DISCRETE NEGATIVE NORMS IN THE ANALYSIS OF SUPRACONVERGENT TWO DIMENSIONAL CELL-CENTERED SCHEMES

S. BARBEIRO

Abstract

In this paper we study the convergence properties of cell-centered finite difference schemes for second order elliptic equations with variable coefficients. We prove that the finite difference schemes on nonuniform meshes although not even being consistent are nevertheless second order convergent. The convergence is studied with the aid of an appropriate negative norm. Numerical examples support the convergence result.

KEYWORDS: cell-centered finite differences scheme, nonuniform mesh, stability, supraconvergence.

1. Introduction

In the last decades there has been a strong mathematical interest in numerical discretizations methods that have higher convergence order than expected by analyzing the truncation error in a standard way. In the context of finite difference schemes on nonequidistant grids this behavior is called supraconvergence. Different methods of proving supraconvergence of finite difference schemes for ordinary differential equations have been used by the various authors (see e.g. [3], [10], [12], [13], [16], [17], [21] and [24]). The phenomenon of supraconvergence in more than one space dimension has also been studied in the literature (see e.g. [6], [8], [9] and [19]). The topic in the context of finite element methods has been treated in the papers [3], [4], [8], [11], [14], [15], [18], [20], [22], [28].
We are interested in studying this phenomena in a variant of finite differences, the so called cell-centered schemes, which are used in many codes. In fact, these schemes are not even consistent but nevertheless second order convergent. This fact was noticed by Tikhonov and Samarskii ([26]). Russell and Wheeler ([23]) use the equivalence of a cell-centered finite difference method and a mixed finite element method with a special quadrature formula for proving first order convergence of the solution and the gradient.

[^0]Manteuffel and White ([21]) show second order convergence in both vertexcentered finite difference schemes and cell-centered finite difference schemes for scalar problems, on nonuniform meshes. Supraconvergence results for two-dimensional cell-centered schemes were presented by Forsyth and Sammon ([9]) and also by Weiser and Wheeler ([27]), among others.

Our main purpose is to analyze how these two additional orders of convergence come out for more general problems than considered so far. The analysis of the present paper is based on using negative norms. The analysis of supraconvergence with one additional order of convergence in [3] and [6] is more or less explicitly based on the concept of negative norms which are related to the norm H^{-1}. The concept of negative norms in the analysis of supraconvergence was also used in [3], [4], [6], [7], [8], [12] and [15]. The idea in this paper is to work instead with a discrete version of the H^{-2}-norm. The convergence result relies in the stability inequality with respect to this norm. The analysis of supraconvergence with two additional order of convergence for the one-dimensional case is considered in [2], with the aid of so-called Spijker norms ([25]). These norms are applied twice corresponding to the two gained additional orders of convergence. The use of Spijker norms is restricted to one dimension. But they give the idea for a generalization to higher dimensions because they are related to the negative norms (for more details see [2]).

We consider the discretization of the differential equation with Dirichlet boundary condition

$$
\begin{gather*}
-\left(a u_{x}\right)_{x}-\left(c u_{y}\right)_{y}+d u_{x}+e u_{y}+f u=g \text { on } \Omega, \tag{1}\\
u=\psi \quad \text { on } \quad \partial \Omega . \tag{2}
\end{gather*}
$$

The coefficients of A are assumed to satisfy $a(x, y) \geq \underline{a}>0, c(x, y) \geq \underline{c}>0$, $\forall(x, y) \in \Omega, a, c \in W^{3, \infty}(\Omega), d, e, f \in W^{2, \infty}(\Omega)$. The domain Ω is an union of rectangles.
In order to prepare the definition of the cell-centered finite difference approximation of (1)-(2) let us first introduce the nonuniform grid G_{H}. In a rectangle $R=\left(x_{-1}, x_{N+1}\right) \times\left(y_{-1}, y_{M+1}\right)$ which contains Ω we define the subset $G_{H}:=R_{1} \times R_{2}$, where

$$
R_{1}:=\left\{x_{-1}<x_{0}<\ldots<x_{N}<x_{N+1}\right\}
$$

and

$$
R_{2}:=\left\{y_{-1}<y_{0}<\ldots<y_{M}<y_{M+1}\right\} .
$$

Let

$$
S_{H}:=\left\{\left(x_{j-1 / 2}, y_{\ell-1 / 2}\right): j=0, \ldots, N+1, \ell=0, \ldots, M+1\right\},
$$

where $x_{j-1 / 2}:=\left(x_{j-1}+x_{j}\right) / 2, y_{\ell-1 / 2}:=\left(y_{\ell-1}+y_{\ell}\right) / 2$. Our aim is to obtain numerical solutions in $\Omega_{H}:=S_{H} \cap \Omega$. We define also $\partial \Omega_{H}:=S_{H} \cap \partial \Omega$ and $\bar{\Omega}_{H}:=\Omega_{H} \cup \partial \Omega_{H}$. The grid G_{H} is assumed to satisfy the following condition: the vertices of Ω are in the centers of the rectangles formed by G_{H}.

- $\in \underline{\Omega}_{H} \backslash \bar{\Omega}_{H}$
$\cdot \in \bar{\Omega}_{H}$

Figure 1. Domain and grid points.

Figure 1 illustrates the cell-centered grid in the domain.
If the case of a rectangular domain we allow $x_{-1}=x_{0}, x_{N+1}=x_{N}, y_{-1}=y_{0}$ and $y_{M+1}=y_{M}$.

For the formulation of the difference problem we use the centered difference quotients in x-direction

$$
\begin{aligned}
& \left(\delta_{x} v_{H}\right)_{j, \ell+1 / 2}:=\frac{v_{j+1 / 2, \ell+1 / 2}-v_{j-1 / 2, \ell+1 / 2}}{h_{j-1 / 2}} \\
& \left(\delta_{x} w_{H}\right)_{j-1 / 2, \ell+1 / 2}:=\frac{w_{j, \ell+1 / 2}-w_{j-1, \ell+1 / 2}}{h_{j-1}}
\end{aligned}
$$

where $h_{j-1 / 2}:=x_{j+1 / 2}-x_{j-1 / 2}, h_{j-1}:=x_{j}-x_{j-1}$. Correspondingly, the finite centered difference quotients with respect to the y variable are defined, with the mesh-size vector k in place of h.
Let R_{H} and $R_{G_{H}}$ be the operators that define restrictions to $\bar{\Omega}_{H}$ and $G_{H} \cap \Omega$, respectively.

The difference problem is to find $u_{H} \in \bar{\Omega}_{H}$ such that

$$
\begin{gather*}
A_{H} u_{H}=M_{H} R_{G_{H}} g \quad \text { on } \quad \Omega_{H}, \tag{3}\\
u_{H}=R_{H} \psi \quad \text { on } \quad \partial \Omega_{H}, \tag{4}
\end{gather*}
$$

where the difference operator A_{H} is given by

$$
\begin{equation*}
A_{H} u_{H}:=-\delta_{x}\left(a \delta_{x} u_{H}\right)-\delta_{y}\left(c \delta_{y} u_{H}\right)+M_{x}\left(d \delta_{x} u_{H}\right)+M_{y}\left(e \delta_{y} u_{H}\right)+f u_{H}, \tag{5}
\end{equation*}
$$

and

$$
\begin{aligned}
\left(M_{x} w_{H}\right)_{j-1 / 2, \ell-1 / 2} & :=\frac{w_{j-1, \ell-1 / 2}+w_{j, \ell-1 / 2}}{2} \\
\left(M_{y} w_{H}\right)_{j-1 / 2, \ell-1 / 2} & :=\frac{w_{j-1 / 2, \ell-1}+w_{j-1 / 2, \ell}}{2} \\
\left(M_{H} w_{H}\right)_{j-1 / 2, \ell-1 / 2} & :=\frac{w_{j-1, \ell-1}+w_{j-1, \ell}+w_{j, \ell-1}+w_{j, \ell}}{4}
\end{aligned}
$$

for $\left(x_{j-1 / 2}, y_{\ell-1 / 2}\right) \in \Omega_{H}$. This last three quantities are zero for $\left(x_{j-1 / 2}, y_{\ell-1 / 2}\right) \in$ $\partial \Omega_{H}$.
In the sequel we need norms for grid functions. To this end we introduce in the next section discrete versions of the Sobolev spaces $W_{0}^{m, 2}(\Omega), m=0,1,2$.

2. Discrete $W_{0}^{m, 2}(\Omega)$ spaces

Let $\stackrel{\circ}{W}_{H}^{m, 2}(R), m=0,1,2$, be the space of grid functions defined in C_{H}, which are zero on the set

$$
\left\{\left(x_{j-1 / 2}, y_{\ell-1 / 2}\right): j=0, N+1, \ell=0, \ldots, M+1 \vee j=1, \ldots, N, \ell=0, M+1\right\}
$$ equipped with the norm

$$
\left\|v_{H}\right\|_{W_{H}^{m, 2}(R)}:=\left(\sum_{r=0}^{m}\left|v_{H}\right|_{r, H}^{2}\right)^{1 / 2}
$$

where

$$
\begin{gathered}
\left|v_{H}\right|_{0, H}^{2}:=\sum_{j=1}^{N} \sum_{\ell=1}^{M} h_{j-1} k_{\ell-1}\left|v_{j-1 / 2, \ell-1 / 2}\right|^{2} \\
\left|v_{H}\right|_{1, H}^{2}:=\sum_{j=0}^{N} \sum_{\ell=1}^{M} h_{j-1 / 2} k_{\ell-1}\left|\left(\delta_{x} v_{H}\right)_{j, \ell-1 / 2}\right|^{2} \\
\\
+\sum_{j=1}^{N} \sum_{\ell=0}^{M} h_{j-1} k_{\ell-1 / 2}\left|\left(\delta_{y} v_{H}\right)_{j-1 / 2, \ell}\right|^{2}, \\
\left|v_{H}\right|_{2, H}^{2}:=\sum_{j=1}^{N} \sum_{\ell=1}^{M} h_{j-1} k_{\ell-1}\left(\left|\left(\delta_{x}^{2} v_{H}\right)_{j-1 / 2, \ell-1 / 2}\right|^{2}+\left|\left(\delta_{y}^{2} v_{H}\right)_{j-1 / 2, \ell-1 / 2}\right|^{2}\right) \\
\\
+2 \sum_{j=0}^{N} \sum_{\ell=0}^{M} h_{j-1 / 2} k_{\ell-1 / 2}\left|\left(\delta_{x y} v_{H}\right)_{j, \ell}\right|^{2},
\end{gathered}
$$

with the difference quotient $\delta_{x y}$ given by

$$
\left(\delta_{x y} v_{H}\right)_{j, \ell}:=\frac{\left(\delta_{x} v_{H}\right)_{j, \ell+1 / 2}-\left(\delta_{x} v_{H}\right)_{j, \ell-1 / 2}}{k_{\ell-1 / 2}}=\frac{\left(\delta_{y} v_{H}\right)_{j+1 / 2, \ell}-\left(\delta_{y} v_{H}\right)_{j-1 / 2, \ell}}{h_{j-1 / 2}}
$$

Let $P_{S_{H}}$ be the following operator that extends a grid function v_{H} in $\bar{\Omega}_{H}$ to S_{H},

$$
P_{S_{H}} v_{H}:=v_{H} \quad \text { on } \quad \bar{\Omega}_{H}, \quad P_{S_{H}} v_{H}:=0 \quad \text { on } \quad S_{H} \backslash \bar{\Omega}_{H} .
$$

We denote by $\stackrel{\circ}{W}_{H}^{m, 2}(\Omega), m=0,1,2$, the space of functions defined in $\bar{\Omega}_{H}$, null in $\partial \Omega_{H}$, equipped with the norm

$$
\left\|v_{H}\right\|_{m, H}:=\left(\sum_{r=0}^{m}\left|P_{S_{H}} v_{H}\right|_{r, H}^{2}\right)^{1 / 2}, \quad m=0,1,2 .
$$

The space $\stackrel{\circ}{W}_{H}^{0,2}(\Omega)$ (also denoted by $\left.\stackrel{\circ}{L}_{H}^{2}(\Omega)\right)$ is endowed by the inner product

$$
\left(v_{H}, w_{H}\right)_{H}:=\sum_{j=1}^{N} \sum_{\ell=1}^{M} h_{j-1} k_{\ell-1}\left(P_{S_{H}} v_{H}\right)_{j-1 / 2, \ell-1 / 2}\left(P_{S_{H}} \bar{w}_{H}\right)_{j-1 / 2, \ell-1 / 2}
$$

When it is clear from the context that we use the extended function, we omit the notation $P_{S_{H}}$.

The discrete spaces introduced above form discrete approximations of their continuous counterparts in the sense that we explain in what follows.
Let Λ be a sequence of positive vectors of step-sizes , $H=(h, k)$, such that the maximum step-size, $H_{\max }$, converges to zero. A sequence $\left(v_{H}\right)_{\Lambda} \in$ $\Pi \stackrel{\circ}{L}_{H}^{2}(\Omega)$ converges discretely to $v \in L^{2}(\Omega)$ in $\left(L^{2}(\Omega), \Pi{ }^{\circ}{ }_{H}^{2}(\Omega)\right), v_{H} \rightarrow v$ in $\left(L^{2}(\Omega), \Pi \stackrel{\circ}{L}{ }_{H}^{2}(\Omega)\right)(H \in \Lambda)$, if for each $\epsilon>0$ there exists $\varphi \in C_{0}^{\infty}(\Omega)$ such that

$$
\|v-\varphi\|_{L^{2}(\Omega)} \leq \epsilon, \quad \lim _{H_{\max } \rightarrow 0} \sup \left\{\left\|v_{H}-R_{H} \varphi\right\|_{0, H}\right\} \leq \epsilon
$$

A sequence $\left(v_{H}\right)_{\Lambda} \in \Pi \stackrel{\circ}{W}{ }_{H}^{1,2}(\Omega)$ converges discretely to $v \in W_{0}^{1,2}(\Omega)$ in $\left(W_{0}^{1,2}(\Omega), \Pi \stackrel{\circ}{W_{H}^{1,2}}(\Omega)\right), v_{H} \rightarrow v$ in $\left(W_{0}^{1,2}(\Omega), \Pi \stackrel{\circ}{W_{H}^{1,2}}(\Omega)\right)(H \in \Lambda)$, if for each $\epsilon>0$ there exists $\varphi \in C_{0}^{\infty}(\Omega)$ such that

$$
\|v-\varphi\|_{W^{1,2}(\Omega)} \leq \epsilon, \quad \lim _{H_{\max } \rightarrow 0} \sup \left\{\left\|v_{H}-R_{H} \varphi\right\|_{1, H}\right\} \leq \epsilon .
$$

A sequence $\left(v_{H}\right)_{\Lambda}$ weakly converges to v in $\left(L^{2}(\Omega), \Pi \stackrel{\circ}{L}_{H}^{2}(\Omega)\right), v_{H} \rightharpoonup v$ in $\left(L^{2}(\Omega), \Pi \stackrel{\circ}{L_{H}^{2}}(\Omega)\right)(H \in \Lambda)$, if

$$
\left(w_{H}, v_{H}\right)_{H} \rightarrow(w, v)_{0} \quad(H \in \Lambda)
$$

 $\left(L^{2}(\Omega), \Pi \stackrel{\circ}{L}{ }_{H}^{2}(\Omega)\right)$.
The following lemma ([1]) is an important technical tool in the stability analysis.

Lemma 1. The sequence of imbeddings $\left(J_{H}\right)_{\Lambda}$,

$$
J_{H}: \stackrel{\circ}{W}_{H}^{1,2}(\Omega) \rightarrow \stackrel{\circ}{L}{ }_{H}^{2}(\Omega) \quad(H \in \Lambda)
$$

is discretely compact.
Lemma 2 ([?]) and Lemma 3 ([1]) give some more information about the imbedding of Lemma 1.

Lemma 2. Let $\left(v_{H}\right)_{\Lambda} \in \Pi \stackrel{\circ}{L_{H}^{2}}(\Omega)$ be a bounded sequence. Then there exists a subsequence $\Lambda^{\prime} \subset \Lambda$ and an element $v \in L^{2}(\Omega)$ such that

$$
v_{H} \rightharpoonup v \quad \text { in } \quad\left(L^{2}(\Omega), \Pi \stackrel{\circ}{L}_{H}^{2}(\Omega)\right) \quad\left(H \in \Lambda^{\prime}\right) .
$$

Lemma 3. Let $\left(v_{H}\right)_{\Lambda} \in \Pi \stackrel{\circ}{W}{ }_{H}^{1,2}(\Omega)$ be a bounded sequence and an element $v \in L^{2}(\Omega)$ such that

$$
v_{H} \rightharpoonup v \quad \text { in } \quad\left(L^{2}(\Omega), \Pi \stackrel{\circ}{L}{ }_{H}^{2}(\Omega)\right) \quad(H \in \Lambda) .
$$

Then $v \in W_{0}^{1,2}(\Omega)$.

3. Stability

We introduce the discrete Laplace operator

$$
\Delta_{H} v_{H}:=\delta_{x}^{2} v_{H}+\delta_{y}^{2} v_{H}, \quad v_{H} \in \stackrel{\circ}{W}_{H}^{2,2}(\Omega),
$$

and the norm

$$
\left\|v_{H}\right\|_{2, H}:=\left\|\Delta_{H} v_{H}\right\|_{0, H}, \quad v_{H} \in \stackrel{\circ}{W}_{H}^{2,2}(\Omega) .
$$

Some trivial algebraic manipulations lead to the next result ([2]).
Lemma 4. The norms $\|\cdot\|_{2, H}$ and $\|\cdot\|_{2, H}$ are equivalent in $\stackrel{\circ}{W}_{H}^{2,2}(\Omega)$.
Let A_{H}^{*} be the Hilbert adjoint operator from A_{H}. The following result gives a stability condition for A_{H} in the negative norm $\|\cdot\|_{-L}$,

$$
\left\|v_{H}\right\|_{-L}:=\sup _{0 \neq \varphi_{H} \in W_{H}^{2,2,2}(\Omega)} \frac{\left|\left(v_{H}, \varphi_{H}\right)_{H}\right|}{\left\|L \varphi_{H}\right\|_{0, H}}, \quad v_{H} \in \circ_{L}^{2}(\Omega)
$$

where $L: \stackrel{\circ}{W}_{H}^{2,2}(\Omega) \rightarrow \stackrel{\circ}{L}_{H}^{2}(\Omega)$ is an injective operator.
We notice that for $v_{H} \in \stackrel{\circ}{W}_{H}^{2,2}(\Omega)$ holds

$$
\begin{aligned}
\sup _{\substack{\circ \\
0 \neq \varphi_{H} \in W_{H}^{2,2}(\Omega)}} \frac{\left|\left(A_{H} v_{H}, \varphi_{H}\right)_{H}\right|}{\left\|L \varphi_{H}\right\|_{0, H}} & =\sup _{\substack{\circ \\
0 \neq w_{H} \in L_{H}^{2}(\Omega)}} \frac{\left|\left(A_{H} v_{H},\left(A_{H}^{*}\right)^{-1} w_{H}\right)_{H}\right|}{\left\|L\left(A_{H}^{*}\right)^{-1} w_{H}\right\|_{0, H}} \\
& =C \sup _{\substack{0 \neq w_{H} \in \stackrel{L}{L}_{H}^{2}(\Omega)}} \frac{\left|\left(v_{H}, w_{H}\right)_{H}\right|}{\left\|L\left(A_{H}^{*}\right)^{-1} w_{H}\right\|_{0, H}},
\end{aligned}
$$

and Lemma 5 follows.

Lemma 5. Let L be an injective operator defined in $\stackrel{\circ}{W}_{H}^{2,2}(\Omega)$. If

$$
\begin{equation*}
C\left\|L\left(A_{H}^{*}\right)^{-1} w_{H}\right\|_{0, H} \leq\left\|w_{H}\right\|_{0, H} \quad \forall w_{H} \in \stackrel{\circ}{L}_{H}^{2}(\Omega) \tag{6}
\end{equation*}
$$

for a constant $C>0$, then

$$
\begin{equation*}
C\left\|v_{H}\right\|_{0, H} \leq \sup _{0 \neq \varphi_{H} \in \hat{W}_{H}^{2,2}(\Omega)} \frac{\left|\left(A_{H} v_{H}, \varphi_{H}\right)_{H}\right|}{\left\|L \varphi_{H}\right\|_{0, H}} \quad \forall v_{H} \in \stackrel{\circ}{W}_{H}^{2,2}(\Omega) . \tag{7}
\end{equation*}
$$

Our aim in this section is to show that the inequality (7) hold for $L=\Delta_{H}$. For the proof we will use (6).

We first define explicitly the adjoint operator from A_{H}, $A_{H}^{*}: \stackrel{\circ}{W}_{H}^{2,2}(\Omega) \rightarrow \stackrel{\circ}{L}{ }_{H}^{2}(\Omega)$,

$$
A_{H}^{*}:=A_{H}^{(2) *}+A_{H}^{(1) *},
$$

with

$$
\begin{aligned}
A_{H}^{(2) *} v_{H}:=-\delta_{x}\left(a \delta_{x} v_{H}\right)-\delta_{y}\left(c \delta_{y} v_{H}\right) & \text { in } \Omega_{H}, \\
A_{H}^{(1) *} v_{H} & :=-\delta_{x}\left(\bar{d} M_{x}^{*} v_{H}\right)-\delta_{y}\left(\bar{e} M_{y}^{*} v_{H}\right)+\bar{f} v_{H}
\end{aligned} \text { in } \Omega_{H}, ~ l
$$

where

$$
\begin{align*}
\left(M_{x}^{*} v_{H}\right)_{j, \ell-1 / 2} & :=\frac{v_{j-1 / 2, \ell-1 / 2} h_{j-1}+v_{j+1 / 2, \ell-1 / 2} h_{j}}{2 h_{j-1 / 2}}, \tag{8}\\
\left(M_{y}^{*} v_{H}\right)_{j-1 / 2, \ell} & :=\frac{v_{j-1 / 2, \ell-1 / 2} k_{\ell-1}+v_{j-1 / 2, \ell+1 / 2} k_{\ell}}{2 k_{\ell-1 / 2}}, \tag{9}\\
A_{H}^{(1) *} v_{H} & :=A_{H}^{(2) *} v_{H}:=0 \quad \text { on } \quad \partial \Omega_{H} .
\end{align*}
$$

Let us first prove that A_{H}^{*} is $\stackrel{\circ}{W}_{H}^{1,2}(\Omega)$-regular, i.e., there exists $C>0$ such that

$$
\left\|v_{H}\right\|_{1, H} \leq C\left\|A_{H}^{*} v_{H}\right\|_{0, H} \quad \forall v_{H} \in \stackrel{\circ}{W}_{H}^{2,2}(\Omega)
$$

This will be made with the aid of lemmas 6-9.
Lemma 6. If $\left(v_{H}\right)_{\Lambda} \in \Pi \stackrel{\circ}{W_{H}^{1,2}}(\Omega)$ is a bounded sequence and $\alpha \in C(\bar{\Omega})$ then $\left(M_{x}\left(\alpha \delta_{x} v_{H}\right)\right)_{\Lambda}$ and $\left(M_{y}\left(\alpha \delta_{y} v_{H}\right)\right)_{\Lambda}$ are bounded in $\Pi \stackrel{\circ}{L}{ }_{H}^{2}(\Omega)$.

Proof: Since

$$
\begin{aligned}
& h_{j-1}\left|\left(\alpha \delta_{x} v_{H}\right)_{j-1, \ell-1 / 2}+\left(\alpha \delta_{x} v_{H}\right)_{j, \ell-1 / 2}\right|^{2} \\
& \quad \leq 4 h_{j-3 / 2}\left|\left(\alpha \delta_{x} v_{H}\right)_{j-1, \ell-1 / 2}\right|^{2}+4 h_{j-1 / 2}\left|\left(\alpha \delta_{x} v_{H}\right)_{j, \ell-1 / 2}\right|^{2},
\end{aligned}
$$

then

$$
\left\|M_{x}\left(\alpha \delta_{x} v_{H}\right)\right\|_{0, H}^{2} \leq 2\|\alpha\|_{L^{\infty}(\Omega)}^{2}\left\|v_{H}\right\|_{1, H}^{2} .
$$

Analogously we have

$$
\left\|M_{y}\left(\alpha \delta_{y} v_{H}\right)\right\|_{0, H}^{2} \leq 2\|\alpha\|_{L^{\infty}(\Omega)}^{2}\left\|v_{H}\right\|_{1, H}^{2} .
$$

Lemma 7. Let $H \in \Lambda$. Then

$$
\begin{equation*}
\left(-\delta_{x}\left(a \delta_{x} v_{H}\right)-\delta_{y}\left(c \delta_{y} v_{H}\right), v_{H}\right)_{H} \geq C_{P}\left\|v_{H}\right\|_{1, H}^{2} \quad \forall v_{H} \in \stackrel{\circ}{W}_{H}^{1,2}(\Omega), \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(A_{H} v_{H}, v_{H}\right)_{H} \geq C_{E}\left\|v_{H}\right\|_{1, H}^{2}-C_{K}\left\|v_{H}\right\|_{0, H}^{2} \quad \forall v_{H} \in \stackrel{\circ}{W}_{H}^{1,2}(\Omega), \tag{11}
\end{equation*}
$$

with $C_{P}>0, C_{E}>0$ and C_{K} not depending on H.
Proof: Since a has a lower bound \underline{a} then

$$
\begin{aligned}
& \underline{a} \sum_{j=0}^{N} \sum_{\ell=1}^{M} h_{j-1 / 2} k_{\ell-1}\left|\left(\delta_{x} v_{H}\right)_{j, \ell-1 / 2}\right|^{2} \\
& \quad \leq-\sum_{j=1}^{N} \sum_{\ell=1}^{M} k_{\ell-1}\left(\left(a \delta_{x} v_{H}\right)_{j, \ell-1 / 2}-\left(a \delta_{x} v_{H}\right)_{j-1, \ell-1 / 2}\right) \bar{v}_{j-1 / 2, \ell-1 / 2} \\
& \quad=\left(-\delta_{x}\left(a \delta_{x} v_{H}\right), v_{H}\right)_{H} .
\end{aligned}
$$

In the same way we can prove that

$$
\underline{c} \sum_{j=1}^{N} \sum_{\ell=0}^{M} h_{j-1} k_{\ell-1 / 2}\left|\left(\delta_{y} v_{H}\right)_{j-1 / 2, \ell-1}\right|^{2} \leq\left(-\delta_{y}\left(c \delta_{y} v_{H}\right), v_{H}\right)_{H} .
$$

Then (10) follows.
From Lemma 6, there exists $C>0$ such that

$$
\left\|M_{x}\left(d \delta_{x} v_{H}\right)+M_{y}\left(e \delta_{y} v_{H}\right)\right\|_{0, H} \leq C\left\|v_{H}\right\|_{1, H},
$$

and then

$$
\left|\left(M_{x}\left(d \delta_{x} v_{H}\right)+M_{y}\left(e \delta_{y} v_{H}\right)+f v_{H}, v_{H}\right)_{H}\right| \leq C_{L}\left\|v_{H}\right\|_{1, H}\left\|v_{H}\right\|_{0, H}
$$

Let $\epsilon>0$. We can find C_{ϵ} such that

$$
\left\|v_{H}\right\|_{1, H}\left\|v_{H}\right\|_{0, H} \leq \epsilon\left\|v_{H}\right\|_{1, H}^{2}+C_{\epsilon}\left\|v_{H}\right\|_{0, H}^{2} .
$$

Taking $\epsilon=\frac{C_{P}}{2 C_{L}}$ we conclude (11) with $C_{E}=\frac{C_{P}}{2}$ and $C_{K}=C_{L} C_{\epsilon}$.

Lemma 8. Let $\left(v_{H}\right)_{\Lambda} \in \Pi \stackrel{\circ}{W}_{H}^{1,2}(\Omega)$ and $v \in W_{0}^{1,2}(\Omega)$ such that

$$
v_{H} \rightarrow v \text { in }\left(W_{0}^{1,2}(\Omega), \Pi \stackrel{\circ}{W}_{H}^{1,2}(\Omega)\right) \quad(H \in \Lambda)
$$

and let $\alpha \in C(\bar{\Omega})$. Then

$$
\begin{equation*}
M_{x}\left(\alpha \delta_{x} v_{H}\right) \rightarrow \alpha v_{x} \text { and } M_{y}\left(\alpha \delta_{y} v_{H}\right) \rightarrow \alpha v_{y} \text { in }\left(L^{2}(\Omega), \Pi \stackrel{\circ}{L_{H}^{2}}(\Omega)\right) \quad(H \in \Lambda) . \tag{12}
\end{equation*}
$$

Proof: Let C satisfy $\|\alpha\|_{L^{\infty}(\Omega)} \leq C$. For any positive real number ϵ there exists $\varphi \in C^{\infty}(\bar{\Omega})$ such that

$$
\|v-\varphi\|_{W^{1,2}(\Omega)} \leq \epsilon, \quad \lim _{H_{\max } \rightarrow 0} \sup \left\{\left\|v_{H}-R_{H} \varphi\right\|_{1, H}\right\} \leq \frac{1}{4 C} \epsilon .
$$

Since

$$
\left\|M_{x}\left(\alpha \delta_{x} v_{H}\right)-M_{x}\left(\alpha \delta_{x} R_{H} \varphi\right)\right\|_{0, H} \leq 2\|\alpha\|_{L^{\infty}(\Omega)}\left\|v_{H}-R_{H} \varphi\right\|_{1, H}
$$

and for $H_{\max }$ small enough

$$
\left\|M_{x}\left(\alpha \delta_{x} R_{H} \varphi\right)-R_{H}\left(\alpha \varphi_{x}\right)\right\|_{0, H} \leq \frac{\epsilon}{2}
$$

then there exists a final section $H \in \Lambda$ such that

$$
\left\|M_{x}\left(\alpha \delta_{x} v_{H}\right)-R_{H}\left(\alpha \varphi_{x}\right)\right\|_{0, H} \leq \epsilon
$$

Analogously we prove that

$$
\left\|M_{y}\left(\alpha \delta_{y} v_{H}\right)-R_{H}\left(\alpha \varphi_{y}\right)\right\|_{0, H} \leq \epsilon
$$

Consequently (12) holds.

Lemma 9. Let $\left(v_{H}\right)_{\Lambda}$ be a bounded sequence in $\Pi \stackrel{\circ}{W_{H}^{1,2}}(\Omega)$ and $\alpha \in C(\bar{\Omega})$. Then for a subsequence $\Lambda^{\prime} \subseteq \Lambda$ there exists $v \in W_{0}^{1,2}(\Omega)$ such that

$$
v_{H} \rightarrow v \text { in }\left(L^{2}(\Omega), \Pi \stackrel{\circ}{L_{H}}(\Omega)\right) \quad\left(H \in \Lambda^{\prime}\right)
$$

and the following week convergence hold
$M_{x}\left(\alpha \delta_{x} v_{H}\right) \rightharpoonup \alpha v_{x}$ and $M_{y}\left(\alpha \delta_{y} v_{H}\right) \rightharpoonup \alpha v_{y}$ in $\left(L^{2}(\Omega), \Pi \stackrel{\circ}{L}_{H}^{2}(\Omega)\right) \quad\left(H \in \Lambda^{\prime}\right)$.
Proof: It follows from Lemma 6 that $\left(M_{x}\left(\alpha \delta_{x} v_{H}\right)\right)_{\Lambda}$ is bounded in $\stackrel{\circ}{L}_{H}^{2}(\Omega)$. Taking Lemma 2 into account we have

$$
\left(M_{x}\left(\alpha \delta_{x} v_{H}\right)\right)_{\Lambda} \rightharpoonup w \text { in }\left(L^{2}(\Omega), \Pi \stackrel{\circ}{L_{H}^{2}}(\Omega)\right) \quad\left(H \in \Lambda^{\prime \prime}\right)
$$

for a subsequence $\Lambda^{\prime \prime} \subseteq \Lambda$ and $w \in L^{2}(\Omega)$. Then for any $\varphi \in C_{0}^{\infty}(\Omega)$

$$
\begin{equation*}
\left(R_{H} \varphi, M_{x}\left(\alpha \delta_{x} v_{H}\right)\right)_{H} \rightarrow(\varphi, w)_{0} \quad\left(H \in \Lambda^{\prime \prime}\right) \tag{13}
\end{equation*}
$$

From Theorem 1 and Lemma 3, there exists $v \in W_{0}^{1,2}(\Omega)$ and $\Lambda^{\prime} \subseteq \Lambda^{\prime \prime}$, such that

$$
v_{H} \rightarrow v \text { in }\left(L^{2}(\Omega), \Pi \stackrel{\circ}{L_{H}^{2}}(\Omega)\right) \quad\left(H \in \Lambda^{\prime}\right)
$$

Let us prove that

$$
\begin{equation*}
\delta_{x}\left(\alpha M_{x}^{*} R_{H} \varphi\right) \rightharpoonup(\alpha \varphi)_{x} \text { in }\left(L^{2}(\Omega), \Pi \stackrel{\circ}{L_{H}^{2}}(\Omega)\right) \quad\left(H \in \Lambda^{\prime}\right) \tag{14}
\end{equation*}
$$

with $\left(M_{x}^{*} R_{H} \varphi\right)_{j, \ell-1 / 2}$ given by (8). Let $\psi \in C_{0}^{\infty}(\Omega)$. From Lemma 8

$$
\begin{aligned}
\left(-\delta_{x}\left(\alpha M_{x}^{*} R_{H} \varphi\right), R_{H} \psi\right)_{H} & =\left(R_{H} \varphi, M_{x}\left(\alpha \delta_{x} R_{H} \psi\right)\right)_{H} \\
& \rightarrow\left(\varphi, \alpha \psi_{x}\right)_{0}
\end{aligned}
$$

or equivalently,

$$
\begin{equation*}
\left(-\delta_{x}\left(\alpha M_{x}^{*} R_{H} \varphi\right), R_{H} \psi\right)_{H} \rightarrow\left(-(\alpha \varphi)_{x}, \psi\right)_{0} \tag{15}
\end{equation*}
$$

From Theorem 2, there exists $z \in L^{2}(\Omega)$ such that

$$
\delta_{x}\left(\alpha M_{x}^{*} R_{H} \varphi\right) \rightharpoonup z \text { in }\left(L^{2}(\Omega), \Pi \stackrel{\circ}{L_{H}^{2}}(\Omega)\right) \quad\left(H \in \Lambda^{\prime}\right)
$$

and consequently

$$
\begin{equation*}
\left(-\delta_{x}\left(\alpha M_{x}^{*} R_{H} \varphi\right), R_{H} \psi\right)_{H} \rightarrow(-z, \psi)_{0} \tag{16}
\end{equation*}
$$

From (15) and (16) we obtain (14).

Since

$$
\begin{aligned}
\left(R_{H} \varphi, M_{x}\left(\alpha \delta_{x} v_{H}\right)\right)_{H} & =\left(-\delta_{x}\left(\alpha M_{x}^{*} R_{H} \varphi\right), v_{H}\right)_{H} \\
& \rightarrow\left(-(\alpha \varphi)_{x}, v\right)_{0}=\left(\varphi, \alpha v_{x}\right)_{0}
\end{aligned}
$$

using (13) we conclude that

$$
M_{x}\left(\alpha \delta_{x} v_{H}\right) \rightharpoonup \alpha v_{x} \text { in }\left(L^{2}(\Omega), \Pi \stackrel{\circ}{L}{ }_{H}^{2}(\Omega)\right) \quad\left(H \in \Lambda^{\prime}\right)
$$

We prove

$$
M_{y}\left(\alpha \delta_{y} v_{H}\right) \rightharpoonup \alpha v_{y} \text { in }\left(L^{2}(\Omega), \Pi \stackrel{\circ}{L}{ }_{H}^{2}(\Omega)\right) \quad\left(H \in \Lambda^{\prime}\right)
$$

analogously.

Theorem 1. There exists a final sequence $\Lambda^{\prime} \subset \Lambda$ and C not depending on H such that

$$
\begin{equation*}
\left\|v_{H}\right\|_{1, H} \leq C\left\|A_{H}^{*} v_{H}\right\|_{0, H} \quad \forall v_{H} \in \stackrel{\circ}{W}_{H}^{1,2}(\Omega) \tag{17}
\end{equation*}
$$

$H \in \Lambda^{\prime}$.
Proof: Assuming (17) not to hold we can find a subsequence $\Lambda^{\prime \prime} \subseteq \Lambda$ and elements $v_{H}, H \in \Lambda^{\prime \prime}$, such that

$$
\begin{equation*}
\left\|v_{H}\right\|_{1, H}=1 \text { and }\left\|A_{H}^{*} v_{H}\right\|_{0, H} \rightarrow 0 \quad\left(H \in \Lambda^{\prime \prime}\right) \tag{18}
\end{equation*}
$$

Lemma 1 and Lemma 3 allow the sequence $\Lambda^{\prime \prime}$ and $v \in W_{0}^{1,2}(\Omega)$ to be chosen such that

$$
v_{H} \rightarrow v \operatorname{in}\left(L^{2}(\Omega), \Pi \stackrel{\circ}{L}{ }_{H}^{2}(\Omega)\right) \quad\left(H \in \Lambda^{\prime \prime}\right)
$$

Let $w \in W_{0}^{1,2}(\Omega)$ be the solution of

$$
\begin{equation*}
\left(a w_{x}, z_{x}\right)_{0}+\left(c w_{y}, z_{y}\right)_{0}=\left((d v)_{x}+(e v)_{y}+f v, z\right)_{0} \quad \forall z \in W_{0}^{1,2}(\Omega) \tag{19}
\end{equation*}
$$

and $\left(w_{H}\right)_{\Lambda} \in \Pi \stackrel{\circ}{W}_{H}^{1,2}(\Omega)$ such that

$$
w_{H} \rightarrow w \operatorname{in}\left(W_{0}^{1,2}(\Omega), \Pi \stackrel{\circ}{W_{H}^{1,2}}(\Omega)\right) \quad(H \in \Lambda)
$$

Let us prove the convergence

$$
\begin{equation*}
\left|z_{H}\right|_{1, H} \rightarrow 0 \tag{20}
\end{equation*}
$$

for $z_{H}=v_{H}-w_{H}$. Lemma 7 gives the existence of $C>0$ such that

$$
\begin{equation*}
\left|z_{H}\right|_{1, H}^{2} \leq C\left(\left(A_{H}^{*} v_{H}, z_{H}\right)_{H}+a\left(w_{H}, z_{H}\right)+c\left(w_{H}, z_{H}\right)+\left(v_{H}, A_{H}^{(1)} z_{H}\right)_{H}\right) \tag{21}
\end{equation*}
$$

where

$$
a\left(w_{H}, z_{H}\right):=\sum_{j=0}^{N} \sum_{\ell=1}^{M} h_{j-1 / 2} k_{\ell-1} a\left(x_{j}, y_{\ell-1 / 2}\right)\left(\delta_{x} w_{H}\right)_{j, \ell-1 / 2}\left(\delta_{x} \bar{z}_{H}\right)_{j, \ell-1 / 2}
$$

and

$$
c\left(w_{H}, z_{H}\right):=\sum_{j=1}^{N} \sum_{\ell=0}^{M} h_{j-1} k_{\ell-1 / 2} c\left(x_{j-1 / 2}, y_{\ell}\right)\left(\delta_{y} w_{H}\right)_{j-1 / 2, \ell}\left(\delta_{y} \bar{z}_{H}\right)_{j-1 / 2, \ell}
$$

Since $\left\|A_{H}^{*} v_{H}\right\|_{0, H} \rightarrow 0$ then $\left(A_{H}^{*} v_{H}, z_{H}\right)_{H} \rightarrow 0$. Let $z=v-w$. Our aim is to prove that

$$
\begin{equation*}
a\left(w_{H}, z_{H}\right) \rightarrow\left(a w_{x}, z_{x}\right)_{0} \quad\left(H \in \Lambda^{\prime \prime}\right), \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
c\left(w_{H}, z_{H}\right) \rightarrow\left(c w_{y}, z_{y}\right)_{0} \quad\left(H \in \Lambda^{\prime \prime}\right) . \tag{23}
\end{equation*}
$$

Lemma 8 yields

$$
M_{x}\left(\delta_{x} w_{H}\right) \rightarrow w_{x} \text { in }\left(L^{2}(\Omega), \Pi \stackrel{\circ}{L_{H}^{2}}(\Omega)\right) \quad(H \in \Lambda) .
$$

Since $\left(z_{H}\right)_{\Lambda}, H \in \Lambda^{\prime \prime}$, is bounded in $\Pi \stackrel{\circ}{W}_{H}^{1,2}(\Omega)$, Lemma 9 allows a subsequence $\Lambda^{\prime} \subset \Lambda^{\prime \prime}$ to be chosen such that

$$
\left(M_{x}\left(a \delta_{x} z_{H}\right)\right)_{\Lambda} \rightharpoonup a z_{x} \text { in }\left(L^{2}(\Omega), \Pi \stackrel{\circ}{L_{H}^{2}}(\Omega)\right) \quad\left(H \in \Lambda^{\prime}\right)
$$

and consequently (22) holds. We prove (23) analogously.
For the last term of (21) we have

$$
\left(v_{H}, A_{H}^{(1)} z_{H}\right)_{H} \rightarrow\left(v, A^{(1)} z\right)_{0} \quad\left(H \in \Lambda^{\prime \prime}\right)
$$

Since w is the solution of (19) then

$$
a\left(w_{H}, z_{H}\right)+c\left(w_{H}, z_{H}\right)+\left(v_{H}, A_{H}^{(1)} z_{H}\right)_{H} \rightarrow 0 \quad\left(H \in \Lambda^{\prime \prime}\right)
$$

and (20) follows. Then

$$
v_{H}=z_{H}+w_{H} \rightarrow w \text { in }\left(L^{2}(\Omega), \Pi \stackrel{\circ}{L_{H}^{2}}(\Omega)\right) \quad\left(H \in \Lambda^{\prime}\right)
$$

and

$$
(A w, z)_{0}=0 \quad \forall z \in W_{0}^{1,2}(\Omega)
$$

For A being injective $\left\|v_{H}\right\|_{1, H}=1$ is not possible.
Let us now prove a stability result for $A_{H}^{(2) *}$.

Lemma 10. There exists C not depending on H such that

$$
\begin{equation*}
\left\|v_{H}\right\|_{2, H} \leq C\left(\left\|A_{H}^{(2) *} v_{H}\right\|_{0, H}+\left\|v_{H}\right\|_{1, H}\right) \quad \forall v_{H} \in \stackrel{\circ}{W}_{H}^{2,2}(\Omega), \tag{24}
\end{equation*}
$$

$H \in \Lambda$.
Proof: Let $v_{H} \in \stackrel{\circ}{W}_{H}^{2,2}(\Omega)$. We define

$$
\begin{aligned}
B_{x}^{(1)} v_{H}:= & \sum_{j=1}^{N} \sum_{\ell=1}^{M} h_{j-1} k_{\ell-1}\left(\delta_{x}^{2} \bar{v}_{H}\right)_{j-1 / 2, \ell-1 / 2} \\
& \times\left[\frac{a\left(x_{j-1 / 2}, y_{\ell-1 / 2}\right)-a\left(x_{j-1}, y_{\ell-1 / 2}\right)}{h_{j-1}}\left(\delta_{x} v_{H}\right)_{j-1, \ell-1 / 2}\right. \\
& \left.+\frac{a\left(x_{j}, y_{\ell-1 / 2}\right)-a\left(x_{j-1 / 2}, y_{\ell-1 / 2}\right)}{h_{j-1}}\left(\delta_{x} v_{H}\right)_{j, \ell-1 / 2}\right] \\
& +\sum_{j=0}^{N} \sum_{\ell=0}^{M} h_{j-1} k_{\ell-1 / 2} \frac{c\left(x_{j}, y_{\ell}\right)-c\left(x_{j-1 / 2}, y_{\ell}\right)}{h_{j-1}}\left(\delta_{y} v_{H}\right)_{j-1 / 2, \ell}\left(\delta_{x y} \bar{v}_{H}\right)_{j, \ell} \\
+ & \sum_{j=0}^{N} \sum_{\ell=0}^{M} h_{j} k_{\ell-1 / 2} \frac{c\left(x_{j+1 / 2}, y_{\ell}\right)-c\left(x_{j}, y_{\ell}\right)}{h_{j}}\left(\delta_{y} v_{H}\right)_{j+1 / 2, \ell}\left(\delta_{x y} \bar{v}_{H}\right)_{j, \ell} \\
B_{x}^{(2)} v_{H}:= & \sum_{j=1}^{N} \sum_{\ell=1}^{M} h_{j-1} k_{\ell-1} a\left(x_{j-1 / 2}, y_{\ell-1 / 2}\right)\left|\left(\delta_{x}^{2} v_{H}\right)_{j-1 / 2, \ell-1 / 2}\right|^{2} \\
& +\sum_{j=0}^{N} \sum_{\ell=0}^{M} h_{j-1 / 2} k_{\ell-1 / 2} c\left(x_{j}, y_{\ell}\right)\left|\left(\delta_{x y} v_{H}\right)_{j, \ell}\right|^{2},
\end{aligned}
$$

$B_{y}^{(1)}$ and $B_{y}^{(2)}$ similar to $B_{x}^{(1)}$ and $B_{x}^{(2)}$, respectively, replacing a with c, x with y and the indexes in a obvious way. We have

$$
\begin{equation*}
\left(A_{H}^{(2) *} v_{H}, \delta_{x}^{2} v_{H}+\delta_{y}^{2} v_{H}\right)_{H}=-B_{H}^{(1)} v_{H}-B_{H}^{(2)} v_{H}, \tag{25}
\end{equation*}
$$

where $B_{H}^{(1)}:=B_{x}^{(1)}+B_{y}^{(1)}$ and $B_{H}^{(2)}:=B_{x}^{(2)}+B_{y}^{(2)}$.
The conditions assumed for the coefficients a and c give the existence of $C_{E}>0$ and $C_{L}>0$ such that

$$
C_{E}\left|v_{H}\right|_{2, H}^{2} \leq B_{H}^{(2)} v_{H}
$$

and

$$
B_{H}^{(1)} v_{H} \leq C_{L}\left|v_{H}\right|_{1, H}\left|v_{H}\right|_{2, H}
$$

which together with (25) yield

$$
\begin{aligned}
C_{E}\left|v_{H}\right|_{2, H}^{2} & \leq\left|\left(A_{H}^{(2) *} v_{H}, \delta_{x}^{2} v_{H}+\delta_{y}^{2} v_{H}\right)_{H}\right|+\left|B_{H}^{(1)} v_{H}\right| \\
& \leq\left\|A_{H}^{(2) *} v_{H}\right\|_{0, H}\left|v_{H}\right|_{2, H}+C_{L}\left|v_{H}\right|_{1, H}\left|v_{H}\right|_{2, H}
\end{aligned}
$$

Then (24) follows with $C=\max \left\{1 / C_{E}, C_{L} / C_{E}\right\}$.

The main result of this section is the following stability theorem.
Theorem 2. There exists $C>0$ and a final section $\Lambda^{\prime} \subset \Lambda$ such that

$$
\begin{equation*}
\left\|v_{H}\right\|_{0, H} \leq C \sup _{\substack{\circ \\ 0 \neq w_{H} \in W_{H}^{2,2}(\Omega)}} \frac{\left|\left(A_{H} v_{H}, w_{H}\right)_{H}\right|}{\left\|w_{H}\right\|_{2, H}} \quad \forall v_{H} \in \stackrel{\circ}{W}_{H}^{2,2}(\Omega) \tag{26}
\end{equation*}
$$

$H \in \Lambda^{\prime}$.
Proof: Let $v_{H} \in \stackrel{\circ}{W}_{H}^{2,2}(\Omega)$. Since $A_{H}^{(1) *}: \stackrel{\circ}{W}_{H}^{1,2}(\Omega) \rightarrow \stackrel{\circ}{L}{ }_{H}^{2}(\Omega)$ is bounded then there exists $C_{L}>0$ such that

$$
\left\|A_{H}^{(2) *} v_{H}\right\|_{0, H} \leq\left\|A_{H}^{*} v_{H}\right\|_{0, H}+\left\|A_{H}^{(1) *} v_{H}\right\|_{0, H} \leq\left\|A_{H}^{*} v_{H}\right\|_{0, H}+C_{L}\left\|v_{H}\right\|_{1, H}
$$

Lemma 10 gives the existence of $C^{\prime}>0$ such that

$$
\begin{aligned}
\left\|v_{H}\right\|_{2, H} & \leq C^{\prime}\left(\left\|A_{H}^{(2) *} v_{H}\right\|_{0, H}+\left\|v_{H}\right\|_{1, H}\right) \\
& \leq C^{\prime}\left\|A_{H}^{*} v_{H}\right\|_{0, H}+\left(C^{\prime}+C^{\prime} C_{L}\right)\left\|v_{H}\right\|_{1, H}
\end{aligned}
$$

From Theorem 1 follows the existence of $C>0$ such that

$$
\begin{equation*}
\left\|v_{H}\right\|_{2, H} \leq C\left\|A_{H}^{*} v_{H}\right\|_{0, H} \quad \forall v_{H} \in \stackrel{\circ}{W}_{H}^{2,2}(\Omega) \tag{27}
\end{equation*}
$$

Finally, we observe that (27) is equivalent to

$$
\left\|\left(A_{H}^{*}\right)^{-1} w_{H}\right\|_{2, H} \leq C\left\|w_{H}\right\|_{0, H} \quad \forall w_{H} \in \stackrel{\circ}{L}_{H}^{2}(\Omega)
$$

The estimate (26) can be given the alternative form which uses a negative norm

$$
\left\|v_{H}\right\|_{0, H} \leq C\left\|A_{H} v_{H}\right\|_{-\Delta_{H}} \quad \forall v_{H} \in \stackrel{\circ}{W}_{H}^{2,2}(\Omega)
$$

4. Convergence

The main result of this paper in Theorem 3 relies in the stability result of Theorem 2. An estimate for $\left\|R_{H} u-u_{H}\right\|_{0, H}$ will be obtained with the aid of (26) replacing v_{H} by $R_{H} u-u_{H}$ and bounding

$$
\left(A_{H}\left(R_{H} u\right)-M_{H}\left(R_{G_{H}} g\right), v_{H}\right)_{H} .
$$

The bounds in lemmas 11-13 are for that purpose.
In what follows we use the notation $\sum_{\Omega_{H}}$ for the sum over the set of indexes (j, ℓ) such that $\left(x_{j+1 / 2}, y_{\ell+1 / 2}\right) \in \Omega_{H}$.

Lemma 11. Let $u \in H^{4}(\Omega)$. Then there holds

$$
\begin{align*}
& \left|\left(-\delta_{x}\left(a \delta_{x} u\right), v_{H}\right)_{H}-\left(M_{H} R_{G_{H}}\left(a u_{x}\right)_{x}, v_{H}\right)_{H}\right| \\
& \quad \leq C\|a\|_{W^{3, \infty}(\Omega)}\left(\sum_{\Omega_{H}}\left(h_{j}^{2}+k_{\ell}^{2}\right)^{2}\|u\|_{H^{4}\left(\left(x_{j}, x_{j+1}\right) \times\left(y_{\ell}, y_{\ell+1}\right)\right)}^{2}\right)^{1 / 2}\left\|v_{H}\right\|_{2, H} \tag{28}
\end{align*}
$$

and

$$
\begin{align*}
& \left|\left(-\delta_{y}\left(c \delta_{y} u\right), v_{H}\right)_{H}-\left(M_{H} R_{G_{H}}\left(c u_{y}\right)_{y}, v_{H}\right)_{H}\right| \\
& \quad \leq C\|c\|_{W^{3, \infty}(\Omega)}\left(\sum_{\Omega_{H}}\left(h_{j}^{2}+k_{\ell}^{2}\right)^{2}\|u\|_{H^{4}\left(\left(x_{j}, x_{j+1}\right) \times\left(y_{\ell}, y_{\ell+1}\right)\right)}^{2}\right)^{1 / 2}\left\|v_{H}\right\|_{2, H} \tag{29}
\end{align*}
$$

for all $v_{H} \in \stackrel{\circ}{W}_{H}^{2,2}(\Omega)$.
Proof: Let $v_{H} \in \stackrel{\circ}{W_{H}^{2,2}}(\Omega)$. We consider, in first place, only the terms in $\left(\delta_{x} a \delta_{x} u, v_{H}\right)_{H}$ and $\left(M_{H} R_{G_{H}}\left(a u_{x}\right)_{x}, v_{H}\right)_{H}$ which have the factor $\bar{v}_{j+1 / 2, \ell+1 / 2}$, for some j, with ℓ given. Let us suppose, without loss of generality, that the set of the points in the form (., $y_{\ell+1 / 2}$) belonging to Ω_{H} is

$$
\left\{\left(x_{p_{\ell}+1 / 2}, y_{\ell+1 / 2}\right),\left(x_{p_{\ell}+3 / 2}, y_{\ell+1 / 2}\right), \ldots,\left(x_{p_{\ell}+N_{\ell}-1 / 2}, y_{\ell+1 / 2}\right)\right\}
$$

Let

$$
S_{1}:=\sum_{j=p_{\ell}}^{p_{\ell}+N_{\ell}-1} h_{j} k_{\ell}\left(\delta_{x} a \delta_{x} u\right)_{j+1 / 2, \ell+1 / 2} \bar{v}_{j+1 / 2, \ell+1 / 2}
$$

and

$$
S_{1}^{(1)}:=-\sum_{j=p_{\ell}}^{p_{\ell}+N_{\ell}}\left(\int_{y_{\ell}}^{y_{\ell+1}} \int_{x_{j-1 / 2}}^{x_{j+1 / 2}} a\left(x_{j}, y\right) u_{x}(x, y) d x d y\right)\left(\delta_{x} \bar{v}_{H}\right)_{j, \ell+1 / 2}
$$

We have

$$
\begin{aligned}
S_{1} & =\sum_{j=p_{\ell}}^{p_{\ell}+N_{\ell}-1} k_{\ell}\left(\left(a \delta_{x} u\right)_{j+1, \ell+1 / 2}-\left(a \delta_{x} u\right)_{j, \ell+1 / 2}\right) \bar{v}_{j+1 / 2, \ell+1 / 2} \\
& =-\sum_{j=p_{\ell}}^{p_{\ell}+N_{\ell}} h_{j-1 / 2} k_{\ell}\left(a \delta_{x} u\right)_{j, \ell+1 / 2}\left(\delta_{x} \bar{v}_{H}\right)_{j, \ell+1 / 2} \\
& =-\sum_{j=p_{\ell}}^{p_{\ell}+N_{\ell}} k_{\ell} \int_{x_{j-1 / 2}}^{x_{j+1 / 2}} a\left(x_{j}, y_{\ell+1 / 2}\right) u_{x}\left(x, y_{\ell+1 / 2}\right) d x\left(\delta_{x} \bar{v}_{H}\right)_{j, \ell+1 / 2}
\end{aligned}
$$

The functional

$$
\lambda(g):=g\left(\frac{1}{2}\right)-\int_{0}^{1} g(\xi) d \xi
$$

is bounded in $W^{2,1}(0,1)$ and vanishes for $g=1$ and ξ. Thus the BrambleHilbert Lemma (see e.g. [5]) gives the existence of a positive constant C such that

$$
|\lambda(g)| \leq C\left\|g^{\prime \prime}\right\|_{L^{1}(0,1)}
$$

From the last estimate applied to $g=w$, where

$$
w(\xi):=a\left(x_{j}, y_{\ell}+\xi k_{\ell}\right) \int_{x_{j-1 / 2}}^{x_{j+1 / 2}} u_{x}\left(x, y_{\ell}+\xi k_{\ell}\right) d x \quad \xi \in[0,1]
$$

follows

$$
S_{1}=S_{1}^{(1)}-\sum_{j=p_{\ell}}^{p_{\ell}+N_{\ell}} \int_{y_{\ell}}^{y_{\ell+1}} \int_{x_{j-1 / 2}}^{x_{j+1 / 2}} E_{j, \ell}\left(\delta_{x} \bar{v}_{H}\right)_{j, \ell+1 / 2}
$$

with

$$
\left|E_{j, \ell}\right| \leq C k_{\ell}^{2}\left|a\left(x_{j}, .\right) \int_{x_{j-1 / 2}}^{x_{j+1 / 2}} u_{x}(x, .) d x\right|_{W^{2,1}\left(\left(y_{\ell}, y_{\ell+1}\right)\right)}
$$

Let

$$
S_{2}:=\sum_{j=p_{\ell}}^{p_{\ell}+N_{\ell}-1} h_{j} k_{\ell}\left(M_{H} R_{G_{H}}\left(a u_{x}\right)_{x}\right)_{j+1 / 2, \ell+1 / 2} \bar{v}_{j+1 / 2, \ell+1 / 2}
$$

which can be written in the form

$$
S_{2}=S_{2}^{(1)}+\sum_{j=p_{\ell}}^{p_{\ell}+N_{\ell}-1} F_{j, \ell} \bar{v}_{j+1 / 2, \ell+1 / 2}
$$

where

$$
S_{2}^{(1)}:=\sum_{j=p_{\ell}}^{p_{\ell}+N_{\ell}-1} \int_{y_{\ell}}^{y_{\ell+1}} \int_{x_{j}}^{x_{j+1}}\left(a u_{x}\right)_{x}(x, y) d x d y \bar{v}_{j+1 / 2, \ell+1 / 2}
$$

and

$$
F_{j, \ell}:=\left(M_{H} R_{G_{H}}\left(a u_{x}\right)_{x}\right)_{j+1 / 2, \ell+1 / 2}-\int_{y_{\ell}}^{y_{\ell+1}} \int_{x_{j}}^{x_{j+1}}\left(a u_{x}\right)_{x}(x, y) d x d y .
$$

$F_{j, \ell}$ can be bounded with the aid of the Bramble-Hilbert Lemma. Let the function w be defined by

$$
w(\xi, \eta):=\left(a u_{x}\right)_{x}\left(x_{j}+\xi h_{j}, y_{\ell}+\eta k_{\ell}\right), \quad(\xi, \eta) \in(0,1) \times(0,1) .
$$

Then

$$
F_{j, \ell}=h_{j} k_{\ell}\left(\frac{w(0,0)+w(1,0)+w(0,1)+w(1,1)}{4}-\int_{0}^{1} \int_{0}^{1} w(\xi, \eta) d \xi d \eta\right) .
$$

The functional

$$
\lambda(g):=\frac{g(0,0)+g(1,0)+g(0,1)+g(1,1)}{4}-\int_{0}^{1} \int_{0}^{1} g(\xi, \eta) d \xi d \eta,
$$

$g \in W^{2,1}((0,1) \times(0,1))$, is bounded and vanishes for $g=1, \xi$ and η. Again, by Bramble-Hilbert Lemma the estimate

$$
|\lambda(g)| \leq C|g|_{W^{2,1}((0,1) \times(0,1))}
$$

holds and we obtain the bound

$$
\begin{aligned}
& \left|F_{j, \ell}\right| \leq C\left(h_{j}^{2}\left\|\left(a u_{x}\right)_{x x x}\right\|_{L^{1}\left(\left(x_{j}, x_{j+1}\right) \times\left(y_{\ell}, y_{\ell+1}\right)\right)}\right. \\
& \left.\quad+k_{\ell} h_{j}\left\|\left(a u_{x}\right)_{x x y}\right\|_{L^{1}\left(\left(x_{j}, x_{j+1}\right) \times\left(y_{\ell}, y_{\ell+1}\right)\right)}+k_{\ell}^{2}\left\|\left(a u_{x}\right)_{x y y}\right\|_{\left.L^{1}\left(\left(x_{j}, x_{j+1}\right) \times\left(y_{\ell}, y_{\ell+1}\right)\right)\right)}\right)
\end{aligned}
$$

Let us finally consider the difference $S_{1}^{(1)}-S_{2}^{(1)}$. For $S_{2}^{(1)}$ we have

$$
\begin{aligned}
S_{2}^{(1)} & =\sum_{j=p_{\ell}}^{p_{\ell}+N_{\ell}-1} \int_{y_{\ell}}^{y_{\ell+1}}\left(\left(a u_{x}\right)\left(x_{j+1}, y\right)-\left(a u_{x}\right)\left(x_{j}, y\right)\right) d y \bar{v}_{j+1 / 2, \ell+1 / 2} \\
& =-\sum_{j=p_{\ell}}^{p_{\ell}+N_{\ell}} \int_{y_{\ell}}^{y_{\ell+1}} h_{j-1 / 2}\left(a u_{x}\right)\left(x_{j}, y\right) d y\left(\delta_{x} \bar{v}_{H}\right)_{j, \ell+1 / 2} \\
& =-\sum_{j=p_{\ell}}^{p_{\ell}+N_{\ell}} \int_{y_{\ell}}^{y_{\ell+1}} \int_{x_{j-1 / 2}}^{x_{j+1 / 2}}\left(a u_{x}\right)\left(x_{j}, y\right) d x d y\left(\delta_{x} \bar{v}_{H}\right)_{j, \ell+1 / 2}
\end{aligned}
$$

and then

$$
S_{1}^{(1)}-S_{2}^{(1)}=\left(T_{1}+T_{2}\right) / 2+T_{3}+T_{4},
$$

with

$$
\begin{aligned}
T_{1}:= & -\sum_{j=p_{\ell}+1}^{p_{\ell}+N_{\ell}} \int_{y_{\ell}}^{y_{\ell+1}}\left[\frac{h_{j-1}}{2}\left(u_{x}\left(x_{j-1}, y\right)+u_{x}\left(x_{j}, y\right)\right)-\int_{x_{j-1}}^{x_{j}} u_{x}(x, y) d x\right] \\
& \times\left(a\left(x_{j-1}, y\right)\left(\delta_{x} \bar{v}_{H}\right)_{j-1, \ell+1 / 2}+a\left(x_{j}, y\right)\left(\delta_{x} \bar{v}_{H}\right)_{j, \ell+1 / 2}\right) d y \\
T_{2}:= & -\sum_{j=p_{\ell}+1}^{p_{\ell}+N_{\ell}} \int_{y_{\ell}}^{y_{\ell+1}}\left[\frac{h_{j-1}}{2}\left(u_{x}\left(x_{j}, y\right)-u_{x}\left(x_{j-1}, y\right)\right)\right. \\
& \left.+\int_{x_{j-1}}^{x_{j-1 / 2}} u_{x}(x, y) d x-\int_{x_{j-1 / 2}}^{x_{j}} u_{x}(x, y) d x\right] \\
& \times\left(a\left(x_{j}, y\right)\left(\delta_{x} \bar{v}_{H}\right)_{j, \ell+1 / 2}-a\left(x_{j-1}, y\right)\left(\delta_{x} \bar{v}_{H}\right)_{j-1, \ell+1 / 2}\right) d y \\
T_{3}:=- & \int_{y_{\ell}}^{y_{\ell+1}}\left[\frac{h_{p_{\ell}-1}}{2} u_{x}\left(x_{\left.p_{\ell}, y\right)}, \int_{x_{p_{\ell}-1 / 2}}^{x_{p_{\ell}}} u_{x}(x, y) d x\right] a\left(x_{p_{\ell}}, y\right) d y\left(\delta_{x} \bar{v}_{H}\right)_{p_{\ell}, \ell+1 / 2},\right.
\end{aligned}
$$

and

$$
\begin{aligned}
T_{4}:= & -\int_{y_{\ell}}^{y_{\ell+1}}\left[\frac{h_{p_{\ell}+N_{\ell}}}{2} u_{x}\left(x_{p_{\ell}+N_{\ell}}, y\right)-\int_{x_{p_{\ell}+N_{\ell}}}^{x_{p_{\ell}+N_{\ell}+1 / 2}} u_{x}(x, y) d x\right] a\left(x_{p_{\ell}+N_{\ell}}, y\right) d y \\
& \times\left(\delta_{x} \bar{v}_{H}\right)_{p_{\ell}+N_{\ell} \ell+1 / 2} .
\end{aligned}
$$

The sum in T_{1} contains the errors of the trapezoidal rule that can be bounded with the aid of the Bramble-Hilbert Lemma by

$$
\begin{aligned}
\left|T_{1}\right| \leq & C \sum_{j=p_{\ell}+1}^{p_{\ell}+N_{\ell}} h_{j-1}^{2}\left\|u_{x x x}\right\|_{L^{1}\left(\left(x_{j}, x_{j+1}\right) \times\left(y_{\ell}, y_{\ell+1}\right)\right)}\|a\|_{L^{\infty}\left(\left(x_{j}, x_{j+1}\right) \times\left(y_{\ell}, y_{\ell+1}\right)\right)} \\
& \times\left(\left|\left(\delta_{x} \bar{v}_{H}\right)_{j-1, \ell+1 / 2}\right|+\left|\left(\delta_{x} \bar{v}_{H}\right)_{j, \ell+1 / 2}\right|\right) .
\end{aligned}
$$

For T_{2} we have only the first order bound but the factor

$$
a\left(x_{j}, y\right)\left(\delta_{x} \bar{v}_{H}\right)_{j, \ell+1 / 2}-a\left(x_{j-1}, y\right)\left(\delta_{x} \bar{v}_{H}\right)_{j-1, \ell+1 / 2}
$$

allows to estimate T_{2} with the same order as T_{1}. We have

$$
\begin{aligned}
& a\left(x_{j}, y\right)\left(\delta_{x} \bar{v}_{H}\right)_{j, \ell+1 / 2}-a\left(x_{j-1}, y\right)\left(\delta_{x} \bar{v}_{H}\right)_{j-1, \ell+1 / 2} \\
& =a\left(x_{j-1 / 2}, y\right)\left(\left(\delta_{x} \bar{v}_{H}\right)_{j, \ell+1 / 2}-\left(\delta_{x} \bar{v}_{H}\right)_{j-1, \ell+1 / 2}\right) \\
& \quad+\left(a\left(x_{j-1 / 2}, y\right)-a\left(x_{j-1}, y\right)\right)\left(\delta_{x} \bar{v}_{H}\right)_{j-1, \ell+1 / 2} \\
& \quad+\left(a\left(x_{j}, y\right)-a\left(x_{j-1 / 2}, y\right)\right)\left(\delta_{x} \bar{v}_{H}\right)_{j, \ell+1 / 2} \\
& = \\
& h_{j-1} a\left(x_{j-1 / 2}, y\right)\left(\delta_{x}^{2} \bar{v}_{H}\right)_{j-1 / 2, \ell+1 / 2} \\
& \quad+\frac{h_{j-1}}{2}\left(a_{x}\left(\eta_{1}, y\right)\left(\delta_{x} \bar{v}_{H}\right)_{j-1, \ell+1 / 2}+a_{x}\left(\eta_{2}, y\right)\left(\delta_{x} \bar{v}_{H}\right)_{j, \ell+1 / 2}\right),
\end{aligned}
$$

for some $\eta_{1} \in\left[x_{j-1}, x_{j-1 / 2}\right], \eta_{2} \in\left[x_{j-1 / 2}, x_{j}\right]$, and then

$$
\begin{aligned}
\left|T_{2}\right| \leq & C \sum_{j=p_{\ell}+1}^{p_{\ell}+N_{\ell}} h_{j-1}^{2}\left\|u_{x x}\right\|_{L^{1}\left(\left(x_{j}, x_{j+1}\right) \times\left(y_{\ell}, y_{\ell+1}\right)\right)}\|a\|_{W^{1, \infty}\left(\left(x_{j}, x_{j+1}\right) \times\left(y_{\ell}, y_{\ell+1}\right)\right)} \\
& \times\left(\left|\left(\delta_{x}^{2} \bar{v}_{H}\right)_{j-1 / 2, \ell+1 / 2}\right|+\left|\left(\delta_{x} \bar{v}_{H}\right)_{j-1, \ell+1 / 2}\right|+\left|\left(\delta_{x} \bar{v}_{H}\right)_{j, \ell+1 / 2}\right|\right) .
\end{aligned}
$$

For T_{3} and T_{4} we have

$$
\left|T_{3}\right| \leq \int_{y_{\ell}}^{y_{\ell+1}} \frac{h_{p_{\ell}-1}}{8}\left\|u_{x x}(., y)\right\|_{L^{1}\left(\left(x_{p_{\ell}-1 / 2}, x_{p_{\ell}}\right)\right)}\left|a\left(x_{p_{\ell}}, y\right)\right| d y\left|\left(\delta_{x} \bar{v}_{H}\right)_{p_{\ell} \ell+1 / 2}\right|
$$

and

$$
\begin{aligned}
\left|T_{4}\right| \leq & \int_{y_{\ell}}^{y_{\ell+1}} \frac{h_{p_{\ell}+N_{\ell}}}{8}\left\|u_{x x}(., y)\right\|_{L^{1}\left(\left(x_{p_{\ell}+N_{\ell}}, x_{\left.p_{\ell}+N_{\ell}+1 / 2\right)}\right)\right)}\left|a\left(x_{p_{\ell}+N_{\ell}}, y\right)\right| d y \\
& \times\left|\left(\delta_{x} \bar{v}_{H}\right)_{p_{\ell}+N_{\ell}, \ell+1 / 2}\right| .
\end{aligned}
$$

Considering the equality

$$
\begin{aligned}
&\left(\delta_{x} \bar{v}_{H}\right)_{p_{\ell}, \ell+1 / 2}=-\sum_{i=p_{\ell}}^{j} h_{i}\left(\delta_{x}^{2} \bar{v}_{H}\right)_{i+1 / 2, \ell+1 / 2}+\left(\delta_{x} \bar{v}_{H}\right)_{j+1, \ell+1 / 2}, \\
& j=p_{\ell}, \ldots, p_{\ell}+N_{\ell}-1, \text { follows } \\
& \sum_{j=p_{\ell}}^{p_{\ell}+N_{\ell}-1} h_{j}\left(\delta_{x} \bar{v}_{H}\right)_{p_{\ell} \ell+1 / 2}= \sum_{j=p_{\ell}}^{p_{\ell}+N_{\ell}-1} h_{j}\left(\sum_{i=p_{\ell}}^{j} h_{i}\left(\delta_{x}^{2} \bar{v}_{H}\right)_{i+1 / 2, \ell+1 / 2}\right) \\
&+\sum_{j=p_{\ell}}^{p_{\ell}+N_{\ell}-1} h_{j}\left(\delta_{x} \bar{v}_{H}\right)_{j+1, \ell+1 / 2},
\end{aligned}
$$

and then

$$
\begin{aligned}
\left|\left(\delta_{x} \bar{v}_{H}\right)_{p_{\ell}, \ell+1 / 2}\right| \leq & \sum_{j=p_{\ell}}^{p_{\ell}+N_{\ell}-1} h_{j}\left|\left(\delta_{x}^{2} \bar{v}_{H}\right)_{j+1 / 2, \ell+1 / 2}\right| \\
& +\frac{1}{x_{p_{\ell}+N_{\ell}}-x_{p_{\ell}}} \sum_{j=p_{\ell}}^{p_{\ell}+N_{\ell}-1} h_{j}\left|\left(\delta_{x} \bar{v}_{H}\right)_{j+1, \ell+1 / 2}\right|
\end{aligned}
$$

For T_{3} we have

$$
\begin{aligned}
& \left|T_{3}\right| \leq \frac{h_{p_{\ell}-1}}{8}\left\|u_{x x}\right\|_{L^{1}\left(\left(x_{p_{\ell}-1 / 2}, x_{p_{\ell}}\right) \times\left(y_{\ell}, y_{\ell+1}\right)\right)}\left\|a\left(x_{p_{\ell}}, .\right)\right\|_{L^{\infty}\left(\left(y_{\ell}, y_{\ell+1}\right)\right)} \\
& \quad \times\left(\sum_{j=p_{\ell}}^{p_{\ell}+N_{\ell}-1} h_{j}\left|\left(\delta_{x}^{2} \bar{v}_{H}\right)_{j+1 / 2, \ell+1 / 2}\right|+\frac{1}{x_{p_{\ell}+N_{\ell}}-x_{p_{\ell}}} \sum_{j=p_{\ell}}^{p_{\ell}+N_{\ell}-1} h_{j}\left|\left(\delta_{x} \bar{v}_{H}\right)_{j+1, \ell+1 / 2}\right|\right),
\end{aligned}
$$

and in the same way for T_{4} we obtain

$$
\begin{aligned}
& \left|T_{4}\right| \leq \frac{h_{p_{\ell}+N_{\ell}}}{8}\left\|u_{x x}\right\|_{L^{1}\left(\left(x_{p_{\ell}+N_{\ell}}, x_{\left.p_{\ell}+N_{\ell}+1 / 2\right)}\right) \times\left(y_{\ell}, y_{\ell+1}\right)\right)}\left\|a\left(x_{p_{\ell}+N_{\ell}}, .\right)\right\|_{L^{\infty}\left(\left(y_{\ell}, y_{\ell+1}\right)\right)} \\
& \quad \times\left(\sum_{j=p_{\ell}}^{p_{\ell}+N_{\ell}-1} h_{j}\left|\left(\delta_{x}^{2} \bar{v}_{H}\right)_{j+1 / 2, \ell+1 / 2}\right|+\frac{1}{x_{p_{\ell}+N_{\ell}}-x_{p_{\ell}}} \sum_{j=p_{\ell}}^{p_{\ell}+N_{\ell}-1} h_{j}\left|\left(\delta_{x} \bar{v}_{H}\right)_{j+1, \ell+1 / 2}\right|\right) .
\end{aligned}
$$

Using the Schwarz inequality we obtain (28).
The proof of (29) is analogous.

Lemma 12. Let $u \in H^{3}(\Omega)$. Then the following estimates hold

$$
\begin{align*}
& \left|\left(M_{x}\left(d \delta_{x} u\right), v_{H}\right)_{H}-\left(M_{H} R_{G_{H}}\left(d u_{x}\right), v_{H}\right)_{H}\right| \\
& \quad \leq C\|d\|_{W^{2, \infty}(\Omega)}\left(\sum_{\Omega_{H}}\left(h_{j}^{2}+k_{\ell}^{2}\right)^{2}\left\|u_{x x x}\right\|_{L^{2}\left(\left(x_{j}, x_{j+1}\right) \times\left(y_{\ell}, y_{\ell+1}\right)\right)}^{2}\right)^{1 / 2}\left\|v_{H}\right\|_{1, H} \tag{30}
\end{align*}
$$

and

$$
\begin{align*}
& \left|\left(M_{y}\left(e \delta_{y} u\right), v_{H}\right)_{H}-\left(M_{H} R_{G_{H}}\left(e u_{y}\right), v_{H}\right)_{H}\right| \\
& \quad \leq C\|e\|_{W^{2, \infty}(\Omega)}\left(\sum_{\Omega_{H}}\left(h_{j}^{2}+k_{\ell}^{2}\right)^{2}\left\|u_{y y y}\right\|_{L^{2}\left(\left(x_{j}, x_{j+1}\right) \times\left(y_{\ell}, y_{\ell+1}\right)\right)}^{2}\right)^{1 / 2}\left\|v_{H}\right\|_{1, H} \tag{31}
\end{align*}
$$

for all $v_{H} \in \stackrel{\circ}{W}_{H}^{1,2}(\Omega)$.
Proof: Let us consider the terms in $\left(M_{x}\left(d \delta_{x} u\right), v_{H}\right)_{H}$ and $\left(M_{H} R_{G_{H}}\left(d u_{x}\right), v_{H}\right)_{H}$ which have the factor $\bar{v}_{j+1 / 2, \ell+1 / 2}$, for some j, with ℓ given. We obtain for $\left(M_{x}\left(d \delta_{x} u\right), v_{H}\right)_{H}$ and $\left(M_{H} R_{G_{H}}\left(d u_{x}\right), v_{H}\right)_{H}$, respectively,

$$
\begin{aligned}
& \sum_{j=p_{\ell}}^{p_{\ell}+N_{\ell}-1} k_{\ell} h_{j}\left(M_{x}\left(d \delta_{x} u\right)\right)_{j+1 / 2, \ell+1 / 2} \bar{v}_{j+1 / 2, \ell+1 / 2} \\
& =\sum_{j=p_{\ell}}^{p_{\ell}+N_{\ell}-1} k_{\ell}\left[\sum_{i=p_{\ell}}^{j} h_{i}\left(M_{x}\left(d \delta_{x} u\right)\right)_{i+1 / 2, \ell+1 / 2}\right. \\
& \left.\quad-\sum_{i=p_{\ell}}^{j-1} h_{i}\left(M_{x}\left(d \delta_{x} u\right)\right)_{i+1 / 2, \ell+1 / 2}\right] \bar{v}_{j+1 / 2, \ell+1 / 2} \\
& =-\sum_{j=p_{\ell}}^{p_{\ell}+N_{\ell}} k_{\ell} \sum_{i=p_{\ell}}^{j-1} h_{i}\left(M_{x}\left(d \delta_{x} u\right)\right)_{i+1 / 2, \ell+1 / 2}\left(\bar{v}_{j+1 / 2, \ell+1 / 2}-\bar{v}_{j-1 / 2, \ell+1 / 2}\right) \\
& =-\sum_{j=p_{\ell}}^{j-1} k_{\ell} h_{j-1 / 2} \sum_{i=p_{\ell}} h_{i}\left(M_{x}\left(d \delta_{x} u\right)\right)_{i+1 / 2, \ell+1 / 2}\left(\delta_{x} \bar{v}_{H}\right)_{j, \ell+1 / 2}
\end{aligned}
$$

and

$$
\begin{aligned}
& \sum_{j=p_{\ell}}^{p_{\ell}+N_{\ell}-1} k_{\ell} h_{j}\left(M_{H} R_{G_{H}}\left(d u_{x}\right)\right)_{j+1 / 2, \ell+1 / 2} \bar{v}_{j+1 / 2, \ell+1 / 2} \\
& =-\sum_{j=p_{\ell}}^{p_{\ell}+N_{\ell}} k_{\ell} h_{j-1 / 2} \sum_{i=p_{\ell}}^{j-1} h_{i}\left(M_{x}\left(d u_{x}\right)\right)_{i+1 / 2, \ell+1 / 2}\left(\delta_{x} \bar{v}_{H}\right)_{j, \ell+1 / 2} \\
& \quad+\sum_{j=p_{\ell}}^{p_{\ell}+N_{\ell}-1} \frac{h_{j}}{2} k_{\ell}\left(\left(E_{y}\right)_{j, \ell+1 / 2}+\left(E_{y}\right)_{j+1, \ell+1 / 2}\right) \bar{v}_{j+1 / 2, \ell+1 / 2}
\end{aligned}
$$

where

$$
\left(E_{y}\right)_{j, \ell+1 / 2}:=\frac{\left(d u_{x}\right)_{j, \ell}+\left(d u_{x}\right)_{j, \ell+1}}{2}-\left(d u_{x}\right)_{j, \ell+1 / 2}
$$

Let $w(\xi):=\left(d u_{x}\right)\left(x_{j}, y_{\ell}+\xi k_{\ell}\right), \xi \in[0,1]$. Then

$$
\left(E_{y}\right)_{j, \ell+1 / 2}=\frac{w(0)+w(1)}{2}-w\left(\frac{1}{2}\right) .
$$

The functional

$$
\lambda(g):=\frac{g(0)+g(1)}{2}-g\left(\frac{1}{2}\right)
$$

is bounded in $W^{2,1}(0,1)$ and vanishes for $g=1$ and ξ. Again by the BrambleHilbert Lemma the estimate

$$
|\lambda(g)| \leq C\left\|g^{\prime \prime}\right\|_{L^{1}(0,1)}, \quad g \in W^{2,1}(0,1)
$$

holds and we obtain the bound

$$
\begin{align*}
& \sum_{j=p_{\ell}}^{p_{\ell}+N_{\ell}-1} \frac{h_{j}}{2} k_{\ell}\left|\left(E_{y}\right)_{j, \ell+1 / 2}+\left(E_{y}\right)_{j+1, \ell+1 / 2}\right|\left|v_{j+1 / 2, \ell+1 / 2}\right| \\
& \leq \sum_{j=p_{\ell}}^{p_{\ell}+N_{\ell}-1} \frac{h_{j}}{2} k_{\ell}^{2}\left(\left\|\left(\left(d u_{x}\right)_{x x}\right)\left(x_{j}, .\right)\right\|_{L^{1}\left(I_{\ell}\right)}+\left\|\left(\left(d u_{x}\right)_{x x}\right)\left(x_{j+1}, .\right)\right\|_{L^{1}\left(I_{\ell}\right)}\right) \\
& \quad \times\left|v_{j+1 / 2, \ell+1 / 2}\right| . \tag{32}
\end{align*}
$$

We have

$$
\begin{gathered}
\sum_{i=p_{\ell}}^{j-1} h_{i}\left[\left(M_{x}\left(d \delta_{x} u\right)\right)_{i+1 / 2, \ell+1 / 2}-\left(M_{x}\left(d u_{x}\right)\right)_{i+1 / 2, \ell+1 / 2}\right] \\
=\sum_{i=p_{\ell}+1}^{j-1} h_{i-1 / 2} d_{i, \ell+1 / 2}\left(\left(\delta_{x} u\right)_{i, \ell+1 / 2}-u_{x}\left(x_{i}, y_{\ell+1 / 2}\right)\right) \\
\quad+\frac{h_{j-1}}{2} d_{j, \ell+1 / 2}\left(\left(\delta_{x} u\right)_{j, \ell+1 / 2}-u_{x}\left(x_{j}, y_{\ell+1 / 2}\right)\right) \\
\quad+\frac{h_{p_{\ell}}}{2} d_{p_{\ell}, \ell+1 / 2}\left(\left(\delta_{x} u\right)_{p_{\ell}, \ell+1 / 2}-u_{x}\left(x_{p_{\ell}}, y_{\ell+1 / 2}\right)\right)
\end{gathered}
$$

Using (32) we obtain the bound (30). The proof of (31) is analogous.

Lemma 13. Let $w \in H^{2}(\Omega)$. Then

$$
\begin{align*}
& \left|\left(R_{H} w, v_{H}\right)_{H}-\left(M_{H} R_{G_{H}} w, v_{H}\right)_{H}\right| \\
& \quad \leq C\left(\sum_{\Omega_{H}}\left(h_{j}^{2}+k_{\ell}^{2}\right)^{2}\|w\|_{H^{2}\left(\left(x_{j}, x_{j+1}\right) \times\left(y_{\ell}, y_{\ell+1}\right)\right)}^{2}\right)^{1 / 2}\left\|v_{H}\right\|_{0, H} \tag{33}
\end{align*}
$$

for all $v_{H} \in \stackrel{\circ}{L}_{H}^{2}(\Omega)$.
Proof: We can write

$$
\begin{aligned}
\left(M_{H} R_{G_{H}} w\right)_{j+1 / 2, \ell+1 / 2}= & w_{j+1 / 2, \ell+1 / 2}+\left(E_{x}\right)_{j+1 / 2, \ell}+\left(E_{x}\right)_{j+1 / 2, \ell+1} \\
& +\left(E_{y}\right)_{j+1 / 2, \ell+1 / 2},
\end{aligned}
$$

where

$$
\left(E_{x}\right)_{j+1 / 2, \ell}:=\frac{w_{j, \ell}+w_{j+1, \ell}}{4}-\frac{w_{j+1 / 2, \ell}}{2}
$$

and

$$
\left(E_{y}\right)_{j+1 / 2, \ell+1 / 2}:=\frac{w_{j+1 / 2, \ell}+w_{j+1 / 2, \ell+1}}{2}-w_{j+1 / 2, \ell+1 / 2} .
$$

Using the Bramble-Hilbert Lemma as before we obtain (33).
Let us consider in (33) $w=f u$. We obtain

$$
\begin{align*}
& \left|\left(f u, v_{H}\right)_{H}-\left(M_{H} R_{G_{H}}(f u), v_{H}\right)_{H}\right| \\
& \quad \leq C\|f\|_{W^{2, \infty}(\Omega)} H_{\max }^{2}\left(\sum_{\Omega_{H}}\|u\|_{H^{2}\left(\left(x_{j}, x_{j+1}\right) \times\left(y_{\ell}, y_{\ell+1}\right)\right)}^{2}\right)^{1 / 2}\left\|v_{H}\right\|_{0, H} \tag{34}
\end{align*}
$$

for all $v_{H} \in \stackrel{\circ}{L}_{H}^{2}(\Omega)$.
The next convergence theorem follows from Theorem 2 and from the bounds (28), (29), (30), (31) and (34).

Theorem 3. Let Ω be a union of rectangles. Assume that the solution u of (1)-(2) lies in $H^{4}(\Omega)$. Then for $H \in \Lambda$, with $H_{\text {max }}$ small enough, the discrete problem (3)-(4) has a unique solution u_{H} which satisfies

$$
\begin{aligned}
\left\|R_{H} u-u_{H}\right\|_{0, H} & \leq C\left(\sum_{\Omega_{H}}\left(h_{j}^{2}+k_{\ell}^{2}\right)^{2}\|u\|_{H^{4}\left(\left(x_{j}, x_{j+1}\right) \times\left(y_{\ell}, y_{\ell+1}\right)\right)}^{2}\right)^{1 / 2} \\
& \leq C H_{\max }^{2}\|u\|_{H^{4}(\Omega)} .
\end{aligned}
$$

5. Numerical results

We present numerical results for the problem

$$
\begin{aligned}
-\Delta u & =f \quad \text { on } \quad \Omega=(0,1) \times(0,1), \\
u & =0 \quad \text { on } \quad \partial \Omega,
\end{aligned}
$$

which has the solution $u(x, y)=[x(x-1) y(y-1)]^{2}$.
Figure 2 shows the numerical solution on 500 random meshes $(N-1 \times M-1$ points placed in Ω at random), where N and M ranges from 10 to 110 . The logarithm of the norm of the error, $\log \left(\left\|R_{H} u-u_{H}\right\|_{0, H}\right)$, is plotted versus the logarithm of the maximum step-size. The straight line is the least-squares fit to the points and has the slope 2.1721, which confirms the estimates given in Theorem 3.

6. Acknowledgement

The research work compiled in the present paper significantly benefited from the suggestions of Rolf Dieter Grigorieff to whom the author wishes to express sincere gratitude.
The author gratefully acknowledge the support of this work by the Centro de Matemática da Universidade de Coimbra and Fundação para a Ciência e Tecnologia.

Figure 2. $\log \left(\left\|R_{H} u-u_{H}\right\|_{0, H}\right)$ versus $\log \left(h_{\text {max }}\right)$.

References

[1] S. Barbeiro, 2006, Discretely compact imbeddings in spaces of cell-centerd grid functions, Pré-Publicações do Departamento de Matemática, Universidade de Coimbra, 06-46.
[2] S. Barbeiro, 2005, Normas Duais Discretas em Problemas Elípticos, PhD Thesis, Universidade de Coimbra.
[3] S. Barbeiro, J.A. Ferreira, R.D. Grigorieff, 2005, Supraconvergence of a finite difference scheme for solutions in $H^{s}(0, L)$, IMA J. Numer. Anal., 25, 797-811.
[4] D. Bojović, B.S. Jovanović, 2001, Fractional order convergence rate estimates of finite difference method on nonuniform meshes, Comput. Methods Appl. Math. 1, 213-221.
[5] J.H. Bramble, S.R. Hilbert, 1970/1971, Bounds for a class of linear functionals with applications to Hermite interpolation, Numer. Math. 16, 362-369.
[6] J.A. Ferreira, R.D. Grigorieff, 2006, Supraconvergence and supercloseness of a scheme for elliptic equations on non-uniform grids, Numerical Functional Analysis and Optimization, 27 (5-6). 539-564.
[7] J.A. Ferreira, 1997, On the convergence on nonrectangular grids, J. Comp. Appl. Math. 85, 333-344.
[8] J.A. Ferreira, R.D. Grigorieff, 1998, On the supraconvergence of elliptic finite difference schemes, Appl. Num. Math. 28, 275-292.
[9] P.A. Forsyth, P.H. Sammon, 1988, Quadratic convergence for cell-centered grids, Appl. Num. Math. 4, 377-394.
[10] B. Garcia-Archila, 1992, A supraconvergent scheme for the Korteweg-de Vries equation, Numer. Math. 61, 292-310.
[11] G. Goodsell, J.R. Whiteman, 1989, A unified treatment of superconvergent recovered gradient functions for piecewise linear finite element approximations, Internat. J. Numer. Methods Engrg., 27, 469-481.
[12] R.D. Grigorieff, 1988, Some stability inequalities for compact finite difference operators, Math. Nachr. 135, 93-101.
[13] F. de Hoog, D. Jackett, 1985, On the rate of convergence of finite difference schemes on nonuniform grids, J. Austral. Math. Soc. Ser. B 26, 247-256.
[14] B.S. Jovanović, L.D. Ivanović, E.E. Süli, 1987, Convergence of finite difference schemes for elliptic equations with variable coefficients, IMA J. Numer. Anal. 7, 301-305.
[15] B.S. Jovanović, B.Z. Popović, 2001, Convergence of a finite difference scheme for the third boundary-value problem for an elliptic equation with variable coefficients, Comput. Methods Appl. Math. 1, 356-366.
[16] H.O. Kreiss, T.A. Manteuffel, B. Swartz, B. Wendroff, A.B. White Jr., 1986, Supraconvergent schemes on irregular grids, Math. Comp. 47, 537-554.
[17] R. Lazarov, V. Makarov, W. Weinelt, 1984, On the convergence of difference schemes for the approximation of solutions $u \in W_{2}^{m}(m>0.5)$ of elliptic equations with mixed derivatives, Numer. Math. 44, 223-232.
[18] P. Lesaint, M. Zlámal, 1979, Superconvergence of the gradient of finite element solutions, R.A.I.R.O. Analyse Numérique 13, 139-166.
[19] C.D. Levermore, T.A. Manteuffel, A.B. White Jr., 1987, Numerical solutions of partial differential equations on irregular grids, Computational techniques and applications: CTAC-87, 417-426, North-Holland, Amsterdam.
[20] N. Levine, 1985, Superconvergent recovery of the gradient from piecewise linear finite element approximations, IMA J. Numer. Anal., 5, 407-427.
[21] T.A. Manteuffel, A.B. White Jr., 1986, The numerical solution of second order boundary value problems on nonuniform meshes, Math. Comp. 47, 511-535.
[22] L.A. Oganesjan, L.A. Ruhovec, 1969, An investigation of the rate of convergence of variationdifference schemes for second order elliptic equations in a two-dimensional region with smooth boundary, Ž. Vyčisl. Mat. i Mat. Fiz., 9, 1102-1120.
[23] T.F. Russell, M.F. Wheeler, 1983, Finite element and finite difference methods for continuous flows in porous media, The Mathematics of Reservoir Simulation, R. E. Ewing, ed., SIAM, Philadelphia, 35-106.
[24] A.A. Samarskii, 1963, Local one dimensional schemes on nonuniform nets, U.S.S.R. Comput. Math. and Math. Phys. 3, 572-619.
[25] M.N. Spijker, 1968, Stability and Convergence of Finite-Difference Methods, Thesis, Leiden.
[26] A.N. Tikhonov, A.A. Samarskii, 1962, Homogeneous difference schemes on nonuniform nets, U.S.S.R. Comput. Math. and Math. Phys. 2, 927-953.
[27] A. Weiser, M.F. Wheeler, 1988, On convergence of block-centered finite differences for elliptic problems, SIAM J. Numer. Anal. 25, 351-375.
[28] M. Zlámal, 1978, Superconvergence and reduced integration in finite element method, Math. Comp. 32, 663-685.

[^1]
[^0]: Received October 11, 2006.

[^1]: S. Barbeiro

 Center for Mathematics, University of Coimbra, Apartado 3008, 3001-454 Coimbra, PorTUGAL

 E-mail address: silvia@mat.uc.pt
 URL: http://www.mat.uc.pt/~silvia

