (R

which finishes the proof for the B-case. The proof of the F-case is analogous.
|

4. Anisotropic non-smooth atoms

Definition 4.1. Let ¢ > 1, 0 < p < o0 and 0, < s < 0 < oo, where o,
is given by (15). Then ay,, € By “(R") is called an anisotropic (s, p)-atom
provided that

supp a;,, C ¢ @5, where v € Ny, m € Z" (28)
and
o 1B (R)]| < 247, (29)

The next proposition summarizes the basic properties of the just introduced
anisotropic non-smooth atoms. In its first part we compare these atoms with
the classical atoms described in Definition 2.5.

Proposition 4.2. Let ¢ > 1, v € Ny and m € Z". Moreover let 0 < p < 00
and o, < s < 0.

(i) Let 0 + a,, < K € N. Then any anisotropic (s,p)k-atom af, accord-
ing to Definition 2.5 is an anisotropic (s,p)?-atom as introduced in
Definition 4.1.

(ii) Let a2, be an anisotropic (s,p)?-atom. Then

|ag, |Bs*(R™)|| < 1. (30)
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In particular, for p > 1 we obtain
[ 12,7 < 27 B1)

Proof: Let us start by recalling the needed homogeneity property. Taking
A= 27", v € Nin Proposition 3.4 we obtain for g € B,*(R") with supp g C
{y e R": |y|lo <1} that

lg | By (R™)|| ~ 2777 g(27) [ By (R)]]. (32)

To establish (i) let us assume that a2 is an anisotropic (s, p)g-atom with
K > o0 > s. We can write

Ay (2) = 27770, (2), (33)

vm

where
bY (x) :=2"" " (2), xeR", veNy, meZ

vm

Note that, for each v € Ny and m € Z", we have

supp by, = supp a,, C cQy,,
and
DG, (x)] <2775 for qa < K,

so that b%, is an anisotropic (o, p)x-atom. Then, by (33) and the classical
atomic decomposition theorem it follows

ag, € BS*(R") and |al, |BS*(R")]| <27
and hence af,, are anisotropic (s, p)?-atoms.
We now prove (ii). We may assume m = 0 and we put a? = af,. Applying
(32) to g(x) = ay(27"“z) and using the elementary embedding By (R") —
By“(R"), we obtain for v € Ny
o 1357 R0 ~ 27 a7 36|
S 2V(s—n/p) Hag(Q—Va_) ‘Bg,a(Rn) H
5 Q—V(O'—S) Hag ‘B]c?r,oz (Rn>H
< 1.
Let r € (1,00) be such that » > p and s —n/p > —n/r. Then it holds
By (BY) = Fp(RY) < FO (") = L, (R").



NON-SMOOTH ATOMIC DECOMPOSITIONS OF ANISOTROPIC FUNCTION SPACES 15

Using the Holder inequality combined with the homogeneity property (32)
we obtain for v € N
lag [Lp(RY)[| = 27777 {|ag (27") |Ly(R")]|
S 277 Ylag (27) | Lo (RY)
S 27 |lag (27 | By (R
5 2—1/n/p 2—V(s—n/p) Hag |B;,Q(Rn) H
g 2—1/5.
|

The main result in this section is the following atomic decomposition the-
orem of type (17) and (18) based on the atoms introduced in Definition 4.1.

Theorem 4.3. Let 0 < p < 0o, o be an anisotropy and o, < s < o. Then
By*(R™) is the collection of all f € LY(R")NS'(R™) which can be represented

as
f= Z Z Avm Qo (34)
v=0 mez"
where af,, for fited ¢ > 1 are anisotropic (s,p)?-atoms according to Defi-
nition 4.1 and X\ € by. The series on the right-hand side of (34) converges
unconditionally in S'(R™) and if p < oo, absolutely in some L,.(R") with
1 <r < oo. Furthermore,

inf [|A] byll, (35)

where the infimum is taken over all admissible representations (34), is an
equivalent quasi-norm in By®(R").

Proof: Our method will be an adaptation of the reasoning used in [13, Section
2.2], but we have to examine very carefully the influence of the anisotropy.
Step 1. We start our proof by justifying the convergence of the series on the
right-hand side of (34) in some L,(R") with 1 < r < co. Assume first that
p > 1. Then, by Proposition 4.2 combined with the support property (28),
we obtain

00 1/]?
If IL,RY S 27 (Z IAump) S A 16l
v=0

mezn



16 S. D. MOURA, I. PIOTROWSKA AND M. PIOTROWSKI

Consequently, the series (34) converges absolutely in L,(R") with » = p. In
order to clarify the convergence of the series (34) in some L,(R") in the case
p < 1, we utilize the Sobolev embedding

By*(R") — By*(R") with s—n/p=t—n/r and p<r.
Step 2. By Theorem 2.8 and Proposition 4.2 the only point remaining
concerns the proof of the inequality

[F]1 By (R™)[| < ¢ [|A [y (36)

for all decompositions (34). Taking into account that By*(R") with p <1 is
a p-Banach space combined with Proposition 4.2 (ii) yields

IFI By ®DIP< Y > lllag,] Byt (RIS (1A byll”

v=0 mezZnr

Thus, we are left with the task of proving (36) with p > 1. We adopt
throughout the notational convention that the elements of Ny are denoted by
7,k and the elements of Z" are denoted by m, w. Moreover a®, b, d* denote
anisotropic atoms, whereas A\, n, v stand for complex numbers of sequences
or complex numbers. Let us rewrite (34) as

f = Z Z )\k’maim.

k=0 meZ"
Consider an optimal smooth atomic decomposition of af!  (27%.) in B7*(R")

by smooth anisotropic (o, p) x-atoms bf;n with o+, < K. By virtue of (17)
we have

(2770 iz b r €R", (37)
j=0 wezr

with
supp b C dQS DI ()| < 277 (38)
for ay < K and z € R". In addition, one gets

1/p
k.m « —ko 0,0 (TN
(D) ™ ~ Nl (275) (B~ (RY)|
Jw

~ 2—k(0—n/p)‘|azc’m ‘Bg,a(Rn)H 5 2—k(0—n/p)2k(a—s) _ 2—k(s—n/p)' (39)

Jws
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Consequently,
Y i), R (40)
71=0 wezZ»

where the functions bk m(2k0‘ ) have supports in cQf ;-

Namely, we have

supp bf”ﬁ(Qka-) —{z e R": |2"ig, — 2%y, < 27% j=1,...,n}
—{z eR": |z;—27Uthaiy,| <o Utha g —1  n}
:CQ?—i—k,w'

Furthermore, by virtue of (38), we obtain

km roka _ oka
DB (2 x)‘_z L

k,m [e%
(D7) (247)]
< 9Uitklavg=ilo=n/p) _ oli+k)avg—(i+k)(e—n/p)g=(i+k)(o—s)gk(r—n/p),

Replacing 5 + k£ by j yields

Q) = 287N N i 27O (), (41)

1>k wezn

where df{un are classical anisotropic (s, p)x -atoms. Let (j,w, k) with k& < j

denote the set of all m € Z" for which the atoms dfg‘ in (41) do not vanish,
that is,

(Jyw, k) :={m e Z": cQf,, NcQF, #0}.
Note that, if there exists an z = (z;)j_; € cQj,, N cQF,, then
|27y, — 27 R, | < 1279%; — a| + |27 my — ] < e277% T e Rl
where ¢ = 1,--- ,n, and hence, as k < j,
|2(/€ g — —m,| < c k=gl 4 o=l < ¢, i=1,---,m,

which means that, for each i € {1,---,n}, there are, at most, 2¢ possible
values for m;. Therefore, the cardinal number of (j,w, k) is less or equal to
(2¢)™ (a number independent of j, w, k). Let

_ Zk<g (o=n/p) Zme(gwk) n] kw)‘kmdkm(x)

dj () =
g zk< (o=n/p) Zme(jwk |77 H>\km|
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We can assume that, for m € (j,w, k), df:f are smooth anisotropic (s, p) k-

atoms with supports in ¢Qj,, N c@Qf,. Thus, by the definition of d7,, it
clearly follows

k,
supp dj,, C U U supp dj7;n C cQf,
k<j me(jw,k)

and
IDVd5,,(7)] < 9-J(s=p =) for ~va < K,

N . .
and hence, df,, are smooth anisotropic (s, p)x-atoms. Thus, we have

f Z ZU]U) Jws (42)

7=0 wezZn"

w:2—j(0—8)22k(0—n/p) Z \77] ka Aenl.

k<j me(j,w,k)

where

Choosing 0 < € < 0 — s, we get forp<oo
vj0f” < Z Z 9—(j—k)(o—s—e)pgk(o— n/pp‘n] kwlp‘)‘km‘p

k<j me(jw,k)

<D0 D 2 el

k<j me(j,w,k)

Finally, the above estimate combined with (39) gives

22 ol S D Pl 3 D 2P

7=0 wezZn k=0 meZ» >k wezn

5 Z Z |)‘k,m‘p-

k=0 meZn

Consequently, (42) is a decomposition by smooth atoms and (36) follows
from Theorem 2.8 and the last estimate. ]

As an easy consequence of Proposition 4.2(i) and Theorem 4.3 we obtain
the following smooth atomic decomposition. Remark that the smoothness
property of the classical anisotropic atoms used below does not depend on
the given anisotropy as it is in (16).



NON-SMOOTH ATOMIC DECOMPOSITIONS OF ANISOTROPIC FUNCTION SPACES 19

Corollary 4.4. Let 0 < p < oo and « be an anisotropy according to (2).
Moreover let o, < s < K. Then By®(R") consists of all f € LP*(R")NS’'(R")

which can be written as
[ee]
F=2 D Aomth,

v=0 mezn

where af,. for fired ¢ > 1 are anisotropic (s, p)x-atoms according to Defini-
tion 2.5 and X € by,

5. Pointwise multipliers in anisotropic function spaces

Let A%(R") denote either B, *(R") or F,/*(R") according to Definition 2.1
with 0 < p,¢ < 00 (p < oo in the F-case) and s > 0,. However, we will be
mostly concerned with A*(R") = B;,*(R"). A locally integrable function m
in R" is called a pointwise multiplier for A*(R") if

f=mf

generates a bounded map in A%(R"). Since s > 0, the spaces under con-
sideration are embedded in some L,(R") with 1 < r < co and therefore, the
expression mf above makes sense as a product of functions . The collection
of all multipliers for A%(R") is denoted by M(A*(R")). In the sequel, let 9

stand for a non-negative C'*° function with

supp ¥ C {y € R": |ylo < V/n} (43)
and
d wr-1)=1, zeR" (44)
leZn

Definition 5.1. Let 0 < p,q < oo (p < oo in the F-case ), s € R and let «

be an anisotropy according to (2). We define the space A% (R") to be the
set of all f € S'(R") such that

If] ASar(R™)[ = sup_ [l(- = ) f(277")] A*(R")] (45)

jeNg,leZn
is finite.
Remark 5.2. The isotropic selfsimilar spaces were firstly introduced in [12]

and considered again in [13] Section 2.3. A careful look at (45) reveals that
these space are closely connected with pointwise multipliers. We also mention



20 S. D. MOURA, I. PIOTROWSKA AND M. PIOTROWSKI

its forerunner, the so-called uniform spaces, which were studied in detail in
[5]. Using Proposition 3.5, one can easily show that

selts(R") = Lo (R").

selfs

Applying (27) to f € A%, (R") gives

selfs

(= 1) F27°) |45 (")
~ 2T (@I 1) LA R + 221 =) f |L,(RY)]

uniformly for all j € Ny and [ € Z". Consequently,
20" A Wy = DPFIf(W)P dy < c |l f] Als(R™)IP. (46)

Thus, the right-hand side of (46) is a uniform bound for | f(-)|? at its (anisotropic)
Lebesgue points, which proves the desired embedding, see [6, Corollary p.
13]. The interested reader is referred to [4, Section 3] for further embedding
assertions of anisotropic spaces into L (R").

Definition 5.3. Let 0 < p < oo and s > o,. Moreover, let o be an anisotropy
according to (2). We define

B (RY) = | ) Bra L (R

p,selfs p,selfs
o>8

Theorem 5.4. Let 0 < p < oo and 0, < s < 0. Moreover, let o be an
anisotropy according to (2).

(i) Then
By i(RY) ©€ M (By*(R") — Byo (R™).

p,selfs p,selfs

(ii) Additionally, for 0 < p <1 we get

M (B:*(R")) = B, (R™).

p,selfs
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Proof: We start by proving the right-hand side embedding in (i). Let m €
M(B,*(R")). Then, using the homogeneity property yields

(- = m(277*) | By (R")]| (47)
~ 27T (20 =1y m | By (R
S llm | M(By*(RM)| 277677 (27 - 1) | By (R

S llm | M(By(R™)]| 277075 g(277%) | By*(R")]
S [lm | M(By*(R™) 4| Byt (RY)]]

( )
( )
( )
S llm | M(By(R))|
for all [ € Z", j € Ny, and hence,

lm | ByGw® )l = sup |lo(- —1)m(27%) | By*(R")]|

p,selfs ]
J€Np,leZ™

S lm | M(By*(R®))][.

We shall prove now the first inclusion in (i). Let m € B) (. (R") with o > s.
Let f € By*(R") and let

f=Y_ > Auay with |[f | By*(R")| ~[IA] b (48)

j=0 lezZn

be an optimal smooth atomic decomposition, where a¢, are anisotropic (s, p) x-

71
atoms with K > o + «,,. Then

mf = Z Z Aji (majy) (49)

Jj=0 lezn

and we wish to prove that, up to normalizing constants, mag; are anisotropic
(s,p)?-atoms. The support condition is obvious:

supp maj C supp aj; C dQj, j € Ny, [ € Z".

iz
If [ = 0 then we put af = aj,. Note that

supp af (277%) C {y : |y;| < d/2} (50)
and we can assume that

Y(y) >0 if ye{r: | <d}. (51)
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Using Lemma 2.9, we have, for any g € B;*(R"),
a3 @) vt g | BE (R S flag (2 v | CRo®)]| g | By (R
<2969 |lg | Bre®™)|
and hence
a2yl | M(BR @) S 27579, jeN,  (52)
By (52) and the homogeneity property we then get for j € Ny
Imag [By*(R")|| ~ 2775 [m(277%) af (277*) | By*(R")]
<SP lag (277 ¢t | M(BgtRM)]| [Im(277) ¢ | By (RM)]|
< 207 lm(277%) ¢ | B (R")]]. (53)

In case of af; with [ € Z" one would arrive at (53) with af; and (- — 1)
instead of aj and 1, respectively. Hence

Imaf; | By (R[] < 2 Sup Im(277%) (- = 1) | By (R

7>

— 90 | | BIOLRY, G ENy, [€Z,  (54)

p,selfs

and therefore, maf§; are anisotropic (s, p)’-atoms. By Theorem 4.3, in view
of (49), mf € By“(R") and

lmf | Byt (RIS A Tbpll I | By gers (R

p,selfs

~ BRI m | By s (R,

p,selfs

which completes the proof of (i).
We prove (ii). Let m € B (R") and p < 1. It follows from (54) with
o = s that

lmagy | By*R")|| S lm | BRI, 5 €No, L€Z". (55)

p,selfs

Since B;*(R") is a p-Banach space, from (48) and using (49) and (55), we
obtain

lmf | By*®IP <D Y [l Imaf | By(R")||P
7=0 lez"
SAATOI7 [[m | B, (R

p,selfs

SBR[l | B g (R 7.

p,selfs
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Hence m € M(By*(R")) and, moreover, B (R") — M(By*(R")). The

p,selfs
other embedding follows from part (i). |

The final part of this work is devoted to the question in which anisotropic
function spaces the characteristic function yq of the domain € in R” is a
pointwise multiplier.

Definition 5.5. Let o be an anisotropy according to (2) and let " be a non-
empty compact set in R”. Let h : t —— h(t) be a positive monotonically
non-decreasing function on the interval (0, 1]. Then I is called an anisotropic
h-set if there is a finite Radon measure p in R" with

supp p=I" and  p(B*(y,7)) ~h(r), v€Il', 0<r<1,  (56)
where
Bv,r)={z€eR": |z —7ql.<r}

We say that the measure p satisfies the anisotropic doubling condition if
there is a constant ¢ > 0 such that

w(B(vy,2r)) < cu(B(v,r)), vyeIl, 0<r<l. (57)
Let

D, (z) = dist,(x,T) = ;rellﬁ T — 9y

be the anisotropic distance of x € R" to I'.
Theorem 5.6. Let € be a bounded domain in R" and let o be an anisotropy

according to (2). Moreover, let 0 < p < 00, 0 > 0p, and let I' = 052 be an
anisotropic h-set according to Definition 5.5 with

S h(27
sup y 2MP (%2_“) < 0. (58)
jeNo 12 h(2777F)
Let By (R™) be the space introduced in Definition 5.1. Then
Xa € By (RY). (59)

Proof: The proof is based upon ideas found in [12, Theorem 3]. It simplifies
the argument, and causes no loss of generality, to assume diam €2 < 1. We
define

O ={z e 27" <dist,(z,1) <27}, keN,.
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Moreover, let
k
{gOl’a : k € Np; l:1,...,Mk} CCSO(Q)

be an anisotropic resolution of unity,

M,
>N @) =1, if zeq (60)
keNy I=1
with
supp gof’a c{z : |z— zF, < Q_k} c QF
and

D (z)] S 2 for qa <K, z€R", KeN with K >0+ aq,.

It turns out that such an anisotropic resolution of unity exists. See [11,
Section 7.5] for discussion of this technical point in the isotropic case. We
now estimate the minimal number M}, in (60). Combining the fact that the
measure p satisfies the doubling condition (57) together with (56) we arrive
at

Mh(27%) <1, keN,.

Clearly, (60) can be rewritten in the form
00 M;,
xo(z) = Z okle=3) Z 2_]{(”_%)@?’@@), r € R", (61)
k=0 1=0

where 2_k(a_%)g0f’a are anisotropic (o, p) g-atoms according to Definition 2.5.
Furthermore, we obtain

00 . 00 2—kn
BO(RM|IP < N " 2kle—pppp < N T gkop 62
Ixa By (R™)]| _kz_% kwkz_; ) < 00 (62)

This shows that xo € By“(R"). We now prove that xo € B, (R"). We

consider the non-negative function ¢ € C*°(R") with (43) and (44). By the
definition of anisotropic selfsimilar spaces, it suffices to consider

xa (277,
assuming in addition that 0 € 29T = {200y = (2%, ... 2/, ). v €T},
j € Ny. Let i/ be the image measure of u with respect to the dilations
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y — 2/%. Then we obtain
# (B*(0,v/n) N 2°T) ~ h(277), j €N,

We use the same argument as above to BY(0, v/n)N2/9Q and B*(0, \/n)N2/°T.
Hence, we again have

MIh(2777%) <h27), jeN, ke,

which completes the proof. u
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