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Abstract: The functions of hypergeometric type are the solutions y = yν(z) of
the differential equation σ(z)y′′ + τ(z)y′ +λy = 0, where σ and τ are polynomials of
degrees not higher than 2 and 1, respectively, and λ is a constant. Here we consider
a class of functions of hypergeometric type: those that satisfy the condition λ+ντ ′+
1
2ν(ν − 1)σ′′ = 0, where ν is an arbitrary complex (fixed) number. We also assume
that the coefficients of the polynomials σ and τ do not depend on ν. To this class
of functions belong Gauss, Kummer and Hermite functions, and also the classical
orthogonal polynomials. In this work, using the constructive approach introduced
by Nikiforov and Uvarov, several structural properties of the hypergeometric type
functions y = yν(z) are obtained. Applications to hypergeometric functions and
classical orthogonal polynomials are also given.

Keywords: Hypergeometric Type Functions, Recurrence Relations, Classical Or-
thogonal Polynomials.
AMS Subject Classification (2000): 33C45, 33C05, 33C15.

1. Introduction

When solving numerous theoretical and applied quantum mechanical prob-
lems, one is led to potentials that can be solved analytically (see e.g. [2, 10,
14, 16, 17, 18]). In most cases the Schrödinger equation for such poten-
tials can be transformed into the generalized hypergeometric type differential
equation [12] that has the form

u′′(z) +
τ̃(z)

σ(z)
u′(z) +

σ̃(z)

σ2(z)
u(z) = 0,

where σ, σ̃ and τ̃ are polynomials, deg[σ] ≤ 2, deg[σ̃] ≤ 2 and deg[τ̃ ] ≤ 1.
By a certain change of variable (see [12]) it can be transformed into the
hypergeometric type equation

σ(z)y′′(z) + τ(z)y′(z) + λy(z) = 0 , (1.1)

where σ and τ are polynomials with degrees not higher than two and one,
respectively, and λ is a constant. Their solutions are known as hypergeometric
type functions and to this class belong the Bessel, Airy, Weber, Whittaker,
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Gauss, Kummer and Hermite functions, the classical orthogonal polynomials,
among others.

The class of functions y = yν(z) we are dealing with in this work, cor-
responds to the solutions of the hypergeometric equation (1.1) under the
condition

λ + ντ ′ +
ν(ν − 1)

2
σ′′ = 0,

where ν is a complex number. One basic important property of this class of
functions is that their derivatives are again a hypergeometric type functions.
The converse is also true when deg[σ(s)] = 2 ∨ deg[τ(s)] = 1: any hyper-
geometric type function is the derivative of a hypergeometric type function.
More precisely [12]:

(1) if y = y(z) is a solution of (1.1) then, the n-th derivative of y(z),
vn(z) := y(n)(z), is a solution of

σv′′n(z) + τn(z)v′n(z) + µnvn(z) = 0, (1.2)

where
τn(z) = τ(z) + nσ′(z); (1.3)

(2) if vn(z) is a solution of (1.2) and µk 6= 0 for k = 1, . . . , n − 1, then
vn = y(n)(z) where y = y(z) is a solution of (1.1).

Joining these two properties it is possible to derive many other ones [12].
Numerous structural properties of this class of functions has been under
attention in the last two decades [4, 5, 6, 7, 8, 19].

The main aim of this work is to complete the study of the hypergeomet-
ric type functions, i.e., the solutions of the differential equation (refE1.1)
obtaining, in a unified way, several of their algebraic characteristics. The
structure of the paper is as follows: In section 2 the preliminar results are
presented. The main results of the paper are in Section 3, where three four
therm recurrence are obtained and from them, several three term recurrence
relations are explicitly written down. Finally, in Section 4, applications to
the hypergeometric, confluent hypergeometric and Hermite functions, as well
as to the classical orthogonal polynomials are given.

2. Preliminaries

Here we will follow the notation and results of [12]. The above properties
(1) and (2) allow us to construct a family of particular solutions of (1.1) for
a given λ. In fact, when µn = 0, equation (1.2) has the particular solution
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vn(z) = C, (constant). By (2), vn(z) = y(n) where y = y(z) is a solution of
(1.1). This means that when

λ = λn := −nτ ′ −
n(n − 1)

2
σ′′ (2.1)

the equation (1.1) has a (particular) polynomial solution y(z) = yn(z), with
deg[yn(z)] = n. Such polynomials are known as polynomials of hypergeo-
metric type and correspond to the case when λ = λn is given by (2.1). In
particular, for them we have the Rodrigues formula

yn(z) =
Bn

ρ(z)

[

σn(z)ρ(z)
](n)

, (2.2)

where ρn(z) = σn(z)ρ(z), n = 0, 1, 2, . . ., and ρ(z) is a solution of the Pearson
equation

[

σ(z)ρ(z)
]′

= τ(z)ρ(z) . (2.3)

Assuming that ρ is an analytic function on and inside a closed contour C

surrounding the point s = z and making use of the Cauchy’s integral theorem
(see e.g. [9]) we may write

yn(z) =
Cn

ρ(z)

∫

C

σn(s)ρ(s)

(s − z)(n+1)
ds , (2.4)

where the Cn = n!Bn/(2πi) is a normalizing constant and ρ(z) satisfies (2.3).
This suggests [12] to look for a particular solution of (1.1) in the form

yν(z) =
Cν

ρ(z)

∫

C

σν(s)ρ(s)

(s − z)(ν+1)
ds , (2.5)

where Cν is a normalizing constant and ν is an arbitrary complex parameter
connected with λ by

λ = λν = −ντ ′ −
ν(ν − 1)

2
σ′′ . (2.6)

The following theorem asserts that the above suggestion is true.

Theorem A([12, page 10]) Let ρ(z) satisfy the Pearson equation (2.3) where
ν is a solution of (2.6) and let D be a region of the complex plane that contain
the piecewise smooth curve C of finite length. Then, equation (1.1) has a

particular solution of the form (2.5) provided that the functions σν(s)ρ(s)
(s−z)(ν+k) , for

k = 1, 2,
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• are continuous as functions of the variables s ∈ C, z ∈ D ;
• for each fixed s ∈ C, they are analytic as functions of z ∈ D;

and C is such that σν+1(s)ρ(s)
(s−z)ν+2

∣

∣

∣

s2

s1

= 0, where s1 and s2 are the endpoints of C.

If the integral in (2.5) is an improper one, then the result remains valid if
the convergence of the integral is uniform [9, page 188].

In next sections, generalizing (1.3) to complex ν, we will use the notation

τν(z) = τ(z) + νσ′(z) = τ ′
ν z + τν(0), (2.7)

and, in order to keep the above mentioned property (2), we will restrict
ourselves to the condition deg[σ(s)] = 2 ∨ deg[τ(s)] = 1.

3. Recurrence Relations for the hypergeometric type func-

tions

Now we are ready to establish the main results of this paper.

3.1. Four-Term Recurrence Relations.

Theorem 1. Consider the hypergeometric type functions y
(k)
ν−1(z), y

(k)
ν (z),

y
(k+1)
ν (z) and y

(k+1)
ν+1 (z) defined by (2.5). Suppose that ρ(z) is a solution of

(2.3) and

σν(s)ρ(s)

(s − z)ν−k−1
sm

∣

∣

∣

∣

∣

s2

s1

= 0, m = 0, 1, 2, ..., (3.1)

where s1 and s2 are the end points of C. Then, there exist polynomial coeffi-
cients Aik(z), i = 1, 2, 3, 4, not all identically zero, such that

A1k(z)y
(k)
ν−1(z) + A2k(z)y(k)

ν (z) + A3k(z)y(k+1)
ν (z) + A4k(z)y

(k+1)
ν+1 (z) = 0. (3.2)
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Moreover, the functions Aik, i = 1, 2, 3, 4 are given by










































































A1k(z) = −τ ′

ντ
′

ν+k−1

2

τ ′

ν+k−2

2

[

τ 2
ν−1(0)

σ′′

2
− τ ′

ν−1

(

τν−1(0)σ′(0) − τ ′

ν−1σ(0)
)]

×
Cν

Cν−1

(

R(z) − 2σ′(z)
)

,

A2k(z)=(ν−k)τ ′
ν

2
−1τ

′

ντ
′

ν+k−1

2

[

(

R(z)−2σ′(z)
)

(

τν−1(z)
σ′′

2
−σ′(z)τ ′

ν−1

)

−τ ′

ν−1σ
′′σ(z)

]

,

A3k(z)=

[

τ ′

ντ
′

ν+k−1

2

R(z) + (ν − k)
(σ′′)2

2
τν(z) − 2τ ′

ν− 1

2

τ ′

νσ
′(z)

]

τ ′
ν

2
−1τ

′

ν−1σ(z),

A4k(z)=(ν − k)
Cν

Cν+1
τ ′

ν

2
−1τ

′

ν−1

2

τ ′

ν−1σ
′′σ(z),

(3.3)

where R(z) is an arbitrary polynomial of z.

Proof : From [12, Eq. (9), page 17] we have

y(k)
ν (z) =

C
(k)
ν

σk(z)ρ(z)

∫

C

σν(s)ρ(s)

(s − z)ν−k+1
ds, C(n)

ν =

(

n−1
∏

j=0

τ ′
ν+j−1

2

)

Cν . (3.4)

Now, using [12, Eqs. (4), page 16, and (9), page 17]

y(k)
ν (z) =

C
(k)
ν

σk(z)ρ(z)

1

ν − k

∫

C

τν−1(s)σ
ν−1(s)ρ(s)

(s − z)ν−k
ds. (3.5)

Substituting the above expressions (3.4) and (3.5) in

S(z) = A1k(z)y
(k)
ν−1(z) + A2k(z)y(k)

ν (z) + A3k(z)y(k+1)
ν (z) + A4k(z)y

(k+1)
ν+1 (z),

we obtain

S(z) =
1

σk+1(z)ρ(z)

∫

C

σν−1(s)ρ(s)

(s − z)ν−k
P (s)ds , (3.6)

where

P (s) = A1k(z)C
(k)
ν−1σ(z) + A2k(z)

C
(k)
ν

ν − k
σ(z)τν−1(s) + A3k(z)C(k+1)

ν σ(s) +

A4k(z)
C

(k+1)
ν+1

ν − k
τν(s)σ(s) . (3.7)

Let us define a function Q(z, s) which is, for every fixed z, a polynomial in s
such that

σν−1(s)ρ(s)

(s − z)ν−k
P (s) =

∂

∂s

[

σν(s)ρ(s)

(s − z)ν−k−1
Q(z, s)

]

.
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If such function Q exists, then the integral (3.6) vanish by the boundary con-
ditions (3.1) and therefore (3.2) holds. Let us show that the aforementioned
function Q always exists.

Taking the derivative of the right hand side of the last equality, one gets

P (s) = [τν−1(s)(s− z) − (ν − k − 1)σ(s)]Q(z, s) + σ(s)(s− z)
∂Q

∂s
(z, s) .

(3.8)
Comparing the expressions (3.7) and (3.8) we may conclude that, with respect
to the variable s, deg [Q(z, s)] = degs [Q(z, s)] ≤ 1. So, using the expansions

Q(z, s) = Q(z, z) +
∂Q

∂s
(z, z)(s − z),

τν(s) = τν(z)+ τ ′
ν(s− z), σ(s) = σ(z)+σ′(z)(s− z)+

σ′′

2
(s− z)2 , (3.9)

as well as (2.7), we have














































































































A1k(z)C
(k)
ν−1σ(z) + A2k(z)

C
(k)
ν

ν − k
τν−1(z)σ(z) + A3k(z)C(k+1)

ν σ(z)+

+A4k(z)
C

(k+1)
ν+1

ν − k
τν(z)σ(z) = −(ν − k − 1)σ(z)Q(z, z),

A2k(z)
C

(k)
ν

ν−k
τ ′
ν−1σ(z)+A3k(z)C(k+1)

ν σ′(z)+A4k(z)
C

(k+1)
ν+1

ν−k
[τν(z)σ′(z)+τ ′

νσ(z)]

= τk(z)Q(z, z) − (ν − k − 2)σ(z)
∂Q

∂s
(z, z),

A3k(z)C(k+1)
ν

σ′′

2
+ A4k(z)

C
(k+1)
ν+1

ν − k

[

τν(z)
σ′′

2
+ τ ′

νσ
′(z)

]

= τ ′
ν+k−1

2
Q(z, z)+

τk+1(z)
∂Q

∂s
(z, z),

A4k(z)
C

(k+1)
ν+1

ν − k
τ ′
νσ

′′ = 2τ ′
ν+k

2

∂Q

∂s
(z, z) .

(3.10)

Therefore, we have an indeterminate linear system of four equations with
six unknown: the functions Aik(z), i = 1, 2, 3, 4, and the coefficients in the
variable z of the polynomial (on s) Q(z, s). This guarantees not only the
existence of the functions Aik(z), i = 1, 2, 3, 4, but also the polynomial Q(z, s)



HYPERGEOMETRIC TYPE-FUNCTIONS 7

introduced above. Assuming that σ′′ 6= 0, the above system can be written
as






































































































A1k(z)C
(k)
ν−1σ(z) = −

τν−1(z)

τ ′

ν−1

(

Q(z, z) −
2

σ′′
σ′(z)

∂Q

∂s
(z, z)

)

×

[

τν−1(z) +
2

σ′′
τ ′

ν−1 ×

(

τ ′

ν−1

τν−1(z)
σ(z) − σ′(z)

)

]

,

A2k(z)
C

(k)
ν

ν − k
=

1

σ(z)τ ′

ν−1

(

τν−1(z) −
2

σ′′
σ′(z)τ ′

ν−1

)(

Q(z, z) −
2

σ′′
σ′(z)

∂Q

∂s
(z, z)

)

−
2

σ′′

∂Q

∂s
(z, z),

A3k(z)C
(k+1)
ν =

2

σ′′

[

τ ′

ν+k−1

2

Q(z, z) +

(

τν(z)

τ ′

ν

(ν − k)
σ′′

2
−

2

σ′′
σ′(z)τ ′

ν− 1

2

)

∂Q

∂s
(z, z)

]

,

A4k(z)
C

(k+1)
ν+1

ν − k
=

2

σ′′

τ ′

ν+k

2

τ ′

ν

∂Q

∂s
(z, z) .

Substituting the values Aik, i = 1, 2, 3, 4, from above in the equation (3.2),
which is an homogeneous linear equation, choosing Q(z, z) = ∂Q

∂s
(z, z)R(z)/σ′′,

where R(z) is an arbitrary function of z, and simplifying the common factors,
we get the non-trivial solution (3.3).

Notice that formulae (3.3) are still valid for σ′′ = 0. This is a consequence
of (3.2) and the principle of analytic continuation. Moreover, if one chooses
R(z) to be a polynomial in z then the corresponding expressions for the
coefficients Aik(z), i = 1, 2, 3, 4, in (3.3) are polynomials in z. Finally, let us
mention that this method enables one to construct other type of solutions,
not necessarily polynomials, since R(z) is an arbitrary function of z.

Remark 1. Let us make a short analysis of the cases when σ′′ = 0. In this
case, from (3.3), we have two possibilities

(1) deg[σ(s)] = 1 ∧ deg[τ(s)] = 1. Then A4k = 0
(2) deg[σ(s)] = 0 ∧ deg[τ(s)] = 1. Then A2k = 0 = A4k.

Since we are looking for solutions with non vanishing at the same time co-
efficients Aik(z), i = 1, 2, 3, 4, we need to compare the expressions (3.7) and
(3.8). From this analysis follows that degs[Q(z, s)] = 0. In the first case
Q(z, s) is a constant 6= 0 while in the second one Q(z, s) is identically zero.
Notice that in both cases the resulting systems are not equivalent to (3.10).
The coefficients in these two cases are given
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• when deg σ = 1, σ(s) = σ(z)+σ′(z)(s−z) and τ(s) = τ(z)+τ ′(s−z),
by



































A1k(z) =
2Cν

Cν−1
τ ′
(

τ ′σ(z) − σ′(z)τν−1(z)
)

,

A2k(z) = (ν − k)τ ′σ′(z),

A3k(z) = −(ν − k)
(

σ′(z)
)2

− 2τ ′σ(z),

A4k(z) =
Cν

Cν+1
(ν − k)σ′(z) ;

• when deg σ = 1, σ(s) = σ(z) and τ(s) = τ(z) + τ ′(s − z), by















A1k(z) = −
Cν

Cν−1
τ ′A3k(z),

A2k(z) = −
Cν+1

Cν

τ ′A4k(z),

where A3k(z) and A4k(z) are arbitrary polynomials in z.

In a similar fashion we can prove the following theorem:

Theorem 2. Consider the functions of hypergeometric type y
(k+1)
ν−1 (z), y

(k)
ν (z),

y
(k+1)
ν (z) and y

(k+1)
ν+1 (z). Suppose that ρ(z) is a solution of (2.3),

σν(s)ρ(s)

(s − z)ν−k−1
sm

∣

∣

∣

∣

∣

s2

s1

= 0 , m = 0, 1, 2, ... ,

where s1 and s2 are the end points of C. Then, there exist polynomial coeffi-
cients Aik(z), i = 1, 2, 3, 4, not all identically zero, such that

A1k(z)y
(k+1)
ν−1 (z) + A2k(z)y(k)

ν (z) + A3k(z)y(k+1)
ν (z) + A4k(z)y

(k+1)
ν+1 (z) = 0 .

(3.11)
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Moreover, the functions Aik, i = 1, 2, 3, 4 are given by


































































A1k(z) =
Cν

Cν−1
τ ′
ντ

′
ν+k−1

2

[

τ 2
ν−1(0)

σ′′

2
− τ ′

ν−1

(

τν−1(0)σ′(0) − τ ′
ν−1σ(0)

)]

×
(

R(z) − 2σ′(z)
)

,

A2k(z) = −(ν − k)τ ′
ντ

′
ν
2−1τ

′
ν+k−1

2

[

R(z)τ ′
ν−1 +

(

τν−1(z)σ′′ − 2σ′(z)τ ′
ν−1

)]

,

A3k(z)=τ ′
ντ

′
ν
2−1

[

τ ′
ν+k−1

2
R(z) + (ν − k)

(σ′′)2

2τ ′
ν

τν(z) − 2τ ′
ν− 1

2
σ′(z)

]

τν−1(z),

A4k(z)=(ν − k)σ′′ Cν

Cν+1
τ ′

ν
2−1τ

′
ν−1
2

τν−1(z),

(3.12)

where R(z) is an arbitrary polynomial of z.

Remark 2. As in Remark 1, when σ′′ = 0 from (3.12) the following two
cases follow

(1) deg[σ(s)] = 1 ∧ deg[τ(s)] = 1, then A4k = 0,
(2) deg[σ(s)] = 0 ∧ deg[τ(s)] = 1, then A4k = 0.

Solving the corresponding systems we find

• deg σ = 1 and deg τ = 1, σ(s) = σ(z) + σ′(z)(s − z) and τ(s) =
τ(z) + τ ′(s − z)



































A1k(z) =
2Cν

Cν−1

(

σ′(z)τν−1(z) − τ ′σ(z)
)

,

A2k(z) = (ν − k)τ ′,

A3k(z) = −2τ 3ν−k−2
2

,

A4k(z) =
Cν

Cν+1
(ν − k) ;

• deg σ = 0 and deg τ = 1, σ(s) = σ(z) and τ(s) = τ(z) + τ ′(s − z)














A3k(z) =
Cν−1

τ ′Cν

τ(z)A1k(z),

A4k(z) = −
Cν−1

τ ′Cν+1
(ν − k)A1k(z) −

Cν

τ ′Cν+1
A2k(z) ,

where A1k(z) and A2k(z) are arbitrary polynomials of z.
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Theorem 3. Consider the functions of hypergeometric type y
(k)
ν−1(z), y

(k)
ν (z),

y
(k+1)
ν (z) and y

(k)
ν+1(z). Suppose that

σν(s)ρ(s)

(s − z)ν−k−1
sm

∣

∣

∣

∣

∣

s2

s1

= 0, m = 0, 1, 2, ... , (3.13)

where s1 and s2 are the end points of C. Then, there exist polynomial coeffi-
cients Aik(z), i = 1, 2, 3, 4, not all identically zero, such that

A1k(z)y
(k)
ν−1(z) + A2k(z)y(k)

ν (z) + A3k(z)y(k+1)
ν (z) + A4k(z)y

(k)
ν+1(z) = 0. (3.14)

Moreover, the functions Aik, i = 1, 2, 3, 4 are given by















































































A1k =
Cν

Cν−1
τ ′
ντ

′
ν+k−1

2
τ ′

ν+k−2
2

(

H(z) − τ ′
ν− 1

2

)

×
[

τ 2
ν−1(0)σ′′

2 + τ ′
ν−1

(

σ(0)τ ′
ν−1 − σ′(0)τν−1(0)

)]

,

A2k = (ν − k)τ ′
ν− 1

2

τ ′
ντ

′
ν
2−1τ

′
ν+k−1

2

×

[(

τ(0)σ′′ − σ′(0)τ ′
)

−
σ′′

2
τν−1(z) + H(z)

σ′(0)τ ′
ν − τν(0)σ′′

τ ′
ν

]

,

A3k = −τ ′
ν−1τ

′
ν− 1

2
τ ′

ν
2−1τ

′
ν

(

H(z) − τ ′
ν+k−1

2

)

σ(z),

A4k = H(z)(ν − k)(ν − k + 1)
σ′′

2

Cν

Cν+1
τ ′
ν−1τ

′
ν
2−1τ

′
ν−1
2

,

(3.15)
where H(z) is an arbitrary polynomial of z.

Proof : Substituting (3.4) and (3.5) in the equation

S(z) = A1k(z)y
(k)
ν−1(z) + A2k(z)y(k)

ν (z) + A3k(z)y(k+1)
ν (z) + A4k(z)y

(k)
ν+1(z),

we obtain

S(z) =
1

σk+1(z)ρ(z)

∫

C

σν−1(s)ρ(s)

(s − z)ν−k
P (s)ds ,
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where P (s) is given by

P (s) = A1kC
(k)
ν−1σ(z) + A2k

C
(k)
ν

ν − k
σ(z)τν−1(s) + A3kC

(k+1)
ν σ(s)+

A4k

C
(k)
ν+1

(ν − k − 1)(ν − k)
σ(z) (τ ′

νσ(s) + τν(s)τν−1(s)) .

(3.16)

Reasoning as in the proof of Theorem 1, we define a polynomial Q(z, s) in
the variable s such that

σν−1(s)ρ(s)

(s − z)ν−k
P (s) =

∂

∂s

[

σν(s)ρ(s)

(s − z)ν−k−1
Q(z, s)

]

.

Therefore, if the boundary conditions (3.13) hold, S(z) = 0 and (3.14) fol-
lows. Taking the derivative of the right hand side we find

P (s) = [τν−1(s)(s− z) − (ν − k − 1)σ(s)]Q(z, s) + σ(s)(s− z)
∂Q

∂s
(z, s) .

(3.17)
Hence, by comparing (3.16) with (3.17), we conclude that degs[Q(z, s)] = 0,
i.e., Q(z, s) = f(z) that we choose, without loss of generality, equal to 1.

Substituting the expansions (3.9) of τν−1(s), τν(s) and σ(s) in powers of s−z
in (3.16) and (3.17) we obtain










































A1kC
(k)
ν−1 + A2k

C
(k)
ν

ν−k
τν−1(z) + A3k(z)C

(k+1)
ν +

A4k
C

(k)
ν+1

(ν−k)(ν−k+1) [τ ′
νσ(z) + τν(z)τν−1(z)] = −(ν − k − 1),

A2k
C

(k)
ν

ν−k
σ(z)τ ′

ν−1+A3kC
(k+1)
ν σ′(z)+A4k

C
(k)
ν+1

(ν−k)(ν−k+1)
σ(z)2τν(z)τ

′
ν− 1

2

= τk(z),

A3kC
(k+1)
ν

σ′′

2 + A4k
C

(k)
ν+1

(ν−k)(ν−k+1)σ(z)τ ′
ντ

′
ν− 1

2

= τ ′
ν+k−1

2

.

Assuming σ′′ 6= 0, from last equation we get

A3k(z)C(k+1)
ν =

2

σ′′

[

τ ′
ν+k−1

2
− A4k(z)

C
(k)
ν+1

(ν − k)(ν − k + 1)
σ(z)τ ′

ντ
′
ν− 1

2

]

.

Choosing now

A4k(z) = R(z)τ ′
ν+k−1

2

(ν − k)(ν − k + 1)

C
(k)
ν+1σ(z)τ ′

ντ
′
ν− 1

2

,
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where R(z) is an arbitrary function of z, we obtain

A3k(z)C(k+1)
ν =

2

σ′′
τ ′

ν+k−1
2

(1 − R(z)) ,

and therefore


































































A4k(z) = R(z)τ ′
ν+k−1

2

(ν−k)(ν−k+1)

C
(k)
ν+1τ

′

ντ ′

ν− 1
2

A3k(z)C
(k+1)
ν =

2

σ′′
τ ′

ν+k−1
2

(

1 − R(z)
)

σ(z)

A2k(z)C
(k)
ν = ν−k

τ ′

ν−1

[

2
(

τ(0)− σ′(0)
σ′′

τ ′
)

−τν−1(z)+2R(z)τ ′
ν+k−1

2

(

σ′(0)
σ′′

−
τν(0)
τ ′

ν

)]

A1k(z)C
(k)
ν−1=−

τν−1(z)

τ ′
ν−1

[

τν−1(z)−
2

σ′′
τ ′
ν−1+2R(z)τ ′

ν+k−1
2

(

σ′(0)

σ′′
−

τν(0)

τ ′
ν

)]

−

(ν−k−1)σ(z)− R(z)τ ′
ν+k−1

2

τ ′

νσ(z)+τν(z)τν−1(z)
τ ′

ντ ′

ν− 1
2

− 2
σ′′

σ(z)τ ′
ν+k−1

2

(1−R(z))

If we now substitute the above values Aik, i = 1, 2, 3, 4, in (3.14), put R(z) =
H(z)/τ ′

ν+k−1
2

, where H(z) is a polynomial in z, and simplify the resulting

expressions we obtain the values (3.15).

Notice that if we choose H(z) a polynomial in z, then the corresponding
coefficients Aik, i = 1, 2, 3, 4, will be polynomials in z too. Formulae (3.15)
are still valid, by analytic continuation, when σ′′ = 0.

Remark 3. In the case when σ′′ = 0, from (3.15), the following two cases
follow

(1) if deg[σ(s)] = 1 ∧ deg[τ(s)] = 1 then A4k(z) = 0,
(2) if deg[σ(s)] = 0 ∧ deg[τ(s)] = 1 then A2k(z) = 0 = A4k(z).

Thus, a similar analysis yields

• in the first case, σ(s) = σ(z)+σ′(z)(s−z) and τ(s) = τ(z)+ τ ′(s−z)


































A1k(z) =
2Cν

Cν−1
τν(z)

(

τ ′σ(z) − σ′(z)τν−1(z)
)

,

A2k(z) = (ν − k)σ′τν(z),

A3k(z) = −2τ 3ν−k
2

σ(z),

A4k(z) =
Cν

Cν+1
(ν − k − 1)(ν − k)σ′(z) ;
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• in the second case σ(s) = σ(z) and τ(s) = τ(z) + τ ′(s − z)



































A1k(z) = −
Cν

Cν−1
(ν − k − 1)τ ′σ(z),

A2k(z) = −(ν − k)τ(z),

A3k(z) = σ(z),

A4k(z) =
Cν

Cν+1
(ν − k − 1)(ν − k).

3.2. Three-Term Recurrence Relations. In general, in order to obtain
three-term recurrence relations involving functions of hypergeometric type
and its derivatives of any order, one could follow the technique described
in the previous section (see e.g. [19]). Here we will obtain several three-
term recurrence relations that follows from Theorems 1 (Corollaries 1–3), 2
(Corollaries 4) and 3 (Corollaries 5–8), when one of the coefficients Aik(z),
i = 1, 2, 3, 4, is chosen to be identically zero. Since the proofs of all Corollaries
are quite similar we will include here only the first one.

Corollary 1.

B1k(z)y(k)
ν (z) + B2k(z)y(k+1)

ν (z) + B3k(z)y
(k+1)
ν+1 (z) = 0, (3.18)



























B1k(z) = −τ ′
ν+k−1

2

τ ′
ν ,

B2k(z) = −τ ′
νσ

′(0) + σ′′

2 (τν(0) − τ ′
νz) ,

B3k(z) =
Cν

Cν+1
τ ′

ν−1
2

.

(3.19)

Proof : Using the fact that R(z) in Theorem 1 is an arbitrary polynomial of
z, and putting R(z) = 2σ′(z) we get A1k = 0. Thus relation (3.2) becomes
into

B1k(z)y(k)
ν (z) + B2k(z)y(k+1)

ν (z) + B3k(z)y
(k+1)
ν+1 (z) = 0 ,



14 J. L. CARDOSO, C. FERNANDES AND R. ALVAREZ-NODARSE

where the coefficients B1k = A2k, B2k = A3k and B3k = A4k are given by































B1k(z) = −(ν − k)τ ′
ν+k−1

2
σ′′σ(z),

B2k(z) =
ν − k

τ ′
ν

σ′′σ(z)

[

−
1

2
(2τ ′

νσ
′(0) + τ ′

νσ
′′z − τν(0)σ′′)

]

,

B3k(z) = (ν − k)
Cν

Cν+1

τ ′
ν−1

2

τ ′
ν

σ′′σ(z).

Hence, after some simplifications, we obtain (3.19).

The previous three-term recurrence relation was published in [8].

Corollary 2.

B1k(z)y
(k)
ν−1(z) + B2k(z)y(k)

ν (z) + B3k(z)y
(k+1)
ν+1 (z) = 0, (3.20)











































































B1k(z) =
Cν

Cν−1
τ ′

ν+k−2
2

[

τν−1(0)

(

τ ′
ν−1σ

′(0) −
σ′′

2
τν−1(0)

)

− (τ ′
ν−1)

2
σ(0)

]

×

(

σ′′

2
τ ′
νz + σ′(0)τ ′

ν −
σ′′

2
τν(0)

)

,

B2k(z) = (ν − k)τ ′
ν
2−1

(

σ′′

2
τ ′
νz + σ′(0)τ ′

ν −
σ′′

2
τν(0)

)

×

(σ′′

2
τν−1(0) − σ′(0)τ ′

ν−1 −
σ′′

2
τ ′
ν−1z

)

− τ ′
ν
2−1τ

′
ν+k−1

2
τ ′
ν−1σ(z)τ ′

ν,

B3k(z) =
Cν

Cν+1
τ ′

ν
2−1τ

′
ν−1
2

τ ′
ν−1σ(z).

(3.21)

Corollary 3.

B1k(z)y
(k)
ν−1(z) + B2k(z)y(k+1)

ν (z) + B3k(z)y
(k+1)
ν+1 (z) = 0,
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B1k(z) = −
Cν

Cν−1
τ ′

ν+k−1
2

τ ′
ν+k−2

2
τ ′
ν

[

τ 2
ν−1(0)σ′′ − 2τ ′

ν−1

(

τν−1(0)σ′(0) − τ ′
ν−1σ(0)

)]

,

B2k(z) =
ν − k

2
τ ′

ν
2−1

(

τν(0)σ′′− 2σ′(0)τ ′
ν − σ′′τ ′

νz
)

×
(

τν−1(0)σ′′ − 2σ′(0)τ ′
ν−1 − σ′′τ ′

ν−1z
)

+ 2τ ′
ν
2−1τ

′
ν+k−1

2
τ ′
ν−1τ

′
νσ(z),

B3k(z) = (ν − k)
Cν

Cν+1
τ ′

ν
2−1τ

′
ν−1
2

(

τν−1(0)σ′′ − 2σ′(0)τ ′
ν−1 − σ′′τ ′

ν−1z
)

.

Corollary 4.

B1k(z)y
(k+1)
ν−1 (z) + B2k(z)y(k)

ν (z) + B3k(z)y
(k+1)
ν+1 (z) = 0,































































B1k(z) =
Cν

Cν−1

[

τν−1(0)
(

σ′(0)τ ′
ν−1 −

σ′′

2
τν−1(0)

)

− (τ ′
ν−1)

2
σ(0)

]

×
[

σ′(0)τ ′
ν −

σ′′

2

(

τν(0) − τ ′
νz
)]

,

B2k(z) = (ν − k − 1)τ ′
ν
2−1τ

′
ν

(

σ′(0)τ ′
ν−1 −

σ′′

2 τν−1(0)
)

+ τν(0)τ ′
ν
2−1τ

′
ν+k

2

τ ′
ν−1

+τ ′
ν
2−1τ

′
ν−1τ

′
ν− 1

2

τ ′
νz,

B3k(z) = −
Cν

Cν+1
τ ′

ν
2−1τ

′
ν−1
2

τν−1(z) .

Corollary 5.

B1k(z)y
(k)
ν−1(z) + B2k(z)y(k)

ν (z) + B3k(z)y
(k)
ν+1(z) = 0,































B1k(z) =
Cν

Cν−1
τ ′

ν+k−2
2

τ ′
ν

[

τ ′
ν−1 (σ′(0)τν−1(0) − σ(0)τ ′

ν−1) − τ 2
ν−1(0)

σ′′

2

]

,

B2k(z) = −τ ′
ν
2−1τ

′
ν− 1

2

[

τ ′
ντ

′
ν−1z + τ ′τ2ν−k(0) + σ′′

(

kτ(0) − τν(1−ν)(0)
)]

,

B3k(z) = (ν − k + 1)
Cν

Cν+1
τ ′

ν
2−1τ

′
ν−1
2

τ ′
ν−1.

This Corollary was first published in [19] and it is nothing else that the
standard three-term recurrence relation for the derivative of any order of
hypergeometric functions.
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Corollary 6.

B1k(z)y(k)
ν (z) + B2k(z)y(k+1)

ν (z) + B3k(z)y
(k)
ν+1(z) = 0,























B1k(z) = τ ′
ν+k−1

2
τν(z),

B2k(z) = τ ′
νσ(z),

B3k(z) = −(ν − k + 1)
Cν

Cν+1
τ ′

ν−1
2

.

Corollary 7.

B1k(z)y
(k)
ν−1(z) + B2k(z)y(k)

ν (z) + B3k(z)y(k+1)
ν (z) = 0,



























B1k(z) = −
Cν

Cν−1
τ ′

ν+k−2
2

[

τ 2
ν−1(0)

σ′′

2
+ τ ′

ν−1

(

σ(0)τ ′
ν−1 − σ′(0)τν−1(0)

)

]

,

B2k(z) = −
ν − k

2
τ ′

ν
2−1τ

′
ν−1

(

σ′′z + 2σ′(0) − σ′′τν−1(0)

τ ′
ν−1

)

,

B3k(z) = τ ′
ν
2−1τ

′
ν−1σ(z).

The above relation was firstly obtained in [6].

Corollary 8.

B1k(z)y
(k)
ν−1(z) + B2k(z)y(k+1)

ν (z) + B3k(z)y
(k)
ν+1(z) = 0,











































B1k(z) = Cν

Cν−1
τ ′

ν+k−2
2

τ ′
ν+k−1

2

×
[

τν−1(0)
(

2σ′(0)τ ′
ν−1
2

− τ(0)σ′′
)

− 2 (τ ′
ν−1)

2 σ(0)
]

τν(z),

B2k(z) = 2τ ′
ν
2−1τ

′
ν− 1

2

[

τ ′
ντ

′
ν−1z + τν(0)τ ′

k−1 + τ ′
νσ

′(0)(ν − k)
]

σ(z),

B3k(z) = −(ν−k)(ν−k+1) Cν

Cν+1
τ ′

ν
2−1τ

′
ν−1
2

[

σ′′τ ′
ν−1z + 2σ′(0)τ ′

ν−1
2

− σ′′τ(0)
]

.

4. Applications

4.1. Recurrence relations for Hypergeometric type Functions. We
can reduce equation (1.1) to a canonical form by a linear change of inde-
pendent variable. According to [12, 13], there exists three different cases,
corresponding to the different possibilities for the degrees of σ:
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• deg
(

σ(z)
)

= 2

z(1 − z) u′′ +
[

γ −
(

α + β + 1
)

z
]

u′ − αβ u = 0 ; (4.1)

It corresponds to equation 1.1 with

σ(z) = z(1 − z), τ(z) = γ −
(

α + β + 1
)

z, λ = −αβ . (4.2)

• deg
(

σ(z)
)

= 1

z u′′ +
(

γ − z
)

u′ − α u = 0 ; (4.3)

This is equation (1.1) with

σ(z) = z, τ(z) = γ − z, λ = −α . (4.4)

• deg
(

σ(z)
)

= 0
u′′ − 2z u′ + 2ν u = 0 , (4.5)

i.e., it corresponds to the equation (1.1) with

σ(z) = 1, τ(z) = −2z, λ = 2ν . (4.6)

Equations (4.1), (4.3) and (4.5) are known as the hypergeometric, confluent
hypergeometric and Hermite equations, respectively. Explicit solutions for the
different three above equations are well known (see e.g. [12, 13]). In [12, §20,
section 2. page 255] particular solutions were found using the corresponding
integral representations: the hypergeometric F (α, β, γ, z), confluent hyperge-
ometric F (α, γ, z) and Hermite Hν(z) functions. In terms of the generalized
hypergeometric notation [3], the first two correspond to 2F1(α, β; γ; z) and

1F1(α; γ; z), respectively. Here we will present recurrence relations that fol-
lows from the Theorems 1, 2, and 3, and some particular examples from the
corresponding Corollaries.

In what follows, R(z) represents an arbitrary function of z.

4.1.1. Relations derived from Theorem 1.

• Hypergeometric Equation
(

see (4.1) and (4.2)
)

. From (4.2) and (2.6)
it follows that ν = −α or ν = −β. Choosing ν = −α, relation (3.2)
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is fulfilled with






































































A1k(z) = −α(α − 1)(β + k)(β + k − 1)(β − γ)(β − α + 1)
(

R(z) − 1 + 2z
)

,

A2k(z) = (α − 1)(α + k)(β − 1)(β + k)(β − α + 1)×
{(

R(z) − 1 + 2z
)[

(1 − 2z)(β − α − 1) −
(

(γ − α − 1) − (β − α + 1)z
)]

−

(β − α − 1)z(1 − z)
}

,

A3k(z) = −(α − 1)(β − 1)(β − α − 1)z(1 − z)×
[

(β−α+1)(β+k)R(z) − (α+k)
(

(γ−α) − (β−α+1)z
)

− (β−α)(β−α+1)(1−2z)
]

,

A4k(z)=(α + k)β(β − 1)(α − γ)(β − α − 1)z(1 − z).

• Confluent Hypergeometric Equation
(

see (4.3) and (4.4)
)

. Using (4.4)
and (2.6) we find ν = −α, being relation (3.2) fulfilled with

A1k(z) = −α, A2k(z) = α + k, A3k(z) = z, A4k(z) = 0.

• Hermite Equation
(

see (4.5) and (4.6)
)

. Using now (4.6) and (2.6) we
conclude that ν may be an arbitrary complex number and relation
(3.2) is fulfilled with

A1k(z) = −2ν, A2k(z) = 0, A3k(z) = 1, A4k(z) = 0.

4.1.2. Relations derived from Theorem 2.

• Hypergeometric Equation
(

see (4.1) and (4.2)
)

. This corresponds to
ν = −α (or ν = −β) and relation (3.11) is fulfilled with















































A1k(z) = α(α − 1)β(β − α + 1)(β − α − 2)
(

R(z) − 1 + 2z
)

A2k(z) = −(α−1)(α+k)(β−1)(β+k−1)(β−α+1)
[

(β−γ) − (β−α−1)
(

R(z)+z
)]

A3k(z) = (α − 1)(β − 1)
[

(γ − α − 1) − (β − α − 1)z
]

×
[

(β−α)(β−α+1)(1−2z) − R(z)(β+k−1)(β−α+1) − (α+k)
(

(γ−α) − (β−α+1)z
)]

A4k(z)=−(α + k)β(β − 1)(γ − α)
[

(γ − α − 1) − (β − α − 1)z
]

• Confluent Hypergeometric Equation
(

see (4.3) and (4.4)
)

. This corre-
sponds to ν = −α and relation (3.11) is fulfilled with

A1k(z) = α, A2k(z) = −(α + k), A3k(z) = (γ − α − 1) − z, A4k(z) = 0.

• Hermite Equation
(

see (4.5) and (4.6)
)

. Relation (3.11) is fulfilled, for
an arbitrary complex number ν, with

A1k(z) = ν, A2k(z) = ν − k, A3k(z) = −z, A4k(z) = 0.
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4.1.3. Relations derived from Theorem 3.

• Hypergeometric Equation
(

see (4.1) and (4.2)
)

. This corresponds to
ν = −α (or ν = −β) and relation (3.14) is fulfilled with











































A1k(z) = −α(α − 1)(β + k)(β + k − 1)(β − γ)(β − α + 1)
[

R(z) − (β − α)
]

A2k(z) = (α − 1)(α + k)(β − 1)(β + k)(β − α)×
{

[

(β − γ) − (β − α − 1)z
]

(β − α + 1) + R(z)(β − 3α + 2γ + 1
)}

A3k(z) = (α − 1)(β − 1)(β − α − 1)(β − α)(β − α + 1)
(

R(z) − (β + k)
)

z(1 − z)

A4k(z)=R(z)(α + k)(α + k − 1)β(β − 1)(γ − α)(β − α − 1)

• Confluent Hypergeometric Equation
(

see (4.3) and (4.4)
)

. This corre-
sponds to ν = −α and relation (3.14) is fulfilled with

A1k(z) = −α, A2k(z) = α + k, A3k(z) = z, A4k(z) = 0.

• Hermite Equation
(

see (4.5) and (4.6)
)

. This corresponds to an arbi-
trary complex number ν and relation (3.14) is fulfilled with

A1k(z) = 2ν, A2k(z) = 0, A3k(z) = −1, A4k(z) = 0.

In the following we will put k = 1 and use the identities [12, page 261]

2F1
′(α, β; γ; z) =

αβ

γ
2F1(α+1, β+1; γ+1; z), 1F1

′(α; γ; z) =
α

γ
1F1(α+1; γ+1; z).

4.1.4. Relations derived from Corollary 1.

• Hypergeometric function. This corresponds to ν = −α (or ν = −β)
and substituting the quantities (4.2) in (3.18)–(3.19) we find the fol-
lowing recurrence relation for the hypergeometric function:

γ
(

α − β − 1
)

2F1(α, β; γ; z) + β
(

α − γ
)

2F1(α, β + 1; γ + 1; z)+

α
[(

β − γ + 1
)

+
(

β − α + 1
)

z
]

2F1(α + 1, β + 1; γ + 1; z) = 0 .

• Confluent hypergeometric function. This corresponds to ν = −α.
Therefore, by (4.4), (3.18)–(3.19) yield, for the hypergeometric con-
fluent function, the following recurrence relation

γ 1F1(α; γ; z) +
(

γ − α
)

1F1(α; γ + 1; z) + α 1F1(α + 1; γ + 1; z) = 0.

• Hermite function. Being ν an arbitrary complex number then, sub-
stituting (4.6) in (3.18)–(3.19), we find the following very well known
relation for the Hermite function:

H ′
ν+1(z) = 2

(

ν + 1
)

Hν(z).
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Other recurrences relations can be obtained from the other Corollaries 2–8.
Since the technique is similar we just present here the resulting relations.

4.1.5. Relations derived from Corollary 2.

• Hypergeometric function

γ
{

α
[(

β − γ + 1
)

−
(

β − α + 1
)

z
][(

β − γ
)

−
(

β − α − 1
)

z
]

−

β
[

(β − α)2 − 1
]

z(1 − z)
}

2F1(α, β; γ; z)+

αγ
(

β − γ
)[(

β − α + 1
)

z −
(

β − γ + 1
)]

2F1(α + 1, β; γ; z)+

β2
(

α − γ
)(

β − α − 1
)

z(1 − z) 2F1(α, β + 1; γ + 1; z) = 0 .

• Confluent hypergeometric function

−γ
(

α + z
)

1F1(α; γ; z) +
(

γ − α
)

z 1F1(α; γ + 1; z) + αγ 1F1(α + 1; γ; z) = 0.

• Hermite function

H ′
ν+1(z) = 2

(

ν + 1
)

Hν(z).

4.1.6. Relations derived from Corollary 3.

• Hypergeometric function

β
{

α
[(

β − γ + 1
)

−
(

β − α + 1
)

z
][(

β − γ
)

−
(

β − α − 1
)

z
]

+

β
[

(β − α)2 − 1
]

z(1 − z)
}

2F1(α + 1, β + 1; γ + 1; z)+

+βγ
(

β − γ
)(

β − α + 1
)

2F1(α + 1, β; γ; z)−

β2
(

α − γ
)

[

(

β − γ
)

−
(

β − α − 1
)

z
]

2F1(α, β + 1; γ + 1; z) = 0 .

• Confluent hypergeometric function

−
(

α+z
)

1F1(α+1; γ+1; z)+
(

α−γ
)

z 1F1(α; γ+1; z)+γ 1F1(α+1; γ; z) = 0.

• Hermite function

H ′
ν(z) = 2ν Hν−1(z).
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4.1.7. Relations derived from Corollary 4.

• Hypergeometric function

γ
(

β − 1
)

[

(

α+1
)(

β−α+1
)(

γ−β
)

+
(

γ−α
)(

β−α−1
)(

β+1
)

−

(

β−α+1
)(

β−α
)(

β−α−1
)

z
]

2F1(α, β; γ; z)+

β2
(

α−γ
)

[

(

γ−α−1
)

−
(

β−α−1
)

z
]

2F1(α, β+1; γ+1; z)+

αβ
(

α+1
)(

γ−β
)

[

(

γ−β−1
)

+
(

β−α+1
)

z
]

2F1(α+2, β+1; γ+1; z) = 0 .

• Confluent hypergeometric function

γ
[

(

γ−2α−1
)

− z
]

1F1(α; γ; z) +
(

α−γ
)

[

(

γ−α−1
)

− z
]

1F1(α; γ+1; z)+

α
(

α+1
)

1F1(α+2; γ+1; z) = 0 .

• Hermite function

H ′
ν+1(z) = 2

(

ν + 1
)

Hν(z).

4.1.8. Relations derived from Corollary 5.

• Hypergeometric function
(

β − 1
)(

γ − α
)(

β − α − 1
)

2F1(α − 1, β; γ; z)+

(

β−α
)

{

[(

β−α
)2
−1
]

z−
(

α+β+1
)(

γ−2α
)

+2
(

γ−α(α+1)
)

}

2F1(α, β; γ; z)

+α
(

β − α + 1
)(

γ − β
)

2F1(α + 1, β; γ; z) = 0 .

• Confluent hypergeometric function
(

γ −α
)

1F1(α− 1; γ; z) +
[

z −
(

γ − 2α
)

]

1F1(α; γ; z)−α 1F1(α + 1; γ; z) = 0.

• Hermite function

Hν+1(z) − 2z Hν(z) + 2ν Hν−1(z) = 0.

4.1.9. Relations derived from Corollary 6.

• Hypergeometric function

βγ
(

α−γ
)

2F1(α−1, β; γ; z)+γ
(

β−1
)

[

(

γ−α
)

−
(

β−α+1
)

z
]

2F1(α, β; γ; z)

+αβ
(

β−α+1
)

z(1−z) 2F1(α+1, β+1; γ+1; z) = 0 .
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• Confluent hypergeometric function

γ
(

α−γ
)

1F1(α−1; γ; z)+γ
[

(

γ−α
)

−z
]

1F1(α; γ; z)+αz 1F1(α+1; γ+1; z) = 0.

• Hermite function

Hν+1(z) − 2z Hν(z) + H ′
ν(z) = 0.

4.1.10. Relations derived from Corollary 7.

• Hypergeometric function

γ
[(

γ − β
)

+
(

β − α − 1
)

z
]

2F1(α, β; γ; z) + γ
(

β − γ
)

2F1(α + 1, β; γ; z)−

β
(

β − α − 1
)

z(1 − z) 2F1(α + 1, β + 1; γ + 1; z) = 0 .

• Confluent hypergeometric function

γ 1F1(α; γ; z)− γ 1F1(α; γ; z) + z 1F1(α + 1; γ + 1; z) = 0.

• Hermite function

H ′
ν(z) = 2ν Hν−1(z).

4.1.11. Relations derived from Corollary 8.

• Hypergeometric function

β
(

α − γ
)[(

γ − β
)

+
(

β − α − 1
)

z
]

2F1(α − 1, β; γ; z)+

γ
(

γ − β
)(

β − α − 1
)

[

(

γ − α
)

−
(

β − α + 1
)

z
]

2F1(α + 1, β; γ; z)+

β
(

β−α
)

{[

(

β−α
)2
−1
]

z+2αβ−γ
(

α+β−1
)

}

2F1(α+1, β+1; γ+1; z) = 0 .

• Confluent hypergeometric function

γ
(

γ − α
)

1F1(α − 1; γ; z)− γ
(

(

γ − α
)

− z
)

1F1(α + 1; γ; z)+

βz
(

γ − z
)

1F1(α + 1; γ + 1; z) = 0 .

• Hermite function

H ′
ν(z) = 2ν Hν−1(z).

Remark 4. Notice that we can interchange α and β in equation (4.1). There-
fore, several other recurrence relations can be obtained by interchanging α
and β in all relations obtained from the corollaries (1–8) corresponding to
the hypergeometric equation (4.1).
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4.2. Recurrences for Polynomials of Hypergeometric Type. The
polynomials of hypergeometric type pn(z) := yn(z) are particular cases of
the functions of hypergeometric type yν(z) when the parameter ν = n is a
non-negative integer, being pn(z) := yn(z) a particular solution of the equa-
tion (1.1) where λ is given by (2.1).
They can be represented by the Rodrigues formula (2.2), where Bn are nor-
malizing constants and ρ(z) satisfies the Pearson equation (2.3), or by their
integral representation (2.4), where

Cn =
n!Bn

2πi
. (4.7)

If an denotes the leading coefficient of the polynomial yn(z) then, see [12],

an = Bn

n−1
∏

m=0

τ ′
n+m−1

2
, a0 = B0 . (4.8)

If an = 1 then yn(z) is said to be a monic polynomial.
The polynomials of hypergeometric type are the classical polynomials, i.e.,

the Hermite Hn(z), Laguerre Lα
n(z) and Jacobi Pα,β

n (z) polynomials.

Table 1. The classical orthogonal polynomials

Pn(z) Hn(z) Lα
n(z) P α,β

n (z)

σ(z) 1 z 1 − z2

τ(z) −2z −z + α + 1 −(α + β + 2)z + β − α

λn 2n n n(n + α + β + 1)

ρ(z) e−z2

zαe−z (1 − z)α(1 + z)β

α > −1 α, β > −1

Bn

(−1)n

2n
(−1)n

(−1)n

(n + α + β + 1)n

A very important property of the orthogonal polynomials is the three-term
recurrence relation

zpn(z) = αnpn+1(z) + βnpn(z) + γnpn−1(z).
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For computing the coefficients αn, βn, and γn we can use Corollary 5 with
k = 0 as it has been done in [19]. Other important properties of these poly-
nomials are the so-called raising and lowering operators (see e.g. [1]) that
can be obtained from Corollaries 6 and 7, respectively. Since they where
studied using this method in [15] we will omit it here.

Here we will study another recurrence relation. Namely the so-called struc-
ture relation by Marcellán et. al [11]

Pn(z) =
P ′

n+1(z)

n + 1
+ rn

P ′
n(z)

n
+ sn

P ′
n−1(z)

n − 1
, n ≥ 2 , (4.9)

where rn and sn are some constants. This relation constitutes another char-
acterization theorem for the classical orthogonal polynomials. A complete
study of such structure relation was done in [1].

Corollary 9. For the monic hypergeometric type polynomials the following
recurrence relation holds

ŷn(z) = Â1(z)ŷ′n+1(z) + Â2(z)ŷ′n(z) + Â3(z)ŷ′n−1(z) . (4.10)

where the coefficients Âi, i = 1, 2, 3 are given by







































Â1(z) =
1

n + 1
,

Â2(z) =
1

2
(τ ′

n−1τn(0)+τn−1(0)τ ′

n)σ′′−2σ′(0)τ ′

nτ ′

n−1

τ ′

nτ ′

n− 1
2
τ ′

n−1
,

Â3(z) =

(

1 −
τ ′

n−1
2

τ ′
n− 1

2

)

2τ ′
n−1 (τ ′

n−1σ(0) − τn−1(0)σ′(0)) + τ 2
n−1(0)σ′′

2
(

τ ′
n−1

)2
τ ′
n− 3

2

.

(4.11)

Proof : Since R(z) in Theorem 2 is an arbitrary polynomial of z, we will
define the function Q(z) such that

R(z) = 2σ′(z) − σ′′τν−1(z)

τ ′
ν−1

2 + Q(z)

2
.
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Then (3.11) holds and the corresponding coefficients Aik(z), i = 1, 2, 3, 4
becomes into


























































A1k(z) =
Cν

Cν−1

2 + Q(z)

Q(z)

2τ ′

ν−1

(

τν−1(0)σ′(0) − τ ′

ν−1σ(0)
)

− τ 2
ν−1(0)σ′′

2(ν − k)τ ′

ν−1τ
′
ν

2
−1

A2k(z) = 1

A3k(z) =
1

(ν − k)Q(z)

(ν − k)τ ′

ν−1 (τν(z)σ′′ − 2σ′(z)τ ′

ν) − τν−1(z)(2 + Q(z))τ ′

ντ
′

ν+k−1

2

τ ′

ντ
′

ν−1τ
′

ν+k−1

2

A4k(z) =
1

Q(z)

Cν

Cν+1

2τ ′

ν−1

2

τ ′

ντ
′

ν+k−1

2

.

Since the polynomials are monic, by (4.8), Bn =
(

∏n−1
m=0 τ ′

n+m−1
2

)−1

. Then

choosing Q(z) = −2τ ′
n− 1

2
/τ ′

n−1
2

and setting k = 0, the equations (3.11) trans-

forms into (4.10) whereas (3.12) leads to (4.11). Notice that in (4.9) rn = nÂ2

and sn = (n − 1)Â3.

From formulas (4.10)–(4.11) of Corollary 9 follows the identities

Hn(z) =
1

n + 1
H ′

n+1(z), Lα
n(z) =

1

n + 1
(Lα

n+1)
′(z) + (Lα

n)′(z),

Pα,β
n (z) =

1

n + 1
(Pα,β

n+1)
′(z) +

2(α − β)

(2n + α + β)(2n + 2 + α + β)
(Pα,β

n )′(z)

−
4n(n + α)(n + β)

(2n + α + β − 1)(2n + α + β)2(2n + α + β + 1)
(Pα,β

n−1)
′(z),

for the Hermite, Laguerre, and Jacobi polynomials, respectively.

4.3. Further examples. In this section we will present several relations
for the classical polynomials that follows from the Theorems 1, 2, and 3. In
order to obtain the following relations, where R(z) represents an arbitrary
function of z , see subsection 4.2 and table 1.

4.3.1. Relations derived from Theorem 1.
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• Jacobi Polynomials


































































A1k(z) = 4n(n + 1)(α + n)(β + n)(α + β + n)(α + β + n + k)(α + β + n + k + 1)

(α + β + 2n + 2)
(

R(z) + 4z
)

A2k(z) = (n+1)(n−k)(α+β+n)(α+β+n+k+1)(α+β+2n−1)(α+β+2n)(α+β+2n+2))×
[(

R(z)+4z
)(

(β−α) + (α+β+2n)z
)

+ (α+β+2n)
(

1−z2
)

]

A3k(z) = (n+1)
[

(α+β+n+k+1)(α+β+2n+2)R(z) + 2(n−k)
(

(β−α) − (α+β+2n+2)z
)

+

4(α+β+2n+1)(α+β+2n+2)z
]

(α+β+n)(α+β+2n−1)(α+β+2n)2
(

1−z2
)

A4k(z)=−2(n−k)(α+β + n)(α+β+2n−1)(α+β+2n)2(α+β+2n+1)(α+β+2n+2)
(

1−z2
)

• Laguerre Polynomials

A1k(z) = −n(α + n), A2k(z) = −(n − k), A3k(z) = z, A4k(z) = 0.

• Hermite Polynomials

A1k(z) = −n, A2k(z) = 0, A3k(z) = 1, A4k(z) = 0.

4.3.2. Relations derived from Theorem 2.

• Jacobi Polynomials










































































A1k(z) = 4n(n + 1)(α + n)(β + n)(α + β + n)(α + β + n + k + 1)(α + β + 2n + 2)
(

R(z) + 4z
)

A2k(z) = −(n−k)(α+β+n)(α+β+n+k+1)(α+β+2n−1)(α+β+2n)(α+β+2n+2))×
[

R(z)(α+β+2n) + 2
(

(β−α) + (α+β+2n−2)z
)]

A3k(z) = (α + β + n)(α + β + 2n − 1)(α + β + 2n)
(

(β − α) − (α + β + 2n)z
)

×
[

2(n−k)
(

(β−α)−(α+β+2n+2)z
)

−(α+β+2n+2)
(

(α+β+n+k+1)R(z) − 4(α+β+2n)z
)]

A4k(z)=−(n − k)(α + β + n)(α + β + 2n − 1)(α + β + 2n)(α + β + 2n + 1)(α + β + 2n + 2)×
(

(β − α) − (α + β + 2n)z
)

• Laguerre Polynomials

A1k(z) = −n(α + n), A2k(z) = n − k, A3k(z) = −(α + n − z), A4k(z) = 0.

• Hermite Polynomials

A1k(z) = −n, A2k(z) = −2(n − k), A3k(z) = 2, A4k(z) = 0.

4.3.3. Relations derived from Theorem 3.
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• Jacobi Polynomials










































































A1k(z) = 4n(n+1)(α+n)(β+n)(α+β+n)(α+β+n+k)(α+β+n+k+1)(α+β+2n+2)×
(

R(z) +
(

α + β + 2n + 1
)

)

A2k(z) = (n−k)(n+1)(α+β+n)(α+β+n+k+1)(α+β+2n−1)(α+β+2n)(α+β+2n+1))×
[(

(β−α) + (α+β+2n)z
)

(α+β+2n+2) − 2(β−α)R(z)
]

A3k(z) = −(n+1)(α+β+n)(α+β+2n−1)(α+β+2n)2(α+β+2n+1)(α+β+2n+2)×
(

R(z) + (α+β+n+k+1)
)

(

1−z2
)

A4k(z)=−2R(z)(n−k)(n−k+1)(α+β+n)(α+β+2n−1)(α+β+2n)2(α+β+2n+1)×
(α+β+2n+2)

• Laguerre Polynomials

A1k(z) = n(α + n), A2k(z) = n − k, A3k(z) = −z, A4k(z) = 0.

• Hermite Polynomials

A1k(z) = n, A2k(z) = 0, A3k(z) = −1, A4k(z) = 0.

4.3.4. A known identity for the Laguerre polynomials. To conclude this paper
let us obtain a very well known formula for the Laguerre polynomials using
the method described here.

Putting k = 0 in relation (3.20)–(3.21), for the Laguerre Polynomials it
becomes

A1(x)L
(α)
n−1(x) + A2(x)L(α)

n (x) + A3(x)
(

L
(α)
n+1(x)

)′

= 0 , (4.12)

where, by (4.7), the coefficients Ai, i = 1, 2, 3, are given by

A1(x) = α + n, A2(x) = x − n, A3(x) = x.

Then, (4.12) leads to the well known formula for the Laguerre polynomials

x
(

L
(α)
n+1(x)

)′

= (n − x)L(α)
n (x) − (α + n)L

(α)
n−1(x) .

Let us also point out that for Jacobi polynomials, if one considers, in
Theorem 3, k = 0, ν = n and Cn = n!Bn

2πi
then, the corresponding coefficients

solution (3.14) gives the four-term recurrence relation stated in Corollary 1.1
of [20, page 729].
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