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1. Introduction

In recent years, many efforts have been made to develop decomposition
techniques in function spaces using atoms, quarks or wavelets as building
blocks. All these techniques have found widespread applications in other
branches of the theory of function spaces and still remain very much alive as
subjects of current research. For a deeper discussion of these techniques, the
reader is referred to the recent monograph [13].

In the present paper we are concerned with non-smooth atomic decom-
positions of special anisotropic function spaces of Besov type. Using these
non-smooth atoms one can also improve the smoothness assumptions for
classical smooth anisotropic atoms according to Farkas [3] in a natural way.
The problem of extending the theory of non-smooth isotropic atoms to the
anisotropic case was posed by H. Triebel in [13, Remark 5.16]. The sec-
ond purpose of this work is to study pointwise multipliers in these function
spaces. We now describe briefly the contents of the paper. In Section 2 we set
up notation and terminology and summarize some basic facts on anisotropic
function spaces. In Section 3 the homogeneity properties of anisotropic func-
tion spaces are presented. Section 4 is concerned with the non-smooth atomic
decomposition in some anisotropic spaces of Besov type. These results are
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used in Section 5 to obtain some new assertions on pointwise multipliers in
anisotropic function spaces.

2. Preliminaries

2.1. Notation and Conventions. For a real number a, let a+ := max(a, 0).
By c, c1, c2, etc. we denote positive constants independent of appropriate
quantities. For two non-negative expressions (i.e. functions or functionals)
A, B, the symbol A . B (or A & B) means that A ≤ cB (or cA ≥ B). If
A . B and A & B, we write A ∼ B and say that A and B are equivalent.
For p ∈ [1,∞], the conjugate number p′ is defined by 1/p + 1/p′ = 1 with
the convention that 1/∞ = 0. Given two quasi-Banach spaces X and Y ,
we write X →֒ Y if X ⊂ Y and the natural embedding is bounded. In the
following let both dx and | · | stand for the Lebesgue measure in R

n. Let

(∆1
hf)(x) = f(x+ h) − f(x), (∆m+1

h f)(x) = ∆1
h(∆

m
h f)(x) (1)

with x, h ∈ Rn and m ∈ N be the iterated differences in Rn. For x ∈ Rn and
β, γ ∈ Nn

0 we put

βγ = γβ =

n∑

j=1

γjβj and xγ = xγ1

1 · . . . · xγn

n .

Let S(Rn) stand for the Schwartz space of all complex-valued rapidly de-
creasing C∞ functions on Rn. Further, we denote by S ′(Rn) its topological
dual, the space of all tempered distributions.

2.2. Anisotropic function spaces. In this subsection we introduce the
anisotropic Besov and Triebel-Lizorkin spaces and describe some important
properties. Let us start by recalling briefly the basic ingredients needed to
introduce these spaces by the Fourier-analytical approach. Throughout the
paper we call the vector

α = (α1, . . . , αn) with 0 < α1 ≤ . . . ≤ αn <∞ and
n∑

j=1

αj = n (2)

an anisotropy in R
n. For t > 0, r ∈ R and x = (x1, . . . , xn) ∈ R

n we put

tαx := (tα1x1, . . . t
αnxn) and trαx := (tr)αx.
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For x = (x1, . . . , xn) ∈ R
n, x 6= 0, let |x|α be the unique positive number t

such that

x2
1

t2α1

+ . . .+
x2
n

t2αn
= 1 (3)

and put |0|α = 0. It turns out that | · |α is an anisotropic distance function
according to [3, Definition 2.1] in C∞(Rn)\{0}. Note that in the isotropic
case, which means α1 = · · · = αn = 1, |x|α is the Euclidean distance of x to
the origin.

Let ϕα ∈ S(Rn) be a function such that

ϕα(x) = 1 for |x|α ≤ 1 and supp ϕα ⊂ {x ∈ R
n : |x|α ≤ 2}. (4)

For each j ∈ N we define

ϕαj (x) := ϕα(2−jαx) − ϕα(2−(j−1)αx), x ∈ R
n, (5)

and put ϕα0 = ϕα. Then since
∑∞

j=0 ϕ
α
j (x) = 1 for all x ∈ R

n, the sequence

(ϕαj )j∈N0
is an anisotropic resolution of unity. Recall that (ϕαj f̂)∨ is an entire

function on Rn.

Definition 2.1. Let α be an anisotropy as in (2) and let ϕα = (ϕαj )j∈N0
be

an anisotropic dyadic resolution of unity in the sense of (5).

(i) For 0 < p, q ≤ ∞ and s ∈ R the anisotropic Besov space Bs,α
pq (Rn) is

defined to be the set of all tempered distributions f ∈ S ′(Rn) such that

∥∥f |Bs,α
pq (Rn)

∥∥ :=

( ∞∑

j=0

2jsq
∥∥(ϕαj f̂)∨|Lp(Rn)

∥∥q
)1/q

(6)

is finite. In the limiting case q = ∞ the usual modification is required.
(ii) For 0 < p < ∞, 0 < q ≤ ∞ and s ∈ R the anisotropic Triebel-Lizorkin

space F s,α
pq (Rn) is defined to be the set of all tempered distributions f ∈

S ′(Rn) such that

∥∥f |F s,α
pq (Rn)

∥∥ :=

∥∥∥∥∥∥

( ∞∑

j=0

2jsq|(ϕαj f̂)∨(·)|q
)1/q

|Lp(Rn)

∥∥∥∥∥∥
(7)

is finite. In the limiting case q = ∞ the usual modification is required.
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Remark 2.2. We occasionally use the symbolAs,α
pq (Rn) to consider the spaces

Bs,α
pq (Rn) and F s,α

pq (Rn) simultaneously. It turns out that As,α
pq (Rn) are quasi-

Banach spaces which are independent of ϕα, in the sense of equivalent quasi-
norms, according to either (6) or (7). Taking α = (1, . . . , 1) brings us back to
the isotropic case usually denoted byBs

pq(R
n) and F s

pq(R
n). The above Fourier

analytical approach to anisotropic function spaces is due to H. Triebel [9].
Let us now make a few historical comments on anisotropic function spaces.

A detailed treatment of the history of anisotropic function spaces can be
found in [13, Section 5]. There is quite an extensive literature concerning
anisotropic function spaces, beginning with the work of S. M. Nikol’skij and
O. V. Besov. The key objective is to make the smoothness properties of
an element from some function space dependent on the chosen direction in
Rn. Roughly speaking, elements of Bs,α

pq (Rn) and F s,α
pq (Rn) are smooth of

order s/αr in direction of the r-th coordinate with r = 1, . . . , n. Let us
explain this relationship in detail by discussing classical anisotropic spaces.
Let 1 < p <∞ and k̄ = (k1, . . . , kn) with kr ∈ N, r = 1, . . . , n. The subspace
of all f ∈ Lp(R

n) for which the norm

∥∥f |W k̄
p (Rn)

∥∥ :=
∥∥f |Lp(Rn)

∥∥+

n∑

r=1

∥∥∥∥
∂krf

∂xkr
r

|Lp(Rn)

∥∥∥∥ (8)

is finite is called the classical anisotropic Sobolev space W k̄
p (Rn). It is easily

seen that if k1 = . . . = kn = k ∈ N, then the space W k̄
p (Rn) becomes the well-

known isotropic Sobolev space W k
p (Rn). We now describe a generalization

of classical anisotropic Sobolev spaces, replacing the smoothness vector k̄ =
(k1, . . . , kn) consisting only of natural numbers by the vector with real entries.
We consider the anisotropic lift operator Iασ with σ ∈ R, which takes f ∈
S ′(Rn) to

Iασ (f) :=

([
n∑

r=1

(1 + ξ2
r )

1/2αr

]σ
f̂

)∨

.

Then we refer to

H s̄
p(R

n) := Iα−sLp(R
n)

with s̄ = (s1, . . . , sn) and sr = s/αr, r = 1, . . . , n, as anisotropic Sobolev
spaces or anisotropic Bessel potential spaces. In addition, if sr ∈ N for all
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r = 1, . . . , n, then

H s̄
p(R

n) = W s̄
p (R

n)

become the classical anisotropic Sobolev spaces according to (8). We proceed
by describing the classical anisotropic Besov spaces. Let 1 < p < ∞ and
1 ≤ q ≤ ∞. Moreover let s̄ = (s1, . . . , sn) with 0 < sr < Mr ∈ N and set
M̄ = (M1, . . . ,Mn). The classical anisotropic Besov space consists of those
f ∈ Lp(R

n) for which

∥∥f |B s̄
pq(R

n)
∥∥
M̄

:=
∥∥f |Lp(Rn)

∥∥+
n∑

r=1

(∫ 1

0

t−srq
∥∥∥∆Mr

t,r f |Lp(Rn)
∥∥∥
q dt

t

)1/q

is finite. Here ∆m
t,rf = ∆m

h f with h = ter, t ∈ R denote the iterated differ-
ences according to (1) in direction of the r-th coordinate and er stands for
the corresponding unit vector in Rn. Once again putting s1 = . . . sn = s > 0,
we recover the classical Besov spaces as presented for instance in [10, Section
1.2.5]. We now shall discuss the relation between the function spaces intro-
duced in Definition 2.1 and the classical anisotropic function spaces. Given
an anisotropic smoothness vector s̄ = (s1, . . . , sn), we define the so-called
mean smoothness s and α = (α1, . . . , αn) by

1

s
=

1

n

n∑

r=1

1

sr
and αr =

s

sr
, r = 1, . . . , n. (9)

This makes it possible to recover in Definition 2.1 the classical anisotropic
function spaces. For instance, restricting the range of involved indices in
Definition 2.1(i) to 1 < p < ∞ and 1 ≤ q ≤ ∞, we obtain B s̄

pq(R
n) =

Bs,α
pq (Rn). On the other hand, given a function space As,α

pq (Rn) with a suit-
able combination of indices, the vector s̄ = (s1, . . . , sn) is calculated by
s̄ = (s/α1, . . . , s/αn). Let s ∈ R and 1 < p <∞. Then it can be shown that

F s,α
p,2 (Rn) = H s̄

p(R
n)

in the sense of equivalent norms. Moreover, we have the following anisotropic
Paley-Littlewood theorem

F 0,α
p,2 (Rn) = Lp(R

n).

We conclude this subsection by discussing some characterizations of the
anisotropic spaces Bs,α

pq (Rn) and F s,α
pq (Rn) with s > σp in terms of the quasi-

norms of its homogeneous counterparts, denoted by Ḃs,α
pq (Rn) and Ḟ s,α

pq (Rn),
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respectively. Recall that the corresponding homogeneous anisotropic spaces
Ḃs,α
pq (Rn) and Ḟ s,α

pq (Rn) are equipped with the quasi-norms given by

∥∥f |Ḃs,α
pq (Rn)

∥∥ :=

( ∞∑

j=−∞
2jsq
∥∥(ϕαj f̂)∨ |Lp(Rn)

∥∥q
)1/q

(10)

and

∥∥f |Ḟ s,α
pq (Rn)

∥∥ :=
∥∥∥
( ∞∑

j=−∞
2jsq|(ϕαj f̂)∨(·)|q

)1/q

|Lp(Rn)
∥∥∥, (11)

respectively. Here we have extended the definition of (ϕαj ) given by (5) to all
j ∈ Z with the minor modification i.e. for j = 0, we put ϕα0 (x) = ϕα(x) −
ϕα(2αx). Denoting by Ȧs,α

pq (Rn) one of the spaces Ḃs,α
pq (Rn) or Ḟ s,α

pq (Rn), we
may state the next result.

Proposition 2.3. Let 0 < p, q ≤ ∞ with p < ∞ in the F -case and s > σp.
Moreover let α be an anisotropy according to (2). Then

∥∥f |As,α
pq (Rn)

∥∥ ∼
∥∥f |Lp(Rn)

∥∥+
∥∥f |Ȧs,α

pq (Rn)
∥∥ (12)

holds for all f ∈ As,α
pq (Rn).

We will also need a ”continuous” version of the above proposition replacing
the homogeneous quasi-norm on the right-hand side of (12) by its integral
counterpart. Note that the Besov space case can be found in [8, Theorem
3.3].

Theorem 2.4. Let 0 < p, q ≤ ∞, s > σp and let α be an anisotropy according
to (2). Moreover, we put ρα(tξ) = ϕα(tαξ)−ϕα((2t)αξ), where t > 0 and ϕα

as in (4). Then

(i)

‖f |Lp(Rn)‖ +

(∫ ∞

0

t−sq‖(ρα(t·)f̂)∨ |Lp(Rn)‖qdt
t

)1/q

(13)

(modification for q = ∞) is an equivalent quasi-norm in Bs,α
pq (Rn).



NON-SMOOTH ATOMIC DECOMPOSITIONS OF ANISOTROPIC FUNCTION SPACES 7

(ii)

‖f |Lp(Rn)‖ +

∥∥∥∥∥

(∫ ∞

0

t−sq|(ρα(t·)f̂)∨(·)|qdt
t

)1/q

| Lp(Rn)

∥∥∥∥∥ (14)

(modification for q = ∞) is an equivalent quasi-norm in F s,α
pq (Rn).

Both Proposition 2.3 and Theorem 2.4 can be proved in the same way as
in [10, Section 2.3.3]. This will be omitted here.

2.3. Classical atomic decompositions in anisotropic function spaces.

As a preparation, we shall recall some basic notations of atomic decomposi-
tions in the anisotropic setting. If ν ∈ N0 and m = (m1, . . . , mn) ∈ Zn, we
denote by Qα

νm the rectangle in Rn with sides parallel to the axes of coordi-
nates, centered at 2−ναm = (2−να1m1, . . . , 2

−ναnmn) and with side lengths
2−(ν−1)α1, . . . , 2−(ν−1)αn. In particular, Qα

0m are rectangles of side lengths
2α1, . . . , 2αn centered at m ∈ Z

n. If Q is a rectangle in R
n and d > 0,

then dQ is the rectangle in R
n concentric with Q and with side length d

times the side length of Q.
We are now in a position to introduce the respective building blocks.

Definition 2.5. Let α be an anisotropy according to (2). Let s ∈ R, 0 <
p ≤ ∞, K,L ≥ 0 and d > 1. A continuous function a : R

n → C with all
derivatives Dγa for αγ ≤ K is said to be an anisotropic (s, p)K,L-atom if

(i) supp a ⊂ dQα
νm for some ν ∈ N0, m ∈ Z

n,

(ii) |Dγa(x)| ≤ 2−ν(s−
n
p
−γα) for αγ ≤ K, x ∈ Rn,

(iii)
∫

Rn x
βa(x)dx = 0 for β ∈ Nn

0 with βα < L.

If conditions (i) and (ii) are satisfied for ν = 0, then a is called an anisotropic
1K-atom.

Remark 2.6. In the sequel, we will write aανm instead of a, to indicate the
localization and size of an anisotropic (s, p)K,L-atom a, i.e. if supp a ⊂ dQα

νm.
If L = 0, then (iii) simply means that there are no moment conditions. In
this case, we shorten the notation by writing (s, p)K-atom instead of (s, p)K,0-
atom.

The main advantage of the atomic decomposition approach is that we can
often reduce a problem given inAs,α

pq (Rn) to the corresponding sequence space.
We shall resrict ourselves to the case A = B and thus define the Besov
sequence spaces.
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Definition 2.7. Let 0 < p, q ≤ ∞ and put λ = {λνm ∈ C : ν ∈ N0, m ∈ Z
n}.

The Besov sequence space bpq is defined as the set

bpq =





λ :

∥∥λ|bpq
∥∥ :=




∞∑

ν=0

(
∑

m∈Zn

|λνm|p
)q/p




1/p

<∞






with the usual modification if either p = ∞ or q = ∞. In what follows , we
shall abbreviate bpp to bp.

In the sequel to shorten the notation we utilize the following abbreviation:

σp = n

(
1

p
− 1

)

+

. (15)

Below we formulate the atomic decomposition characterization of anisotropic
Besov spaces Bs,α

pq (Rn), following essentially [3, Theorem 3.3].

Theorem 2.8. Let 0 < p, q ≤ ∞, s ∈ R and α be an anisotropy according
to (2). Let K,L ≥ 0 with

K ≥
{

0 for s < 0

s+ αn for s ≥ 0,
(16)

and L > σp − s be fixed.
A tempered distribution f ∈ S ′(Rn) belongs to Bs,α

pq (Rn) if, and only if, it
can be written as

f =

∞∑

ν=0

∑

m∈Zn

λνm a
α
νm, converging in S ′(Rn), (17)

where aανm are anisotropic 1K-atoms (ν = 0) or (s, p)K,L-atoms (ν ∈ N) and
λ ∈ bpq. Furthermore

inf ‖λ|bpq‖, (18)

where the infimum is taken over all admissible representations (17), is an
equivalent quasi-norm in Bs,α

pq (Rn).

As an application of the above smooth atomic decomposition theorem we
obtain the next result. For K ∈ N and α an anisotropy we denote by
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CK,α(Rn) the set of all functions f ∈ C(Rn) such that Dβf ∈ C(Rn) for
β ∈ Nn

0 with βα ≤ K, equipped with the norm given by

‖f | CK,α(Rn)‖ :=
∑

βα≤K
‖Dβf | L∞(Rn)‖.

Proposition 2.9. Let 0 < p, q ≤ ∞, s > σp and let α be an anisotropy
according to (2). Let K ∈ N with K ≥ s + αn. Then there exists a positive
constant c such that

‖gf | Bs,α
pq (Rn)‖ ≤ c ‖g | CK,α(Rn)‖ ‖f | Bs,α

pq (Rn)‖, (19)

holds for all f ∈ Bs,α
pq (Rn) and all g ∈ CK,α(Rn).

Proof : Let f ∈ Bs,α
pq (Rn) and consider an optimal smooth atomic decompo-

sition

f =

∞∑

ν=0

∑

m∈Zn

λνm a
α
νm with ‖f | Bs,α

pq (Rn)‖ ∼ ‖λ | bpq‖,

where aανm are anisotropic 1K-atoms (ν = 0) or (s, p)K-atoms (ν ∈ N) and
λ = (λνm)ν∈N,m∈Zn ∈ bpq. Then, for g ∈ CK,α(Rn),

gf =
∞∑

ν=0

∑

m∈Zn

λνm (gaανm). (20)

Note that

supp gaανm ⊂ supp aανm ⊂ dQα
νm,

and

|Dγ(gaανm)(x)| ≤
∑

β≤γ

(
γ

β

)
|Dβaανm(x)||Dγ−βg(x)|

≤ c(α,K) ‖g | CK,α(Rn)‖ 2−ν(s−
n
p
−βα) (21)

for β with βα ≤ K. Assuming g 6= 0, otherwise (19) is trivially satisfied, we
can rewrite (20) as

gf =

∞∑

ν=0

∑

m∈Zn

σνm bνm

with σνm = c(α,K)λνm ‖g | CK,α(Rn)‖ and bνm(x) := g(x)aανm(x)(c(α,K)λνm
‖g | CK,α(Rn)‖)−1 being anisotropic (s, p)K-atoms. Then, by the smooth
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atomic decomposition theorem, it follows that gf ∈ Bs,α
pq (Rn) and, moreover,

‖gf | Bs,α
pq (Rn)‖ ≤ c1 ‖σ | bpq‖

≤ c2 ‖g | CK,α(Rn)‖ ‖λ | bpq‖
≤ c3 ‖g | CK,α(Rn)‖ ‖f | Bs,α

pq (Rn)‖,
with constants independent of f and g.

3. Homogeneity property for anisotropic function spaces

The homogeneity property presented below is based on the Fubini property
defined as follows.

Definition 3.1. Let 0 < p, q ≤ ∞, s > σp and let α be an anisotropy
according to (2). Then Bs,α

pq (Rn) is said to have the Fubini property if

n∑

r=1

∥∥∥
∥∥f(x1, . . . , xr−1, ·, xr+1, . . . , xn) |Bsr

pq(R)
∥∥
∣∣∣ Lp(Rn−1)

∥∥∥ (22)

is an equivalent quasi-norm in Bs,α
pq (Rn).

Note that the inner quasi-norm in (22) is taken only with respect to the
variable xr and sr = s/αr.

Theorem 3.2. Let 0 < p, q ≤ ∞, s > σp and let α be an anisotropy according
to (2). Then the spaces Bs,α

pq (Rn) have the Fubini property if, and only if,
p = q.

For the proof and more details, we refer the reader to [2]. As we will
see below, the Fubini property will play a central role in the proof of the
homogeneity property for anisotropic Besov spaces Bs,α

p (Rn). The following
proposition is a simple consequence of recent results on the homogeneity
property in isotropic function spaces on domains due to A. Caetano et al.
[1].

Proposition 3.3. Let 0 < p, q ≤ ∞ and s > σp. Furthermore, let f ∈
Bs
pq(R

n) be such that supp f ⊂ {y ∈ R
n : |y| ≤ λ} for some 0 < λ < 1.

Then

‖f(λ·) |Bs
pq(R

n)‖ ∼ λs−n/p‖f |Bs
pq(R

n)‖, (23)

where the equivalence constants are independent of λ.
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For a complete treatment of homogeneity property for isotropic Besov and
Triebel-Lizorkin spaces on domains, the reader may consult a recent work of
A. Caetano et al. [1]. The next result describes the homogeneity property
in special anisotropic Besov spaces, when p = q. Let us briefly comment
on the anisotropic homogeneity property in Lebesgue spaces Lp(R

n) with
0 < p ≤ ∞. A straightforward computation shows that for λ > 0

‖f(λα·) |Lp(Rn)‖ = λ−(α1+...+αn)/p‖f |Lp(Rn)‖ = λ−n/p‖f |Lp(Rn)‖. (24)

In the sequel, we utilize the following abbreviation

Bs,α
p (Rn) = Bs,α

pp (Rn), where 0 < p ≤ ∞, s ∈ R.

Proposition 3.4. Let 0 < p ≤ ∞, s > σp and let α be an anisotropy
according to (2). Furthermore, let f ∈ Bs,α

p (Rn) be such that supp f ⊂ {y ∈
R
n : |y|α ≤ λ} for some 0 < λ < 1. Then

‖f(λα·) |Bs,α
p (Rn)‖ ∼ λs−n/p‖f |Bs,α

p (Rn)‖, (25)

where the equivalence constants are independent of λ.

Proof : The central idea of the proof is the use of the Fubini property for
anisotropic Besov spaces Bs,α

p (Rn), to obtain an equivalent quasi-norm mod-
eled only on Besov spaces defined on R, which are isotropic. For these spaces
we shall employ the homogeneity property of isotropic Besov spaces as de-
scribed in Proposition 3.3. Assume that f ∈ Bs,α

p (Rn) with supp f ⊂ {y ∈
Rn : |y|α ≤ λ}. Recall that by virtue of Theorem 3.2 we have

‖f |Bs,α
p (Rn)‖ ∼

n∑

r=1

∥∥∥‖f(x1, . . . , xr−1, ·, xr+1, . . . , xn)| Bsr

p (R)‖
∣∣∣ Lp(Rn−1)

∥∥∥.

(26)

It may be worth reminding the reader that by (9) we have that s = αrsr for
r = 1, . . . , n. Applying (26) to f(λα·), using (23) and (24) results in
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∥∥f(λα·) |Bs,α
p (Rn)

∥∥

∼
n∑

r=1

∥∥∥‖f(λα1x1, . . . , λ
αr−1xr−1, λ

αr ·, λαr+1xr+1, . . . , λ
αnxn) |Bsr

p (R)‖
∣∣ Lp(R

n−1)
∥∥∥

∼
n∑

r=1

∥∥∥(λαr)sr−
1

p‖f(λα1x1, . . . , λ
αr−1xr−1, · , λαr+1xr+1, . . . , λ

αnxn) |Bsr

p (R)‖
∣∣ Lp(R

n−1)
∥∥∥

∼ λs−αr

p λ−
α1+...+αr−1+αr+1+...+αn

p

n∑

r=1

∥∥‖f(·) |Bsr

p (R)‖
∣∣ Lp(R

n−1)
∥∥

= λs−n/p

n∑

r=1

∥∥‖f(·) |Bsr

p (R)‖
∣∣ Lp(R

n−1)
∥∥ ∼ λs−n/p

∥∥f(·)
∣∣ Bs,α

p (Rn)
∥∥,

which finishes the proof.

Next, we make full use of Theorem 2.4 to get the following assertion.

Proposition 3.5. Let f ∈ As,α
pq (Rn) with s > σp (s > σpq in the F -case).

Then

‖f(λα·) |As,α
pq (Rn)‖ ∼ λs−n/p‖f(·) |Ȧs,α

pq (Rn)‖ + λ−n/p‖f |Lp(Rn)‖ (27)

holds for λ > 0. The underlying equivalence constants are independent of λ.

Proof : Taking into account the equivalent quasi-norm in As,α
pq (Rn) given by

(12) with f(λα·) in place of f(·) yields

‖f(λα·) |As,α
pq (Rn)‖ ∼ ‖f(λα·) |Lp(Rn)‖ + ‖f(λα·) |Ȧs,α

pq (Rn)‖
∼ λ−n/p‖f |Lp(Rn)‖ + ‖f(λα·) |Ȧs,α

pq (Rn)‖.

The last equivalence follows from (24). Recall that ρα(tξ) = ϕ(tαξ) −
ϕ((2t)αξ). More precisely,

ρα(tξ) = ϕ(tα1ξ1, . . . , t
αnξn) − ϕ((2t)α1ξ1, . . . , (2t)

αnξn).

Therefore, a chain of standard substitutions gives

(ρα(t·)F(f(λα·))(·))∨ (x) =
(
ρα(t·)λ−nF(f(·))(λ−α·)

)∨
(x)

= (ρα((λt)·)F(f(·))(·))∨ (λαx).
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To establish the proof, we consider the integral part of the equivalent quasi-
norms given by (13) and (14). We state it here for A = B. Then, we obtain

‖f(λα·) |Ḃs,α
pq (Rn)‖ ∼

(∫ ∞

0

t−sq ‖(ρα(t·)F(f(λα·))(·))∨ |Lp(Rn)‖q dt

t

)1/q

=

(∫ ∞

0

t−sq
∥∥∥∥
(
ρα((λt)·)f̂(·)

)∨
(λα·) |Lp(Rn)

∥∥∥∥
q
dt

t

)1/q

=

(∫ ∞

0

(λt)−sq

λ−sq

∥∥∥∥
(
ρα((λt)·)f̂(·)

)∨
(λα·) |Lp(Rn)

∥∥∥∥
q
dt

t

)1/q

∼ λs−n/p
(∫ ∞

0

t−sq
∥∥∥∥
(
ρα(t·)f̂(·)

)∨
(·) |Lp(Rn)

∥∥∥∥
q
dt

t

)1/q

∼ λs−n/p‖f |Ḃs,α
pq (Rn)‖,

which finishes the proof for the B-case. The proof of the F -case is analogous.

4. Anisotropic non-smooth atoms

Definition 4.1. Let c ≥ 1, 0 < p ≤ ∞ and σp < s < σ < ∞, where σp
is given by (15). Then aανm ∈ Bσ,α

p (Rn) is called an anisotropic (s, p)σ-atom

provided that

supp aανm ⊂ c Qα
νm where ν ∈ N0, m ∈ Z

n (28)

and
∥∥aανm |Bσ,α

p (Rn)
∥∥ ≤ 2ν(σ−s). (29)

The next proposition summarizes the basic properties of the just introduced
anisotropic non-smooth atoms. In its first part we compare these atoms with
the classical atoms described in Definition 2.5.

Proposition 4.2. Let c ≥ 1, ν ∈ N0 and m ∈ Z
n. Moreover let 0 < p ≤ ∞

and σp < s < σ.

(i) Let σ + αn ≤ K ∈ N. Then any anisotropic (s, p)K-atom aανm accord-
ing to Definition 2.5 is an anisotropic (s, p)σ-atom as introduced in
Definition 4.1.

(ii) Let aανm be an anisotropic (s, p)σ-atom. Then
∥∥aανm |Bs,α

p (Rn)
∥∥ ≤ 1. (30)
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In particular, for p ≥ 1 we obtain
∥∥aανm |Lp(Rn)

∥∥ ≤ 2−νs. (31)

Proof : Let us start by recalling the needed homogeneity property. Taking
λ = 2−ν, ν ∈ N in Proposition 3.4 we obtain for g ∈ Bs,α

p (Rn) with supp g ⊂
{y ∈ Rn : |y|α ≤ 1} that

‖g |Bs,α
p (Rn)‖ ∼ 2−ν(s−n/p)‖g(2να·) |Bs,α

p (Rn)‖. (32)

To establish (i) let us assume that aανm is an anisotropic (s, p)K-atom with
K > σ > s. We can write

aανm(x) = 2ν(σ−s) bανm(x), (33)

where

bανm(x) := 2ν(s−σ) aανm(x), x ∈ R
n, ν ∈ N0, m ∈ Z

n.

Note that, for each ν ∈ N0 and m ∈ Zn, we have

supp bανm = supp aανm ⊂ cQα
νm

and

|Dγbανm(x)| ≤ 2−ν(σ−
n
p
−γα) for γα ≤ K,

so that bανm is an anisotropic (σ, p)K-atom. Then, by (33) and the classical
atomic decomposition theorem it follows

aανm ∈ Bσ,α
p (Rn) and

∥∥aανm |Bσ,α
p (Rn)

∥∥ . 2ν(σ−s)

and hence aανm are anisotropic (s, p)σ-atoms.

We now prove (ii). We may assume m = 0 and we put aαν ≡ aαν0. Applying
(32) to g(x) = aαν (2

−ναx) and using the elementary embedding Bσ,α
p (Rn) →֒

Bs,α
p (Rn), we obtain for ν ∈ N0

∥∥aαν |Bs,α
p (Rn)

∥∥ ∼ 2ν(s−n/p)
∥∥aαν (2−να·) |Bs,α

p (Rn)
∥∥

. 2ν(s−n/p)
∥∥aαν (2−να·) |Bσ,α

p (Rn)
∥∥

. 2−ν(σ−s)
∥∥aαν |Bσ,α

p (Rn)
∥∥

. 1.

Let r ∈ (1,∞) be such that r > p and s− n/p ≥ −n/r. Then it holds

Bs,α
p (Rn) = F s,α

p,p (Rn) →֒ F 0,α
r,2 (Rn) = Lr(R

n).
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Using the Hölder inequality combined with the homogeneity property (32)
we obtain for ν ∈ N0∥∥aαν |Lp(Rn)

∥∥ = 2−νn/p
∥∥aαν (2−να·) |Lp(Rn)

∥∥

. 2−νn/p
∥∥aαν (2−να·) |Lr(Rn)

∥∥

. 2−νn/p
∥∥aαν (2−να·) |Bs,α

p (Rn)
∥∥

. 2−νn/p 2−ν(s−n/p)
∥∥aαν |Bs,α

p (Rn)
∥∥

. 2−νs.

The main result in this section is the following atomic decomposition the-
orem of type (17) and (18) based on the atoms introduced in Definition 4.1.

Theorem 4.3. Let 0 < p ≤ ∞, α be an anisotropy and σp < s < σ. Then
Bs,α
p (Rn) is the collection of all f ∈ Lloc

1 (Rn)∩S ′(Rn) which can be represented
as

f =

∞∑

ν=0

∑

m∈Zn

λνma
α
νm, (34)

where aανm for fixed c ≥ 1 are anisotropic (s, p)σ-atoms according to Defi-
nition 4.1 and λ ∈ bp. The series on the right-hand side of (34) converges
unconditionally in S ′(Rn) and if p < ∞, absolutely in some Lr(R

n) with
1 < r <∞. Furthermore,

inf ‖λ| bp‖, (35)

where the infimum is taken over all admissible representations (34), is an
equivalent quasi-norm in Bs,α

p (Rn).

Proof : Our method will be an adaptation of the reasoning used in [13, Section
2.2], but we have to examine very carefully the influence of the anisotropy.
Step 1. We start our proof by justifying the convergence of the series on the
right-hand side of (34) in some Lr(R

n) with 1 < r < ∞. Assume first that
p > 1. Then, by Proposition 4.2 combined with the support property (28),
we obtain

‖f |Lp(Rn)‖ .

∞∑

ν=0

2−νs
(
∑

m∈Zn

|λνm|p
)1/p

. ‖λ |bp‖.
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Consequently, the series (34) converges absolutely in Lr(R
n) with r = p. In

order to clarify the convergence of the series (34) in some Lr(R
n) in the case

p ≤ 1, we utilize the Sobolev embedding

Bs,α
p (Rn) →֒ Bt,α

r (Rn) with s− n/p = t− n/r and p ≤ r.

Step 2. By Theorem 2.8 and Proposition 4.2 the only point remaining
concerns the proof of the inequality

‖f | Bs,α
p (Rn)‖ ≤ c ‖λ |bp‖ (36)

for all decompositions (34). Taking into account that Bs,α
p (Rn) with p ≤ 1 is

a p-Banach space combined with Proposition 4.2 (ii) yields

‖f | Bs,α
p (Rn)‖p ≤

∞∑

ν=0

∑

m∈Zn

|λνm|p‖aανm| Bs,α
p (Rn)‖p . ‖λ| bp‖p.

Thus, we are left with the task of proving (36) with p > 1. We adopt
throughout the notational convention that the elements of N0 are denoted by
j, k and the elements of Zn are denoted by m,w. Moreover aα, bα, dα denote
anisotropic atoms, whereas λ, η, ν stand for complex numbers of sequences
or complex numbers. Let us rewrite (34) as

f =
∞∑

k=0

∑

m∈Zn

λk,ma
α
k,m.

Consider an optimal smooth atomic decomposition of aαk,m(2−kα·) in Bσ,α
p (Rn)

by smooth anisotropic (σ, p)K-atoms bk,mj,w with σ+αn ≤ K. By virtue of (17)
we have

aαk,m(2−kαx) =

∞∑

j=0

∑

w∈Zn

ηk,mj,w b
k,m
j,w (x), x ∈ R

n, (37)

with

supp bk,mj,w ⊂ dQα
jw, |Dγbk,mj,w (x)| ≤ 2−j(σ−

n
p
−γα) (38)

for αγ ≤ K and x ∈ R
n. In addition, one gets

(∑

j,w

|ηk,mj,w |p
)1/p

∼ ‖aαk,m(2−kα·) |Bσ,α
p (Rn)‖

∼ 2−k(σ−n/p)‖aαk,m |Bσ,α
p (Rn)‖ . 2−k(σ−n/p)2k(σ−s) = 2−k(s−n/p). (39)
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Consequently,

aαk,m(x) =
∞∑

j=0

∑

w∈Zn

ηk,mj,w b
k,m
j,w (2kαx), x ∈ R

n, (40)

where the functions bk,mj,w (2kα·) have supports in cQα
j+k,w. Namely, we have

supp bk,mj,w (2kα·) ={x ∈ R
n : |2kαixi − 2−jαiwi| ≤ c2−jαi, i = 1, . . . , n}

={x ∈ R
n : |xi − 2−(j+k)αiwi| ≤ c2−(j+k)αi, i = 1, . . . , n}

=cQα
j+k,w.

Furthermore, by virtue of (38), we obtain

∣∣∣Dγbk,mj,w (2kαx)
∣∣∣ = 2kαγ

∣∣∣
(
Dγbk,mj,w

)
(2kαx)

∣∣∣

≤ 2(j+k)αγ2−j(σ−n/p) = 2(j+k)αγ2−(j+k)(σ−n/p)2−(j+k)(σ−s)2k(σ−n/p).

Replacing j + k by j yields

aαk,m(x) = 2k(σ−n/p)
∑

j≥k

∑

w∈Zn

ηk,mj−k,w2−j(σ−s)dk,mj,w (x), (41)

where dk,mj,w are classical anisotropic (s, p)K -atoms. Let (j, w, k) with k ≤ j

denote the set of all m ∈ Z
n for which the atoms dk,mj,w in (41) do not vanish,

that is,
(j, w, k) := {m ∈ Z

n : cQα
k,m ∩ cQα

j,w 6= ∅}.
Note that, if there exists an x = (xi)

n
i=1 ∈ cQα

k,m ∩ cQα
j,w then

|2−jαiwi − 2−kαimi| ≤ |2−jαiwi − xi| + |2−kαimi − xi| ≤ c 2−jαi−1 + c 2−kαi−1,

where i = 1, · · · , n, and hence, as k ≤ j,

|2(k−j)αiwi −mi| ≤ c 2(k−j)αi−1 + c 2−1 ≤ c, i = 1, · · · , n,
which means that, for each i ∈ {1, · · · , n}, there are, at most, 2c possible
values for mi. Therefore, the cardinal number of (j, w, k) is less or equal to
(2c)n (a number independent of j, w, k). Let

dαj,w(x) =

∑
k≤j 2

k(σ−n/p)∑
m∈(j,w,k) η

k,m
j−k,wλk,md

k,m
j,w (x)

∑
k≤j 2k(σ−n/p)

∑
m∈(j,w,k) |ηk,mj−k,w||λk,m|

.
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We can assume that, for m ∈ (j, w, k), dk,mj,w are smooth anisotropic (s, p)K-
atoms with supports in cQα

k,m ∩ cQα
j,w. Thus, by the definition of dαj,w, it

clearly follows

supp dαj,w ⊂
⋃

k≤j

⋃

m∈(j,w,k)

supp dk,mj,w ⊂ cQα
j,w

and

|Dγdαj,w(x)| ≤ 2−j(s−
n
p
−γα) for γα ≤ K,

and hence, dαj,w are smooth anisotropic (s, p)K-atoms. Thus, we have

f =

∞∑

j=0

∑

w∈Zn

vj,wd
α
j,w, (42)

where

vj,w = 2−j(σ−s)
∑

k≤j
2k(σ−n/p)

∑

m∈(j,w,k)

|ηk,mj−k,w||λk,m|.

Choosing 0 < ε < σ − s, we get for p <∞
|vj,w|p .

∑

k≤j

∑

m∈(j,w,k)

2−(j−k)(σ−s−ε)p2k(σ−n/p)p|ηk,mj−k,w|p|λk,m|p

≤
∑

k≤j

∑

m∈(j,w,k)

2k(σ−n/p)|ηk,mj−k,w|p|λk,m|p.

Finally, the above estimate combined with (39) gives

∞∑

j=0

∑

w∈Zn

|vj,w|p .

∞∑

k=0

∑

m∈Zn

|λk,m|p
∑

j≥k

∑

w∈Zn

2k(σ−n/p)p|ηk,mj−k,w|p

.

∞∑

k=0

∑

m∈Zn

|λk,m|p.

Consequently, (42) is a decomposition by smooth atoms and (36) follows
from Theorem 2.8 and the last estimate.

As an easy consequence of Proposition 4.2(i) and Theorem 4.3 we obtain
the following smooth atomic decomposition. Remark that the smoothness
property of the classical anisotropic atoms used below does not depend on
the given anisotropy as it is in (16).
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Corollary 4.4. Let 0 < p ≤ ∞ and α be an anisotropy according to (2).
Moreover let σp < s < K. Then Bs,α

p (Rn) consists of all f ∈ Lloc
1 (Rn)∩S ′(Rn)

which can be written as

f =

∞∑

ν=0

∑

m∈Zn

λνma
α
νm,

where aανm for fixed c ≥ 1 are anisotropic (s, p)K-atoms according to Defini-
tion 2.5 and λ ∈ bp.

5. Pointwise multipliers in anisotropic function spaces

Let Aα(Rn) denote either Bs,α
pq (Rn) or F s,α

pq (Rn) according to Definition 2.1
with 0 < p, q ≤ ∞ (p < ∞ in the F -case) and s > σp. However, we will be
mostly concerned with Aα(Rn) = Bs,α

pq (Rn). A locally integrable function m
in Rn is called a pointwise multiplier for Aα(Rn) if

f 7→ mf

generates a bounded map in Aα(Rn). Since s > σp, the spaces under con-
sideration are embedded in some Lr(R

n) with 1 < r ≤ ∞ and therefore, the
expression mf above makes sense as a product of functions . The collection
of all multipliers for Aα(Rn) is denoted by M(Aα(Rn)). In the sequel, let ψ
stand for a non-negative C∞ function with

supp ψ ⊂ {y ∈ R
n : |y|α ≤ √

n} (43)

and
∑

l∈Zn

ψ(x− l) = 1, x ∈ R
n. (44)

Definition 5.1. Let 0 < p, q ≤ ∞ (p < ∞ in the F -case ), s ∈ R and let α
be an anisotropy according to (2). We define the space Aα

selfs(R
n) to be the

set of all f ∈ S ′(Rn) such that

‖f | Aα
selfs(R

n)‖ := sup
j∈N0,l∈Zn

‖ψ(· − l)f(2−jα·)| Aα(Rn)‖ (45)

is finite.

Remark 5.2. The isotropic selfsimilar spaces were firstly introduced in [12]
and considered again in [13] Section 2.3. A careful look at (45) reveals that
these space are closely connected with pointwise multipliers. We also mention
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its forerunner, the so-called uniform spaces, which were studied in detail in
[5]. Using Proposition 3.5, one can easily show that

Aα
selfs(R

n) →֒ L∞(Rn).

Applying (27) to f ∈ Aα
selfs(R

n) gives

‖ψ(· − l) f(2−jα·) |As,α
pq (Rn)‖

∼ 2−j(s−n/p)‖ψ(2jα · −l) f |Ȧs,α
pq (Rn)‖ + 2jn/p‖ψ(2jα · −l) f |Lp(Rn)‖

uniformly for all j ∈ N0 and l ∈ Zn. Consequently,

2jn
∫

Rn

|ψ(2jαy − l)|p|f(y)|p dy ≤ c ‖f | Aα
selfs(R

n)‖p. (46)

Thus, the right-hand side of (46) is a uniform bound for |f(·)|p at its (anisotropic)
Lebesgue points, which proves the desired embedding, see [6, Corollary p.
13]. The interested reader is referred to [4, Section 3] for further embedding
assertions of anisotropic spaces into L∞(Rn).

Definition 5.3. Let 0 < p ≤ ∞ and s > σp. Moreover, let α be an anisotropy
according to (2). We define

Bs+,α
p,selfs(R

n) :=
⋃

σ>s

Bσ,α
p,selfs(R

n).

Theorem 5.4. Let 0 < p ≤ ∞ and σp < s < σ. Moreover, let α be an
anisotropy according to (2).

(i) Then

Bs+,α
p,selfs(R

n) ⊂M
(
Bs,α
p (Rn)

)
→֒ Bs,α

p,selfs(R
n).

(ii) Additionally, for 0 < p ≤ 1 we get

M
(
Bs,α
p (Rn)

)
= Bs,α

p,selfs(R
n).
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Proof : We start by proving the right-hand side embedding in (i). Let m ∈
M(Bs,α

p (Rn)). Then, using the homogeneity property yields

‖ψ(· − l)m(2−jα·) | Bs,α
p (Rn)‖ (47)

∼ 2−j(s−
n
p
) ‖ψ(2jα · −l)m | Bs,α

p (Rn)‖
. ‖m |M(Bs,α

p (Rn))‖ 2−j(s−
n
p
) ‖ψ(2jα · −l) | Bs,α

p (Rn)‖
. ‖m |M(Bs,α

p (Rn))‖ 2−j(s−
n
p
) ‖ψ(2−jα·) | Bs,α

p (Rn)‖
. ‖m |M(Bs,α

p (Rn))‖ ‖ψ | Bs,α
p (Rn)‖

. ‖m |M(Bs,α
p (Rn))‖

for all l ∈ Zn, j ∈ N0, and hence,

‖m | Bs,α
p,selfs(R

n)‖ψ = sup
j∈N0,l∈Zn

‖ψ(· − l)m(2−jα·) | Bs,α
p (Rn)‖

. ‖m |M(Bs,α
p (Rn))‖.

We shall prove now the first inclusion in (i). Let m ∈ Bσ,α
p,selfs(R

n) with σ > s.

Let f ∈ Bs,α
p (Rn) and let

f =

∞∑

j=0

∑

l∈Zn

λjl a
α
jl with ‖f | Bs,α

p (Rn)‖ ∼ ‖λ | bp‖ (48)

be an optimal smooth atomic decomposition, where aαjl are anisotropic (s, p)K-
atoms with K ≥ σ + αn. Then

mf =

∞∑

j=0

∑

l∈Zn

λjl (ma
α
jl) (49)

and we wish to prove that, up to normalizing constants, maαjl are anisotropic
(s, p)σ-atoms. The support condition is obvious:

supp maαjl ⊂ supp aαjl ⊂ dQα
jl, j ∈ N0, l ∈ Z

n.

If l = 0 then we put aαj = aαj0. Note that

supp aαj (2
−jα·) ⊂ {y : |yi| ≤ d/2} (50)

and we can assume that

ψ(y) > 0 if y ∈ {x : |xi| ≤ d}. (51)
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Using Lemma 2.9, we have, for any g ∈ Bσ,α
p (Rn),

‖aαj (2−jα·)ψ−1 g | Bσ,α
p (Rn)‖ . ‖aαj (2−jα·)ψ−1 | CK,α(Rn)‖ ‖g | Bσ,α

p (Rn)‖
. 2−j(s−

n
p
) ‖g | Bσ,α

p (Rn)‖
and hence

‖aαj (2−jα·)ψ−1 |M
(
Bσ,α
p (Rn)

)
‖ . 2−j(s−

n
p
), j ∈ N0. (52)

By (52) and the homogeneity property we then get for j ∈ N0

‖maαj |Bσ,α
p (Rn)‖ ∼ 2j(σ−

n
p
) ‖m(2−jα·) aαj (2−jα·) | Bσ,α

p (Rn)‖
. 2j(σ−

n
p
) ‖aαj (2−jα·) ψ−1 |M

(
Bσ,α
p (Rn)

)
‖ ‖m(2−jα·)ψ | Bσ,α

p (Rn)‖
. 2j(σ−s) ‖m(2−jα·)ψ | Bσ,α

p (Rn)‖. (53)

In case of aαjl with l ∈ Z
n one would arrive at (53) with aαjl and ψ(· − l)

instead of aαj and ψ, respectively. Hence

‖maαjl | Bσ,α
p (Rn)‖ . 2j(σ−s) sup

j,l
‖m(2−jα·)ψ(· − l) | Bσ,α

p (Rn)‖

= 2j(σ−s) ‖m | Bσ,α
p,selfs(R

n)‖, j ∈ N0, l ∈ Z
n, (54)

and therefore, maαjl are anisotropic (s, p)σ-atoms. By Theorem 4.3, in view
of (49), mf ∈ Bσ,α

p (Rn) and

‖mf | Bσ,α
p (Rn)‖ . ‖λ | bp‖ ‖m | Bσ,α

p,selfs(R
n)‖

∼ ‖f | Bs,α
p (Rn)‖ ‖m | Bσ,α

p,selfs(R
n)‖,

which completes the proof of (i).
We prove (ii). Let m ∈ Bs,α

p,selfs(R
n) and p ≤ 1. It follows from (54) with

σ = s that

‖maαjl | Bs,α
p (Rn)‖ . ‖m | Bs,α

p,selfs(R
n)‖, j ∈ N0, l ∈ Z

n. (55)

Since Bs,α
p (Rn) is a p-Banach space, from (48) and using (49) and (55), we

obtain

‖mf | Bs,α
p (Rn)‖p ≤

∞∑

j=0

∑

l∈Zn

|λjl|p ‖maαjl | Bs,α
p (Rn)‖p

. ‖λ | bp‖p ‖m | Bs,α
p,selfs(R

n)‖p

. ‖f | Bs,α
p (Rn)‖p ‖m | Bs,α

p,selfs(R
n)‖p.
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Hence m ∈ M(Bs,α
p (Rn)) and, moreover, Bs,α

p,selfs(R
n) →֒ M(Bs,α

p (Rn)). The

other embedding follows from part (i).

The final part of this work is devoted to the question in which anisotropic
function spaces the characteristic function χΩ of the domain Ω in Rn is a
pointwise multiplier.

Definition 5.5. Let α be an anisotropy according to (2) and let Γ be a non-
empty compact set in Rn. Let h : t 7−→ h(t) be a positive monotonically
non-decreasing function on the interval (0, 1]. Then Γ is called an anisotropic
h-set if there is a finite Radon measure µ in Rn with

supp µ = Γ and µ(Bα(γ, r)) ∼ h(r), γ ∈ Γ, 0 < r ≤ 1, (56)

where

Bα(γ, r) = {x ∈ R
n : |x− γ|α < r}.

We say that the measure µ satisfies the anisotropic doubling condition if
there is a constant c > 0 such that

µ(Bα(γ, 2r)) ≤ cµ(Bα(γ, r)), γ ∈ Γ, 0 < r < 1. (57)

Let

Dα(x) = distα(x,Γ) = inf
y∈Γ

|x− y|α

be the anisotropic distance of x ∈ R
n to Γ.

Theorem 5.6. Let Ω be a bounded domain in Rn and let α be an anisotropy
according to (2). Moreover, let 0 < p < ∞, σ > σp, and let Γ = ∂Ω be an
anisotropic h-set according to Definition 5.5 with

sup
j∈N0

∞∑

k=0

2kσp
(

h(2−j)

h(2−j−k)
2−kn

)
<∞. (58)

Let Bσ,α
p,selfs(R

n) be the space introduced in Definition 5.1. Then

χΩ ∈ Bσ,α
p,selfs(R

n). (59)

Proof : The proof is based upon ideas found in [12, Theorem 3]. It simplifies
the argument, and causes no loss of generality, to assume diam Ω < 1. We
define

Ωk =
{
x ∈ Ω : 2−k−2 ≤ distα(x,Γ) ≤ 2−k

}
, k ∈ N0.
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Moreover, let
{
ϕk,αl : k ∈ N0; l = 1, . . . ,Mk

}
⊂ C∞

0 (Ω)

be an anisotropic resolution of unity,

∑

k∈N0

Mk∑

l=1

ϕk,αl (x) = 1, if x ∈ Ω (60)

with

supp ϕk,αl ⊂
{
x : |x− xkl |α ≤ 2−k

}
⊂ Ωk

and

|Dγϕk,αl (x)| . 2γαk for γα ≤ K, x ∈ R
n, K ∈ N with K ≥ σ + αn.

It turns out that such an anisotropic resolution of unity exists. See [11,
Section 7.5] for discussion of this technical point in the isotropic case. We
now estimate the minimal number Mk in (60). Combining the fact that the
measure µ satisfies the doubling condition (57) together with (56) we arrive
at

Mkh(2
−k) . 1, k ∈ N0.

Clearly, (60) can be rewritten in the form

χΩ(x) =

∞∑

k=0

2k(σ−
n
p
)
Mk∑

l=0

2−k(σ−
n
p
)ϕk,αl (x), x ∈ R

n, (61)

where 2−k(σ−
n
p
)ϕk,αl are anisotropic (σ, p)K-atoms according to Definition 2.5.

Furthermore, we obtain

‖χΩ |Bσ,α
p (Rn)‖p ≤

∞∑

k=0

2k(σ−
n
p
)pMk .

∞∑

k=0

2kσp
(

2−kn

h(2−k)

)
<∞ (62)

This shows that χΩ ∈ Bσ,α
p (Rn). We now prove that χΩ ∈ Bσ,α

p,selfs(R
n). We

consider the non-negative function ψ ∈ C∞(Rn) with (43) and (44). By the
definition of anisotropic selfsimilar spaces, it suffices to consider

χΩ(2−jα·)ψ,
assuming in addition that 0 ∈ 2jαΓ =

{
2jαγ = (2jα1γ1, . . . , 2

jαnγn) : γ ∈ Γ
}
,

j ∈ N0. Let µj be the image measure of µ with respect to the dilations
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y 7−→ 2jαy. Then we obtain

µj(Bα(0,
√
n) ∩ 2jαΓ) ∼ h(2−j), j ∈ N0.

We use the same argument as above toBα(0,
√
n)∩2jαΩ andBα(0,

√
n)∩2jαΓ.

Hence, we again have

M j
kh(2

−j−k) . h(2−j), j ∈ N0, k ∈ N0,

which completes the proof.
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