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A B S T R A C T

Collaborative robots are increasingly present in industry to support human activities. However, to make the
human–robot collaborative process more effective, there are several challenges to be addressed. Collaborative
robotic systems need to be aware of the human activities to (1) anticipate collaborative/assistive actions,
(2) learn by demonstration, and (3) activate safety procedures in shared workspace. This study proposes an
action classification system to recognize primitive assembly tasks from human motion events data captured
by a Dynamic and Active-pixel Vision Sensor (DAVIS). Several filters are compared and combined to remove
event data noise. Task patterns are classified from a continuous stream of event data using advanced deep
learning and recurrent networks to classify spatial and temporal features. Experiments were conducted on a
novel dataset, the dataset of manufacturing tasks (DMT22), featuring 5 classes of representative manufacturing
primitives (PickUp, Place, Screw, Hold, Idle) from 5 participants. Results show that the proposed filters remove
about 65% of all events (noise) per recording, conducting to a classification accuracy up to 99,37% for subjects
that trained the system and 97.08% for new subjects. Data from a left-handed subject were successfully
classified using only right-handed training data. These results are object independent.
1. Introduction

Collaborative robots play an increasingly important part in the
manufacturing landscape. An efficient human–robot collaboration joins
together the cognitive coordination, dexterity and flexibility abilities
of humans with robot’s accuracy and ease of execution of repeat-
able tasks [1,2]. In a shared workspace, collaborative robotic systems
need to be aware of the human activities to (1) anticipate collabo-
rative/assistive actions, (2) learn by demonstration, and (3) activate
safety procedures. Robot situational awareness can be implemented at
distinct levels, featuring the perception of elements in the current situ-
ation, comprehension of the current situation and the prediction of the
element’s future states [3]. This study tackles the first and second levels
of the collaborative robot’s situational awareness, i.e., the perception of
elements and comprehension of the current situation, in the context of
a set of primitive assembly tasks that together compose the complete
assembly process of a given object. The recognition and prediction of
human actions is key to make the robot aware of human actions in a
shared workspace, promoting an effective and safe collaboration [4].
Reference studies rely on object detection and pose estimation from
vision-based systems to infer human actions [5,6], as well as deep
learning-based classifiers [7].

Vision is a sense humans use to perceive the world. As such, ma-
chine vision is often favoured in robotic systems to capture information
about the environment. Traditionally, machine vision relies on the
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use of frame-based cameras, which benefit from years of continuous
improvements in both equipment and machine vision algorithms. In
the last few years, we have witnessed an increase in image resolution,
which requires more storage memory and demands complex methods to
achieve the classification of human actions. Additionally, frame-based
cameras performance suffers from motion-blur, high latencies and low
dynamic range. These issues promoted the development of the event
camera, an alternative vision sensor inspired by biological vision.

In this study, we propose to capture human actions (primitive as-
sembly tasks) using a Dynamic and Active-pixel Vision Sensor (DAVIS)
event camera. It detects changes in brightness in the captured scene,
by measuring logarithmic light intensity asynchronously and for each
of the sensor’s pixels [8], making it suitable to detect motion. As event
cameras naturally suffer from random noise, several filters are com-
bined to remove event data noise. The proposed event-based dataset
contains five representative assembly primitives. Data were collected
from different subjects and assembled objects. Advanced deep learning
and recurrent network classifiers combine the classification of spa-
tial and temporal actions. Fig. 1 shows an overview of the proposed
framework. The main contributions of this study are listed as follows:

• An efficient method of combining multiple event filters, consis-
tently targeting and removing noise events. The event filters’
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Fig. 1. The proposed framework to classify primitive manufacturing tasks from filtered event data. Assembly task patterns are classified from a continuous stream of event data
through a convolutional neural network (CNN) or region of interest (ROI), after passing several filters to remove event data noise. The classifier, a Long Short-Term Memory
(LSTM) network with a single bidirectional layer (BiLSTM) is trained on the proposed dataset of manufacturing tasks (DMT22).
performance is thoroughly tested on the metrics of data reduction
and classification accuracy.

• A novel event-based dataset, the dataset of manufacturing tasks
(DMT22), featuring five representative assembly primitive actions
(PickUp, Place, Screw, Idle and Hold), collected from different
subjects and assembled objects. Recorded data are available in an
open-source dataset [9]. No event datasets focused on primitive
manufacturing tasks are currently publicly available.

• Use of two distinct classification methods to evaluate the event
filter’s impact on classification accuracy. Different data selection
methods further add variety. Comparison between the classifica-
tion results obtained from a Recurrent Network (RN) architecture
that takes as input the region of interest (ROI) features of the
human hand captured by the event camera (RN-ROI) and from
a deep learning architecture LRCN-TBR, combining a Long-term
Recurrent Convolutional Network (LRCN) with the Temporal Bi-
nary Representation (TBR) method that converts the camera event
output stream into image frames.

• Study of the impact of left-handed and right-handed subject data
on classification accuracy.

• The proposed RN-ROI and LRCN-TBR classifiers are object inde-
pendent due to the use of primitive actions;

• Evaluation of the proposed framework in the assembly of different
objects by different subjects working in unstructured environ-
ment.

2. Related studies

2.1. Event camera

One of the most well-known event cameras, the Dynamic Vision
Sensor (DVS) [10], operates by measuring temporal contrast, which
is characterized by changes in brightness in the captured scene. The
brightness of a scene is defined by the logarithmic light intensity, log(I).
The DAVIS combines the DVS with an active pixel sensor (APS) at
the pixel level. In each DVS pixel, the current log(I) is continuously
compared to the memorized log(I) value of the same pixel. The pixel
generates an asynchronous event when either a lower contrast thresh-
old, 𝜃𝑂𝐹𝐹 , or an upper contrast threshold, 𝜃𝑂𝑁 , is exceeded, Fig. 2.
After firing the event, the pixel memorizes the current log(I) value
and then resets itself in order to capture the next change in scene
brightness. Each generated event, 𝒆 = (𝑥 , 𝑦 , 𝑡𝑠 , 𝑝𝑜𝑙 ), is indexed using a
13

𝑖 𝑖 𝑖 𝑖 𝑖
unique temporal index 𝑖 and contains the information about the event’s
coordinates in the pixel array, 𝑥 and 𝑦, the timestamp of the occurrence
of the event, 𝑡𝑠, and the sign of the associated brightness change, known
as the event’s polarity, 𝑝𝑜𝑙. For a positive brightness change an ON
event (positive event) is created, 𝑝𝑜𝑙 = 1, and for a negative brightness
change an OFF event (negative event) is created, 𝑝𝑜𝑙 = 0.

2.2. Event filters

2.2.1. Background activity filters
Event cameras naturally suffer from random noise, due to thermal

noise and leakage currents from the event camera itself [11]. Back-
ground activity noise occurs when a pixel randomly outputs an event
without being triggered by a brightness change in the scene.

The first attempt at an event-based Background Activity filter regis-
tered spatio-temporal neighbours in a timestamp map [12]. Each new
event’s timestamp is stored in all eight neighbouring pixels on the
timestamp map, Fig. 3. Then, if the new event’s current timestamp
exceeds the value of the timestamp map at this event’s location by less
than the support time, 𝑑𝑡, the event goes through the filter. Otherwise,
it is discarded. The timestamp map in this method uses one memory
cell per sensor pixel, 𝑂(𝑁2).1

To reduce the amount of memory required, it was proposed in [11]
to subsample the sensor’s pixel array into groups of 𝑠 × 𝑠 pixels, with 𝑠
as the subsampling rate. This reduces the amount of required memory
to 𝑂(𝑁2∕𝑠2) cells. In this case, a new event’s timestamp provides spatio-
temporal support to all pixels inside its corresponding group within
time 𝑑𝑡. The main disadvantage of this method is that the spatio-
temporal neighbourhood for each event is restricted to the events from
the same group. Also, for the method to work properly, small values of
𝑠 have to be used, such as 𝑠 = 2 and 𝑠 = 4, as shown in Fig. 4.

The Background Activity filter proposed in [13] challenges both
previous attempts by only using a memory complexity of 𝑂(𝑁). This is
accomplished by using two memory cells per row and two memory cells
per column, which store all the necessary data for recovering recent
events. By storing information in addition to the timestamp, the error is

1 Space complexity expressed using the 𝑂 notation, where 𝑁 represents the
camera’s pixel array size. 𝑂(𝑁) = 𝑂(𝑊 ) = 𝑂(𝐻), with 𝑊 and 𝐻 as the DAVIS
pixel array width and height, respectively.
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Fig. 2. Event generated in a DVS pixel. A pixel with coordinates (𝑥, 𝑦) belonging to the DVS’s 𝑊 ×𝐻 sensor array reads the captured logarithmic light intensity, log(I), over time
and responds in the form of ON and OFF events when the upper or lower contrast thresholds, 𝜃𝑂𝑁 and 𝜃𝑂𝐹𝐹 respectively, are exceeded.
c

Fig. 3. Illustration of the spatio-temporal neighbourhood as in [12]. The event 𝒆 will
nly pass through the Background Activity filter if another event exists within its spatio-
emporal neighbourhood (blue). (For interpretation of the references to colour in this
igure legend, the reader is referred to the web version of this article.)

ignificantly reduced by allowing correlation with neighbouring events
n future time.

Another study uses a hashing-based method [14], promoting a
urther reduction in storage costs. Additionally, this study also presents
wo metrics for the evaluation of the global performance of Background
ctivity filters, the percentage of correct predictions for real events and

he percentage of real events in the filter’s output. With the DAVIS240
ock–paper–scissors dataset, ROSHAMBO17 [15], Liu’s filter [11] ob-
ains state-of-the-art for these proposed metrics for neighbourhoods of
uration 𝑑𝑡 ⩾ 1.2 ms and a 𝑠 = 2 subsampling rate.

.2.2. Customized filters
Some event filters must be applied on a case-by-case basis, e.g., to

electively reduce data flow and/or correct some innate issues with the
vent camera output. A frequent issue with event cameras is that com-
lex circuit bias and manufacturing imperfections cause biased pixels
nd mismatch contrast threshold among pixels [16]. An example is the
resence of hot pixels, which are pixels with low contrast thresholds
hat continuously fire events when the visual input is idle. There are
wo distinct solutions to this issue: (1) record with a stationary event
14
amera and use jAER’s HotPixelFilter to identify and then block the
pixels with high event rates, and (2) implement an additional rule
in one of the previously discussed Background Activity filters which
prohibits self-correlation as a pixel’s spatio-temporal support.

Event camera pixels naturally have a refractory period, defined as
the duration in time that the pixel ignores brightness changes after an
event is generated. The larger the refractory period the fewer events
are produced by moving objects [17]. This type of filter has been used
in [18] to follow the actual position, in time and space, of a helium-
filled soap bubble (HFSB) rather than the trace left a few milliseconds
after its passage. Alongside fast motion, this filter can also be applied to
broad moving edges, along which contrast changes continuously [19].
In jAER’s RefractoryFilter the concept is taken a step further, as it can
either filter or pass events within the predefined refractory period. By
allowing passage to all events that occur within the refractory period,
this filter can work similarly to a self-correlation filter.

The transition between ON and OFF events can be exploited for
tracking applications. For example, in [20], active LED markers have
successfully been used for pose tracking of a quadrotor by analysing
these transitions in the DVS data. In [18], HFSBs are used as flow
tracers, by generating a pixel-sized localized response in the DVS,
to reconstruct the 3D path and velocity inside a wind tunnel. To
distinguish the events generated by HFSBs and noise, the ‘‘pair filter’’
is used to only pass events which consist of an ON/OFF pair. The jAER
OnOffProximityLineFilter works similarly, by only outputting events that
are supported by a nearby event (neighbour) of the opposite polarity.

The combination of multiple filters is often not fully explored nor
detailed in literature. This paper identifies some of the most relevant
filter algorithms and builds a novel framework featuring event filters
with shared computational resources.

2.3. Action classification

Gestures are action primitives frequently used as a natural human–
robot interface. A set of 25 gestures, used to interface robots, are
recognized using two 3D Convolutional Neural Networks (CNNs) and a
Long Short-Term Memory (LSTM) network in [21]. To teach assembly
tasks, multiple gestures can be used sequentially and classified as either
directional (Up, Down, Left, Right), orientational (90◦, 180◦), manip-
ulation (Install, Remove, PickUp, Place), and feedback type (Confirm,
Stop) [22]. Human action sequences can be segmented into primitive
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Fig. 4. Spatio-temporal support (blue) provided by an event on the sensor grid (left) when using a subsampling rate of 𝑠 = 2 (middle) or 𝑠 = 4 (right). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 5. A single right unsigned bit shift,
𝑢
≫ 1, is used to convert event’s coordinates into subsampling map coordinates. MSB and LSB stand for the most significant bit and least

significant bit, respectively.
Table 1
Event-based datasets for action and gesture recognition.

Author Year Dataset name Event camera model Content description

A. Amir [28] 2017 DvsGesture DVS128 11 hand gestures under 3 lighting conditions
I. Lungu [15] 2017 ROSHAMBO17 DAVIS 240 3 Rock–Paper–Scissors hand gestures
S. Baby [29] 2018 DVS Gesture data DVS128 10 hand gestures
E. Ceolini [30] 2020 DVS-EMG dataset DVS128 5 sign language gestures. Additional APS frames and EMG data
S. Innocenti [31] 2020 MICC-Event Gesture dataset Prophesee GEN3S VGA-CD Extension of DvsGesture under more challenging conditions
tasks and then recognized by learning the relation between detected
objects and human pose from RGB-D data through the use of graph
networks [23]. Example action classes considered are Idle, Place, Hold,
Pour (Kitchen context) and Screw (Workshop context). Human actions
can also be divided into a set of static gestures (SGs) and dynamic
gestures (DGs) [24]. An interesting application of segmenting human
activity into a sequence of individual actions is presented in [25],
where a robot can detect forgotten actions and then remind the human
of such actions. Robots themselves can also benefit from using primitive
tasks to adapt to build complex behaviours. These primitives are usually
taught through human demonstration and can then be combined to per-
form product assembly [26,27]. There is a relatively small number of
event-based datasets for action and gesture recognition, Table 1. None
of the datasets available is focused on primitive manufacturing tasks.
Primitive actions such as pick up, place, screw, etc. cover the most
common manufacturing assembly tasks and can be used sequentially
to perform complex assembly processes [4,6,7].
15
3. Methodology

3.1. Event filters

As previously mentioned, the use of subsampling as a basis for a
Background Activity filter achieves good results. By subsampling the
sensor’s pixel array into groups of 𝑠 × 𝑠 pixels, a subsampled map is
created, in which the most recent timestamp (from the last event in
the corresponding subsampled group) is stored. A right unsigned (𝑢)
bit shift,

𝑢
≫ 𝑛, is a bitwise operation which shifts the operand by 𝑛

bits to the right. In this operation, excess bits shifted off to the right
are discarded and the vacant bit positions from the left are filled with
zeros. Unsigned bit shifts are a efficient way to perform the division of
unsigned integers by powers of two. A single right logical bit shift,

𝑢
≫ 1,

can be used to directly map events from the sensor pixel array to the
subsampled map corresponding to 𝑠 = 2, Fig. 5. The only drawback of
this operation is that the subsampling rate 𝑠 must be a power of two,
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𝑠 ∶ 𝑠 = 2𝑛, 𝑛 ∈ N. Assuming a new event, defined as 𝒆𝑖 = (𝑥𝑖, 𝑦𝑖, 𝑡𝑠𝑖, 𝑝𝑜𝑙𝑖),
he coordinates 𝑥𝑖 and 𝑦𝑖 are shifted by 𝑛 bits into the corresponding
ubsampled map coordinates, 𝑋𝑖 and 𝑌𝑖:

𝑖 = 𝑥𝑖
𝑢
≫ 𝑛

𝑌𝑖 = 𝑦𝑖
𝑢
≫ 𝑛

(1)

fter each new event 𝒆𝑖 passes through all the filters, or is caught by
ny one of the filters, its timestamp 𝑡𝑠𝑖 is stored into the subsampled
ap 𝑺:

(𝑋𝑖, 𝑌𝑖) = 𝑡𝑠𝑖 (2)

o avoid spatio-temporal correlation with non-events, the following
ondition, called the First Event filter, prohibits correlation with the
ero-initialized subsampled map 𝑺, by only passing events if:

(𝑋𝑖, 𝑌𝑖) > 0 (3)

ince most initial events from a recording are noise, the First Event
ilter substantially reduces the initial spike of noise events despite its
inite filtering capacity. In the Background Activity filter, the value
f the subsampling map 𝑺(𝑋𝑖, 𝑌𝑖) is compared to the current event’s
imestamp, 𝑡𝑠𝑖, to evaluate if their difference is less than the pre-defined
upport time 𝑑𝑡𝐵𝐴. The new event 𝒆𝑖 is filtered if:

𝑠𝑖 − 𝑺(𝑋𝑖, 𝑌𝑖) ⩾ 𝑑𝑡𝐵𝐴 (4)

When using a Background Activity filter, a convenient process to
ilter hot pixels is to negate self-correlation. This means that if the only
patio-temporal neighbour for a new event is an older event at the same
ixel coordinates, the new event is deemed invalid. However, spatial
nformation of the events is lost when subsampling occurs, because only
he timestamp is stored at the subsampling map 𝑺. As such, to build a
ot Pixel filter, a new map called the coordinate map 𝑪 , with the same
imension as 𝑺, will store the coordinates of the last event, 𝑥𝑖 and 𝑦𝑖, at
(𝑋𝑖, 𝑌𝑖, 0) and 𝑪(𝑋𝑖, 𝑌𝑖, 1), respectively. Thus, an event will only pass

he Hot Pixel filter if:

(𝑋𝑖, 𝑌𝑖, 0) ≠ 𝑥𝑖 ∧ 𝑪(𝑋𝑖, 𝑌𝑖, 1) ≠ 𝑦𝑖 (5)

fter each new event 𝒆𝑖 is either caught by or passed through any of
he event filters, its 𝑥 and 𝑦 coordinates are stored in the coordinate
ap 𝑪 :

(𝑋𝑖, 𝑌𝑖, 0) = 𝑥𝑖
𝑪(𝑋𝑖, 𝑌𝑖, 1) = 𝑦𝑖

(6)

A similar approach to the Background Activity filter is used to build
he Refractory filter, but instead, it uses a smaller support time, 𝑑𝑡𝑅𝑒𝑓𝑟
𝑑𝑡𝑅𝑒𝑓𝑟 < 𝑑𝑡𝐵𝐴), and filtering 𝒆𝑖 if:

𝑠𝑖 − 𝑺(𝑋𝑖, 𝑌𝑖) ⩽ 𝑑𝑡𝑅𝑒𝑓𝑟 (7)

f this condition is met, this means that an event is most likely noise
elated to flickering. Assuming that both general background activity
nd hot pixels have been filtered out, the only non-essential information
eft on the image is the shadow cast (hand and object in this study).
hese events are not previously filtered due to the fact they create
patio-temporal neighbourhoods which pass through the Background
ctivity filter. These events have, generally, the same polarity. By
hecking neighbouring subsample groups for spatio-temporal support
rom events of the opposite polarity, it is possible to determine if events
re part of a shadow. Taking inspiration from the Background Activity
ilter method, the Polarity filter will use a similar search method,
ut in a wider spatio-temporal neighbourhood. A range of coordinates
s used instead of a single comparison, and a greater support time,
𝑡𝑃𝑜𝑙 (𝑑𝑡𝑃𝑜𝑙 > 𝑑𝑡𝐵𝐴), is used. However, only neighbouring events with
16

pposite polarity, 1 – 𝑝𝑜𝑙𝑖, are used to validate the condition. The event l
asses the filter if, for any possible coordinate combination within
ange, the following condition is true:

𝑡𝑠𝑖 − 𝑺(𝑟𝑎𝑛𝑔𝑒𝑥, 𝑟𝑎𝑛𝑔𝑒𝑦, 1 − 𝑝𝑜𝑙𝑖) ⩽ 𝑑𝑡𝑃𝑜𝑙 ,

∀𝑟𝑎𝑛𝑔𝑒𝑥 ∈ {𝑋𝑖 − 1, 𝑋𝑖, 𝑋𝑖 + 1},∀𝑟𝑎𝑛𝑔𝑒𝑦 ∈ {𝑌𝑖 − 1, 𝑌𝑖, 𝑌𝑖 + 1}
(8)

where 𝑺(𝑋𝑖, 𝑌𝑖, 1) and 𝑺(𝑋𝑖, 𝑌𝑖, 0) are the subsampled maps for positive
nd negative events, respectively. However, the reduced filtering ca-
acity this filter offers is outweighed by its main issue of requiring the
revious filter’s conditions to check for both polarities. The polarity
ilter mostly serves the purpose of filtering shadows. However, since
hadows are not prominently featured in the proposed dataset, this
ilter will not be used in this study.

.2. Dataset of Manufacturing Tasks (DMT22)

The DMT22 dataset contains recorded data from an event camera,
depth camera and a magnetic tracking system. Recorded data are

vailable in an open-source dataset [9]. While the magnetic tracker is
ttached to the human body, the cameras are stationary. In this study,
e focus on data from the event camera. The dataset includes data from
ther sensors so that it can be used by a broader audience and results
rom different sensor data can be compared.

Focusing on the event camera, if it is moving, information about
oth moving and stationary elements can be obtained, due to the rel-
tive movement between them. This is the Eye-in-Hand system, where
camera can be held by a robot with pre-programmed movements to

rack the camera’s exact pose in 3D space, Fig. 6 (left). With this, a
cene can be viewed from different angles, obtaining information which
an be used to reconstruct it in the world coordinate system, as wit-
essed frequently in Simultaneous Localization and Mapping (SLAM)
pplications. An alternative is to use an Eye-to-Hand system, in which
he camera is placed at a fixed point in the workspace, Fig. 6 (middle).
t facilitates the computation of transformations between image and
orld coordinate systems through calibration. When the camera is

ixed, stationary elements will not be registered in events data, only the
lements (human hand) moving relative to the camera will be captured.
hus, the Eye-to-Hand configuration is the more suitable configuration
or capturing the manufacturing primitive actions in this dataset, Fig. 6
right). The setup used for the acquisition of the dataset data is in Fig. 7.

The dataset includes a set of manufacturing assembly tasks, each
eaturing a different object, a Wii remote, a hard disk drive, and an
lectric screwdriver, Fig. 8. The objects were selected to be of equiv-
lent complexity. All possess similar primitive tasks, including both
‘screwing’’ and ‘‘fitting’’ actions, which are key primitives in assembly
asks. Electro-mechanical items were chosen as they provide a balance
etween being a complex assembly case and being big enough that its
omponents will be visible on the recordings.

The tasks were recorded by five subjects: 1 right-handed female
ubject (Subject 1) and 4 male subjects, of which 3 are right-handed
Subjects 2, 3 and 4) and 1 is left-handed (Subject 5). The selected
ubjects vary in gender, assembly experience and feature different
ominant hands. All subjects were given a brief introduction to each
ssembly task before recording. Each subject performed all three as-
embly tasks four times. An exception was created for the left-handed
ubject, Subject 5, which performed every task both with a right-sided
right-handed) and left-sided (left-handed) placement of the parts to
e assembled and the required tools. The right-sided setup was used
or all right-handed subjects. The left-sided setup is a mirrored version
f the right-sided setup, which means most parts and tools are on the
eft side of the subject, a more convenient placement for a left-handed
ubject. These two setups allow to study how well a left-handed subject
ction can be classified in a context where the classifiers are trained
ith right-handed subject’s data. The dataset features a total of 72

ecordings: 4 right-handed subjects × 3 tasks × 4 performances + 1

eft-handed subject × 2 configurations × 3 tasks × 4 performances. Each
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Fig. 6. Eye-in-Hand system configuration (left), Eye-to-Hand system configuration (middle), and the proposed camera setup (right).
Fig. 7. The DMT22 dataset acquisition setup featuring the hard disk drive assembly task. The DAVIS event camera and the RGB-D camera are coupled to capture scene data. The
electromagnetic sensor is attached to the subject’s wrist.
task recording features multiple primitive tasks and lasts approximately
25 s.

The data were manually labelled by a single annotator, as to min-
imize attribution discrepancies. Action classes were labelled as one
of the following five primitives: PickUp, Place, Screw, Idle and Hold.
Fig. 8 shows a detailed description of the assembly of the Wii remote
consisting of 13 different primitive tasks. The event camera used to
record the dataset is a DAVIS 240C, capturing events with a resolution
of 240 pixels × 180 pixels. DAVIS APS data are captured at 30 fps
(frames per second), along with RGB-D data from the Intel RealSense
Depth Camera D435 at 30 fps. The Polhemus Liberty electromagnetic
tracker was used to capture pose data, at 20 Hz, from a sensor attached
to the subject’s wrist. Such data are expected to suffer from magnetic
distortion.

3.3. Classification methods

Two classification methods are proposed to classify the primitive
manufacturing/assembly tasks from filtered data:

1. RN-ROI: A recurrent network architecture that takes as input
features from the region of interest (ROI) of the human hand.

2. LRCN-TBR: A deep learning architecture combines a Long-term
Recurrent Convolutional Network (LRCN) with the Temporal
Binary Representation (TBR) method [31] that converts the
camera event output stream into image frames.

The RN-ROI method relies on a lightweight algorithm to define
the ROI features of the human hand through object edge event activ-
ity [32]. The algorithm detects the pixel columns and rows featuring
event activity to define a square ROI containing the human hand. The
17
relevant features from the ROI are its centre coordinates, size, and
percentage of active pixels. In [32], features are obtained at every 3000
events. In this study, a comparison will be made between the filtered
and unfiltered data from the DMT22 dataset. As such, features must be
obtained at fixed intervals of time for a fair comparison, so the same
‘‘frame’’ is represented in both analyses. The chosen interval of time
to obtain features is 𝛥𝑡 = 30 ms. Since the ROI features are presented
sequentially and the intent is to use that temporal continuity to classify
the primitive actions, a Long Short-Term Memory (LSTM) network with
a single bidirectional layer (BiLSTM) is used. Features are zero-centred
before classification. The schematic of the network is illustrated in
Fig. 9. Since the DMT22 dataset is relatively small, a data augmentation
technique is used to better train the LSTM network. All data are used in
their original state as well as their mirrored state (horizontally flipped),
effectively doubling the data available for training the network. This
was also done to help the left-sided setup of Subject 5 to better conform
to the rest of the DMT22 data.

For the LRCN-TBR method, the camera event output stream is
converted into image frames. Given an interval of time 𝛥𝑡, a binary
representation 𝑏𝑖 is built for each pixel. For each possible event co-
ordinate (𝑥, 𝑦), the value of the representation is 𝑏𝑖𝑥,𝑦 = 1 in case any
event is present and 𝑏𝑖𝑥,𝑦 = 0 otherwise. By considering a sequence of
eight consecutive binary representations, these can be combined into
a single 8-bit array, which is converted into a decimal number. The
range of possible values corresponds to the greyscale range of 0−255. As
such, this method is an efficient way to create images from events. The
images created through this method cannot immediately be processed
by a conventional LSTM network. Using Convolutional Neural Network
(CNN) AlexNet, which is already trained, and by removing its last layers
responsible for classification, the CNN is used to obtain features instead
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Fig. 8. The three different objects on the DMT22 dataset and the corresponding sequence of primitive tasks to complete the assembly of each one. Segmentation of a Wii remote
assembly task from the DMT22 dataset, with each colour depicting a unique primitive action. It is composed by 13 different primitive tasks: (1) the human is idle, (2) holds
the screwdriver, (3) picks up the screwdriver, (4) performs a screw action, (5) performs another screw action, (6) places the screwdriver, (7) picks up a battery, (8) places the
battery, (9) picks up another battery, (10) places the battery, (11) picks up the back cover, (12) places the back cover, and (13) ends the assembly idle. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 9. Classification architecture of event data using the RN-ROI method.
of performing classification. The input frames must comply with the
expected input size of the chosen CNN, AlexNet. The images created
must first be cropped horizontally to a size of 227 × 180, to which
vertical zero-padding up to 227 × 227 is then applied. As a final step, a
LSTM network, identical to the one proposed for the RN-ROI method,
can then obtain the temporal correlation from the analysed frames to
18
classify the data. The schematic of the LRCN-TBR method is shown in
Fig. 10.

4. Experiments and results

Detailed information on the experimental setup and data collected
is presented in Section 3.2. The assembled objects are described, as
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Fig. 10. Classification architecture of event data using the LRCN-TBR method.

Fig. 11. Loss of information depending on subsampling rate. Original with no subsampling (left), with subsampling rate of 𝑠 = 2 (middle) or with subsampling rate of 𝑠 = 4 (right).

Fig. 12. Cumulative performance of individual filters (DMT22 dataset). First Event filter (top left), Background Activity filter (top right), Hot Pixel filter (bottom left) and Refractory
filter (bottom right).
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Fig. 13. Cumulative (top) and instantaneous (bottom) analysis of combined event filters on the DMT22 dataset (left) and on the EDHT21 dataset (right).
Table 2
Average results of event filters on Subject 1 data from the DMT22 dataset.

Object Avg. % of filtered
events for 𝑠 = 2

Avg. % of filtered
events for 𝑠 = 4

Avg. number of
events in sequence

Hard disk drive 85.89 67.39 661 874
Wii remote 82.58 63.59 478 685
Electric
screwdriver

82.27 62.15 890 886

well as the subjects, experimental trials, data formats and equipment.
The video that accompanies this article shows sample data collected for
each assembled object.

4.1. Filter performance

The filtering results were obtained by applying them to the DMT22
dataset and the Event Data for Hand Tracking EDHT21 dataset [33].
The filters were built and tested in the open-source Java software
framework jAER.2 For each action sequence of the dataset, the event
filters performance is measured by comparing the number of total
events received to the number of filtered events.

% of Filtered Events = # of events filtered
# of events in sequence (9)

Filters are applied to event data sequentially, considering the pa-
rameters 𝑑𝑡𝐵𝐴 = 1.5 ms and 𝑑𝑡𝑅𝑒𝑓𝑟 = 10 μs for the Background
Activity filter and Refractory filter, respectively. Results in Table 2
were obtained from the DMT22 dataset for two distinct subsampling
rates, 𝑠 = 2 and 𝑠 = 4. Subsampling rates have a high impact on filter
performance.

Although the results have shown a higher filtering rate with a
subsampling rate of 𝑠 = 2, relevant features present in the event data
are lost, Fig. 11. These features are essential for the recognition and
classification of data-based action patterns. Filtering with 𝑠 = 4 removes
noise while leaving nearly all relevant events intact, creating a balance
between noisy data and relevant features data. Further increasing the
subsampling rate is not recommended, as it would considerably reduce

2 Available at: http://jaerproject.net.
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Fig. 14. Classification accuracy, with and without filters, applied on all the DMT22
event data, except left-sided object placement.

the filter performance. The event filter with a subsampling rate of 𝑠 = 4
filters, on average, 60.76% of all events (average value of all subjects
and object scenarios).

Considering an assembly sequence from the DMT22 dataset, the
performance of each filter was evaluated by, at each event packet
(collection of events grouped for processing purposes), comparing the
number of total events received to the number of filtered events. By
measuring these values cumulatively, at each new event packet, a graph
is plotted showing the filter’s performance along the sequence, Fig. 12,
showing its effectiveness over time. It is important to note that, due
to measuring cumulatively, most graphs will show fewer fluctuations
in value for the percentage of filtered events when near or at the end
of the sequences. The results for each filter for the first sequence of
the DMT22 dataset (first hard disk drive assembly by Subject 1) are
presented in Fig. 12.

Both the First Event filter, Fig. 12 (top left), and the Refractory
filter, Fig. 12 (bottom right), behave similarly to an exponential decay
function, in the sense that they filter almost all initial events of the
sequence, but quickly lessen their filtering performance. They are effec-
tive to filter most initial noise events, which, due to their abundance,
create spatio-temporal neighbourhoods which would pass through the
other filters. The Hot Pixel filter, Fig. 12 (bottom left), also filters more

http://jaerproject.net
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Fig. 15. Comparison of classification accuracy results from RN-ROI and LRCN-TBR methods, with and without filtered data. Three distinct scenarios were considered: randomly
elected data (left), data from Subject 5’s left-side setup (middle) and data from Subject 5’s right-side setup (right).
vents at the beginning of the action sequence, due to more noise
hich has similar behaviour to hot pixels. After that, the filter stabilizes

he percentage of filtered events, indicative of actual hot pixels being
onsistently recognized and filtered. The Background Activity filter,
ig. 12 (top right), filters the most events out of all the individual
ilters presented. It filters consistently along the whole action sequence,
iltering an average of 55% of incoming events. The initial build-up
s related to the filter requiring past events to verify spatio-temporal
orrelation and these events still need to be accumulated.

The progression of the cumulative percentage of filtered events
long time, Fig. 13 (top), mirrors the subject’s behaviour in the recorded
equence. At the beginning of the sequence, the subject is idle. During
his period, all events that are output by the camera are noise and,
deally, the filters should act to filter them. At the moment the subject
tarts moving, an abrupt decrease in the percentage of filtered events
an be observed. This decrease of about 35% is relative to the events

created when the human subject moves the hand and object during the
action. These events provide important information and should, in fact,
not be filtered. Except for slight fluctuations, the percentage of filtered
events during the actual sequence is mostly constant, due to the events
created by noise being produced at a steady rate, and the hand moving
at mostly the same speed and a consistent distance from the camera.
The behaviour of combined filters during the first 3D sequence from
the EDHT21 dataset, Fig. 13 (top right), is very similar to that of the
DMT22 dataset, Fig. 13 (top left).

To better evaluate filters performance, a graph is plotted with
instantaneous values of filter performance, Fig. 13 (bottom). At each
event packet, the total number of events received from the packet is
compared to the number of events filtered from that same packet. The
main difference between using the cumulative and instantaneous meth-
ods of plotting is that the latter shows a more descriptive representation
of the filter performance during each assembly task.

When the subject hand is moving, the percentage of filtered events
decreases significantly. During the transition between different motion
directions, the brief pause of movement of the subject can be identified
in Fig. 13 (bottom left) by the spikes at values of 100% filtered events.
In the EDHT21 dataset it is possible to identify specific changes in
movement direction from the instantaneous behaviour of the event
filter. In the sequence in Fig. 13 (bottom right), the subject changes
the direction of movement six times, which translates into a graph
with six spikes at values of 100% filtered events, although the exact
location of each spike is not clearly defined. This behaviour, if consis-
tently identified, can be used as a feature for action segmentation and,
21

consequently, improve classification accuracy.
Fig. 16. F1-score per class from the DMT22 dataset using the RN-ROI method.

Fig. 17. F1-score per class from the DMT22 dataset using the LRCN-TBR method.

4.2. Classification results

The filters performance was evaluated by measuring the general
classification accuracy by feeding the RN-ROI with filtered and non-
filtered data. The LSTM network uses data from all five subjects in
a division of 80% training, corresponding to the data of 4 subjects,
and 20% testing, corresponding to the data of a single subject. In this



Journal of Manufacturing Systems 68 (2023) 12–24L. Duarte and P. Neto
Fig. 18. Primitive assembly tasks classified in a continuous stream of data from the DMT22 dataset using the RN-ROI and LRCN-TBR methods. Results show two sequence lines
for RN-ROI and LNCR-TBR, representing the classified task primitives when the subject testing the system is left-handed (top line) and right-handed (bottom line). Comparing the
results with the ground truth primitive tasks, it is noted that the classification results obtained by the right-handed subject are better than the ones obtained by the left-handed
subject, especially when using the LRCN-TBR method. This is likely because the DMT22 dataset is mostly composed by data collected from right-handed subjects.
particular test, only Subject 5’s right-hand object placement is used. By
isolating a specific subject’s data for testing, such data are uncorrelated
to the training data and the network has no previous knowledge of
this particular subject. The results obtained through this method are
expected to be worse than those obtained through a random selection
of data, but they are much more meaningful due to resembling a real-
world scenario, where a new subject is introduced to the system. The
subject that was chosen for testing is alternated between all possible
combinations, as cross-validation, to test both the data and the network
to their fullest. The general classification accuracies (average and the
standard deviation) are in Fig. 14. They show that the use of event
filters improves classification. The gain in classification accuracy is, ap-
proximately, 6 percentage points, increasing from an average accuracy
of 85.49% to an average accuracy of 91.28%. The standard deviation
error is reduced when using the filters. For all network runs, the filtered
result accuracy always surpassed the non-filtered result.

A second set of tests was conducted to observe the classification
accuracy in the context of different data selection scenarios:

1. Random sample selection featuring 85% training data and 15%
testing data from the dataset. This is a common classification
accuracy metric, where testing data are not available as training
data, but the system is trained with data from Subject 5, which
might bias the results.

2. Subject 5’s left-sided setup uses training data from all subjects,
except Subject 5, and uses testing data from Subject 5’s left-sided
setup (Subject 5’s left-hand object placement). The classifier has
no previous knowledge of Subject 5.

3. Subject 5’s right-sided setup uses training data from all sub-
jects, except Subject 5, and uses testing data from Subject 5’s
right-sided setup (Subject 5’s right-hand object placement). The
classifier also has no previous knowledge of Subject 5.

For each of the scenarios above, the RN-ROI and LRCN-TBR clas-
sification methods were evaluated. The results in Fig. 15 show that,
for almost all cases, accuracy improves by using the event filters. Also,
the variability of results, characterized through the standard deviation
error, reduces when using filtered data. The overall best classification
results are obtained for the filtered random selection scenario, with
the LRCN-TBR’s 99, 37% accuracy outperforming the 94, 63% accuracy
from RN-ROI. The classification accuracies for Subject 5’s recordings
are very high when using the RN-ROI classifier, proving that the system
is reliable to be used by right-handed and left-handed subjects, even
after training the system without data from left-handed subjects. For the
RN-ROI approach, the classification results of Subject 5’s left-sided and
right-sided setup recordings are identical, with accuracies of 97, 03%
and 97, 08%, respectively. This suggests that, when using the mirror
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data augmentation technique, it is favourable to accommodate the left-
handed subject with a left-sided configuration of objects, without loss of
classification accuracy. For the scenarios of the left-side setup and right-
side setup, the classification accuracy significantly degrades when using
LRCN-TBR method, especially for the left-side setup. In such a context,
it can be concluded that deep learning based LRCN-TBR method is more
dependent on the training data from a specific subject than RN-ROI.

The F1-score is chosen as an auxiliary metric to evaluate classi-
fication performance due to the imbalance in the class distribution
of the DMT22 dataset. The F1-score evaluates precision and recall,
comparing the number of correct guesses (TP) against the number of
other tasks which are misclassified as the intended class (FP) or against
the number of intended tasks which are misclassified as another task
(FN). The F1-score is calculated for each class from the DMT22 dataset,
demonstrating similar accuracy when using RN-ROI, Fig. 16.

𝐹1 =
2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

(10)

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(11)

𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(12)

The LRCN-TBR method falls short of classifying data from new
subjects (which are not represented in the training dataset), especially
in the case of the left-sided setup where classification accuracy reached
at most 43, 77% using non-filtered data. One reason for this behaviour
might be that CNN-based features cannot characterize movement, while
tracking-based features, such as ROI features do. However, this does
not explain why the left-sided and right-sided setups have very distinct
classification accuracies. To further analyse this incongruency, the F1-
score was calculated, per class, to compare the two setups for the
LRCN-TBR method, Fig. 17. The Idle class is the only class that is always
correctly classified and both setups struggle to classify the Hold task.
This makes sense, as the Idle class has the most distinct frames out
of all the tasks (almost no events). Also, the Hold task is the most
difficult task to classify as it has the least data for the network to learn
and features a lot of similarities to the Place task. The Place task is
well classified in both setups. The left-sided setup struggles most in the
PickUp and Screw tasks. The misclassifications in these cases are not
consistent, which indicates that the network does not have a good grasp
on the features which characterize these tasks.

Fig. 18 shows task predictions for each object and method against
the ground truth. Following previously discussed results, the Hold task
is the most frequently misclassified.
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5. Conclusion and future work

A novel methodology to classify manufacturing assembly primitives
from event data was presented. Results demonstrated the effectiveness
of the proposed deep learning and recurrent network classifiers, espe-
cially when event data are filtered. The combination of different filters
promoted a dynamic response of the system, consistently targeting and
removing noise events. On average, they filter out 65% of the events
from each recording. The classification accuracy, evaluated on the
proposed DMT22 dataset, is about 91, 31% (using filters), 6 percentage
points higher than the classification accuracy obtained without using
filters. In such a context, it can be concluded that the multiple filters
play a key role in the classification accuracy when using event data
as main input source. In addition, less data makes the classification
faster and require less storage resources. It can also be concluded that
in general the RN-ROI method presents better classification accuracy
than the deep learning based LRCN-TBR method, especially when used
by left-handed subjects who did not train the system. LRCN-TBR is more
dependent on the training data from a specific subject than RN-ROI.

From a practical application perspective, the classified primitives
can serve as input for a human–robot collaborative system that antic-
ipates the co-worker’s needs (bringing parts and tools to the assembly
workplace), learns from the co-worker’s demonstrations, and activates
safety procedures according to the actual tasks being performed by the
human co-worker. The proposed methodology has the added benefit of
being object independent.

The proposed DMT22 dataset of manufacturing primitives should
be extended and complemented with more data (novel assembly sce-
narios and new subjects). Movements that are not defined as actions,
such as transition movement between tasks, should also be considered
and labelled, aiming to obtain better classification and hand tracking
results.
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