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ABSTRACT: Relatively to a Drinfeld associator ® we present Etingof and Kazhdan
quantization of any quasitriangular finite dimension Lie-bialgebra (a, [,]4,£q = dc71)
over a field IK of characteristic zero. When r; € a A a is non-degenerate we prove:
a) replacing 1 by r = r1 +re-h+--- € aAa[[h]] we obtain a triangular Hopf-QUE-
algebra A al[F], (72 )1 which is a quantization of the Lie-bialgebra a. We call jf,I; an

invariant star product on the Lie-bialgebra a. In particular and for example in the

real case, J;I;L defines an invariant deformation quantization on any Lie group G en-

dowed with the invariant Poisson structure r; or the invariant symplectic structure

Br=rte a*@a*; b) given rp =1 +r2-ht-- and rj = ri+ry It € aAa[R]],

the star products Jf; and Jf? are (Hochschild) equivalent if and only if the invari-
h

ant Chevalley (de Rham) cohomology classes of 85, and (3}, coincide. The classifying
space of invariant star products on the Lie-bialgebra a, under equivalence, in the
Etingof-Kazhdan quantization and in the previously constructed Drinfeld quantiza-
tion of the Lie-bialgebra a, Campbell-Hausdorff group, coincide and equal H?(a)[[A]];
c) if ® and @’ are two Drinfeld associators and F' is an invariant star product on the
Lie-bialgebra a we have the following triangular-Hopf-QUE-algebras isomorphisms
N i - i ; ..
Aqg(r),F-1 = Aa[[h]],(J;I;l)*l ~ AA[[ﬁ”’(JE;/),l for some 75, and 7, as before. Explicit

proofs of the above assertions will be given in a forthcoming paper.

KEYWORDS: Quantum Groups, Quasi-Hopf algebras, Lie bialgebras, deformation
algebras.

1. Some definitions

Let K be a field of characteristic 0 and (a, [, ]4) & Lie algebra over K. Recall
the following definitions.

A finite dimensional Lie bialgebra over K is a set (a,[,]q,cq) Where &4 :
a — a®ais a 1-cocycle of a, with values in a ® a, with respect to the adjoint
action of a such that £} : a* ® a* — a* is a Lie bracket on a*.

It is called quasitriangular if ¢, = d.r1, where d. is the Chevalley-Eilenberg
coboundary, 1 € a® a is a solution to CYBE ([r1,71] = 0) and (71)12+ (r1)21
is adg-invariant. In case r; is skew-symmetric, it is said to be a triangular
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2 C. MORENO AND J. TELES

Lie bialgebra. Moreover if det(r1) # 0 it is called a nondegenerate triangular
Lie bialgebra.
From any Lie bialgebra (a,[,]q €4) We may obtain a Manin triple [5]

(6 =0a®a’, [ ]eeas (; )aar), Where ((z;€); (4;1))asar = (§;9) + (05 2) and
[(258), (¥ M)]awar = ([7, Yla + adgy — ady; €, n]ar + adin — ad;;f).

This Manin triple has a canonical quasitriangular Lie bialgebra structure
defined by the (canonical) element r = Y1 | (e;; 0)®(0; €') € (adba*)R(ada*),
where (e;,7 =1,...,n) is a basis of a and (') its dual basis.

The set (a @ a*, [, |awar, Eamar = der) is called the (quasitriangular Lie bial-
gebra) classical double of the Lie bialgebra (a, [, ]q, £q)-

2. Etingof-Kazhdan quantization method

Etingof and Kazhdan (E-K) presented [9] a method to construct a quanti-
zation to, in particular, any finite dimensional quasitriangular Lie bialgebra.
See also [19].

2.1. Quantization of the classical double.

2.1.1. Drinfeld associator.

Let T,,, n > 1, be the associative algebra with unit over a field IK generated
by the elements {t;;,7 # j,1 < i,j < n} with defining relations ¢;; = tj;,
[tij, tkl] = 0, if i,j, ]C,l are distinct and [tij, tik + tjk] = 0.

Let I4,..., I, be disjoint subsets of {1,...,m}.

Proposition 2.1. [10] There exists a unique homomorphism 7y, . 1 = T, —

For any X € T,,, we denote 77, 1,(X) by Xy, 1. Let T,,[[h]] be the set of
the formal power series in A with coefficients in the algebra T,,.

.....

Definition 2.2. [8] A Drinfeld associator is an element ® € Ts[[h]] such
that

(i) ® =1+ O(h?);

(i1) & = ePhthtn) P s g Lie formal series with coefficients in K (we
may take K= Q) ;

(iii) In Ty[[Rh]], @ satisfies the pentagon relation

D934 Praza=DPogs-Pro3a- Progs;
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(iv) If Bys = e2™2 € Ty[[R]], in T3[[}]], ® and B satisfy the hezagon relations
Biog =®312- B3+ ‘1)1_,;1),,2 - Bo3z - P93
B3 = CI)Q_%,J +Bi3- P13 Bia- (131_,%,3-

2.1.2. Drinfeld braided tensor category M.
Let (a,[,]a,€a) be a Lie bialgebra and let (g = a @ a*, [, ], 64 = dcr) be its
classical double. We use the identifications a = g, and a* = g_. We set

912 =T12 -+ 91 = Z((Gi; 0) & (0, €i) + (O, Gi) & (62'; 0))

Let M, denote the category whose objects are g-modules and Homy, (U, V') =
Homy, (U, V)[[A]]. This category has a tensor product ®@. If U, W € Oby,,
U ® W is the usual tensor product of g-modules.

Consider the algebra homomorphism © : T, — Ug®" defined through
O(ti;) = Qij. The element O(t;3) = Q12 € Ug ® Ug defines a g-module
morphism Qpy : U®V — U ®V, because (1 is adg-invariant. The element
® = O(®) € Ug|[]]*’ is also adg-invariant, so it defines an element Gy €
Homy, (V@ U) @ W,V ® (U®W)) for any V,U, W € Ob,,,.

For any V,U € Ob,,, introduce the isomorphism fyy : VU — UV
where f = 0 R? = 0 0 ¢™/? and o is the usual permutation.

It follows from pentagon and hexagon relations on the associator that the
morphisms @y and By define the structure of a braided monoidal cate-

gory on My ([7, 11]).

Using the elements ® € Ug[[7]]®" and R? = ™2 € Ug][[h]]®* we may define
(see [8]) a structure of quasi-triangular quasi-Hopf QUE algebra

Ugl[R]],-, 1, Ao, €0, ®, Sp,a=c ', 3=1,R" = (g%Q) (1)

where Ay, €y, Sy, are the extensions of the corresponding maps in the universal
enveloping algebra Ug, ¢ = > X; - So(V;) - Z; with & = > X; ® Y; ® Z;, see
7] prop.1.3.

2.1.3. The functor F : My — A.

Let A denote the symmetric monoidal category (tensor category) [11] of
topologically free IK[[A]]-modules, with trivial associativity and commutativ-
ity constraints.

Let F : Mg — A be the functor given by F(V) = Homy (Ug,V),
for V'€ Oby, and if V,U € Oby, the map F : Homy (V,U) —
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Hom(F(V), F(U)) is defined as F(f)(g) = fog, for f € Homy, (V,U)
and g € F(V).

There is also a (forgetful) functor G : My — A defined in objects by
G(V) = V[[A]] and if f € Hom,, (V,W) then G(f) = f.

The map 0 : F — G defined, for each V' € Oby,, and f € F(V), by
oy (f) = f(1) defines a natural isomorphism from the functor F to G.

2.1.4. g-modules M, and M_.
By the Poincaré-Birkhoff-Witt theorem, the product in Ug = U(g. D g_)
defines linear isomorphisms Ug, @ Ug- — Ug and Ug_ @ Ug, — Ug.
Introduce the following two induced representations, objects of M,

My =Ug @ug, Wy =Ug Ry, e =Ug (1 QK ey) =Ug 1,
M_=Ugeuy, W_=---=Ugs(1®ke_) =Ugsl_

where W, is the trivial gi-module and 1. ® 14 is gy-invariant.

Lemma 2.3. There exist g-module morphisms i+ : My — My ® My such
that Z:l:(1:|:> = 1:|: X 1:|:.

Proposition 2.4. [9] The assignment 1 € Ug — 1, ® 1_ extends to an
1somorphism of g-modules ¢ : Ug — M, @ M_.

Proof: If ¢(1) = 1, ® 1_ and ¢ is a g-module morphism, the construction
of ¢ is unique. It is clear that ¢ preserves the standard filtration, then it
defines a map grad (¢) on the associated graded objects. This map grad (¢)
is bijective and then ([3] chapter III, §2, n8, corollary of theorem 1) ¢ is
bijective. u

2.1.5. A tensor structure on F.

Definition 2.5. [11] A tensor structure on the functor F is a natural iso-
morphism of functors J : F(-) @ F(-) — F(- @) such that Jyw : F(V) ®
F(W) — F(V @ W) satisfies

f((I)VWU) e} JV@VKU 9 (JVW & 1) = JV7W®U O (1 0y JWU); V; W7 U e Ong
Jvr=Jiv =1, F(lm,) =K|[h]] =14,V € Obyy,.

A functor equipped with a tensor structure is called a tensor functor.
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Etingof and Kazdhan [9, 12] define the following map, for V,W € Ob,
and v € F(V), we F(W), let Jyw(v ® w) be the composition

Jrw(v@w) =(v@w)o (¢ @¢~") 0 Pryz0 (1@ Pasa)o
o(l® (oo egﬂ) ®1)o(1® (132_7:1))’4) 0®y9340(iy ®i_)o .
Proposition 2.6. [9] The maps Jyw define a tensor structure on F.
2.2. The quasitriangular Hopf algebra (End(F),-,id, A, ¢, S, R).
We may adapt the general reconstruction theorem in [13] (Chapter 9) to

obtain [9] a quasitriangular Hopf algebra (End(F),-,id, A, ¢S, R), where
End(F) is the set of natural transformations from the functor F to itself.

To define a comultiplication A : End(F) — End(F) @ End(F), we
introduce first a functor F? : My x M, — A defined by F*(V,W) =
FV)QF(W), (F? = ®(F x F)).

Consider the map A : End(F) — End(F)QEnd(F) = End(F?) where,
if a € End(F), for any V,IW € Ob,,.

(A(a))vw = Jyjy © avew o Jvw. (2)
Lemma 2.7. If a € End(F), then A(a) is a natural transformation from F?
to F2, i.e., Ala) € End(F?).

Consider now the element R € End(F)QEnd(F) = End(F?) such that
RV,W = O’OJIX/}VO.?(O'OQ%QV’W)OJV’W = JOJﬁ/}VOf(ﬁuw)Ojuw, V, W e Ong.

(3)

Lemma 2.8. R is a natural transformation from F? to F2, i.e., R € End(F?).

Finally, let us consider the map € : End(F) — KJ[[A]] defined as

é(a) = ok (ax (0’ (1)) (4)

for a € End(F), where 0 is the natural isomorphism defined before from F
to the forgetful functor on M.

Remark 2.9. If H is a quasi-Hopf algebra, over a commutative ring k, with
antipode S, then the category of left H-modules of finite dimension is rigid
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(17, 13]). The left dual of the H-module V is V* = Homy(V, k) with
(h- f)(w) = f((Sh)v), veV. feV' heH

and maps ev(f @ v) = f(a-v),coev =Y. 3 €e; @€', where a, B are elements
of the definition of quasi-Hopf algebra, {e;} is a basis of V and {e'} its dual
basis.

Consider now the category of left H-modules (not necessarily of finite di-
mension), for each object V', let us call dual object of V' to the element
V* = Homy(V, k) which is also a H-module, considering the action already
defined. Thus, we have a map between objects of this category. If f is a
morphism of H-modules from V to W we define f': W* — V* as

flw)w) =w(fv), veV,w eWw
It is easy to prove that f' is also a module morphism and (f o g)t = g o
ft for any morphisms f and g of H-modules. Then we conclude that * is
a contravariant functor from the category of H-modules (not necessarily of

finite dimension) to itself.
We can also define a H-module morphism, for any module V,

v: V'V —k
v(v* @) =0v"(a-v), v eViveV (5)

We remark that Ty coincides with the map evy defined above in case of finite
dimension.

If D is a rigid tensor category, V' an object of D and F'is a tensor functor,
then it is immediate that

FOV) = F(V*) eV = Flevy) o Jyv  coevpy = J;%, o F(coevy)

are a left dual for F(V). Hence according to the uniqueness of duals up
to isomorphism, we have induced an isomorphism dy : F(V*) — F(V)*
defined by

dv = (6”%<v> ® 2dF(V)*) o (idp(v+) @ coevp)) (6)
with inverse d;,' = (evppy @ idp+)) o <z’dF(V)* ® coev%(v))

Consider the quasi-Hopf algebra (1), the functor * is a functor from M, to
Mg, and it exists also an analogous functor * from A to A (generalization
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of the one in vector spaces, if V' is a vector space and V[[h]] an object of A,
the dual object is (V[[R]])*. Then, (F o *) and (* o F) are (contravariant)
functors from the category My to the category A.

For any V' € Oby,, let us define &§y : F(V*) — F(V)* as

Ey(v*)(v) = 0x(F(1v) o Jy=y(v* ®@w)), v e F(V*),veFV), (7)

where 0 is the natural isomorphism from F to the forgetful functor, and 7

the map defined in (5). This map corresponds to the natural isomorphism
defined by Etingof-Kazhdan in [9], where F(IK) and K]|[h]] are identified.

Lemma 2.10. £ is a natural isomorphism from the functor (F o x) to the

functor (x o F).
If a € End(F), let us define
S(a)y = (&) " oay. o &y (8)
a morphism from F(V)** to F(V)*™
Lemma 2.11. The subspace F (V) C F(V)** is invariant by this morphism.

Lemma 2.12. For a € End(F), let us consider

~

S(a)y = S(a)yv |#v) (9)
for any V€ Obyy,. Then, S is a map End(F) — End(F).

We may, using the proof of this lemma, present a simpler expression to
define the map S. Let a € End(F), V an object of My and v € F(V), then

S(ayv(u) = 6" (v (Q™" - Sp(A) - Q) 0 dv(w)) ,
where py @ V[[h]] — V/|[[R]] is defined as py(A)(x) = Az, + € V and
A = aug(idug)(l).

Using the definition (8) we may see that the map S is an algebra anti-au-
tomorphism, that is, S(a-b) = S(b) - S(a), a,b € End(F).

In the particular case of considering only finite dimensional modules the
map S : End(F) — End(F) is defined, for any a € End(F), by

(S(a)v)t =dy oay~o d‘_/l,
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where dy is the isomorphism that appears in (6), identifying F (IK) and K[[A]],
and the transpose map is defined in the same section. For each v* € F(V*),
we have

dy (v*) = (F(evy) o Jy+v Qidgyy) o (idry+ & coevew))(v)
= (Flevy) o Jy-y)(v* @) @€', e € F(V) basis ,e' € F(V)*
(see chapter 9.4 in [13]). If v € F(V), finally, we get
dy (v*)(v) = (F(evy) o Jy«y)(v* @),

coinciding with the definition of £y in [9]. Without using the above identifi-
cation, the expression for dy (v*)(v) would coincide with the one of & (v*)(v)
defined in (7). Using the definition of transpose map and the expression of
dy, we have

S(a)y = (idgw) @ (F(evy) o Jy-v)) o (idry) ® ay- @ idgy))o
o ((J;%/ o F(coevy)) @ idr(yy).

Theorem 2.13. Relatively to the elements defined in (2), (3), (4) and (9),

we have
(a) (A®1)oAla) = (1®A) o Ala),
(b) A(a-b) =A(a)-A(b), a,be End(F).
(c) (AA® DR = R 13- 123 (1® A)R = Ri3 - Rio,
(d) o(Afa)) - R=R-Afa),
(e)(é(i?l)oAA—l (l®éoA=1,
(f)-(S®1)oAla) =id(é(a)), -((1®S)oAla)) = id(é(a)).
Therefore, the set (End(]—“) id, A, €, S, f%) is a quasitriangular Hopf al-

gebra over the ring K[[h]].

Theorem 2.14. [9] The algebra End(F) and the topological usual associative
algebra Ug|[h]] are isomorphic.

This isomorphism allows us to define on the algebra U g[[A]] the pull-back of
the quasitriangular Hopf algebra structure on End(F): (Ug[[h]],-, A, S, R).

Theorem 2.15. [9] The set (Ug[[h]], -, A, S, R) verifies
Aw) =T - Dg(u) -, Su) =Q™" - Sy(w)-Q, R=oJ " -ei®. ]
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where Q = > So(u;) - v; if J =Y u; ® vy, uy, v; € Ug[[R]] and
_ _ _ b _ o
J=(¢""'@¢™") <‘I)1,%,34 0 ®y340030€2" 0Dy5,0Pra5(ir ® Z—)(¢(1))> '

It is a quasitriangular Hopf QUE algebra and a quantization, [7, 9], of the
quasitriangular Lie bialgebra (g = a @ a*, [, |q, e4 = d.r) where the topological
algebra structure of Ug[[h]] is the usual one. It is obtained from the qua-
sitriangular quasi-Hopf algebra (1) by a twist via J~', and we denote it as

Aglm .-

2.3. Quantization of quasitriangular Lie bialgebras.
1)Let (a, [, ]a, €4 = dcr1) be a quasitriangular Lie bialgebra. Set

g+ ={(1® f)r |Vf e Ua)} CUa, g ={(f@1)r |Vfe Ua)} CUa

where 1 = r" e,,®e,, with {e,,} a basis of a. Then (1®f)(r1) = r{"enf(en)
with f € (Ua)*. Because 7 is a finite sum, the only elements for which
(1 ® f)(r1) is not zero will be elements f € a*. Therefore, in this case, the
above definitions are equivalent to

gr ={(l@f)n|vfea}Ca g ={(fOn|Vfea}Ca

Using a result from [18], g, and g_ are Lie subalgebras of a.

Let us define x,, : g% — g- by xn(9) = (9 ® 1)r1. X, is a linear iso-
morphism. Using this isomorphism we may define (see [9]) a Lie algebra
structure |, |y on the vector space g = g4 @ g—, and also a adg-invariant bilin-
ear form <;>g. With these structures (g = g+ ® g-, [, |5, <; >7) is a Manin
triple. This Manin triple is the image by (1 @ x,,) of the classical double of
the Lie bialgebra (g4, [,]q,,€), g+ € a, where ¢ is the transpose of |, |4+ (see
also [19]).

Furthermore, the map 7 : gy ©& g — a defined as w(x;y) = = + y, for
x € gy, y € g is a Lie algebra morphism.

Theorem 2.16. [9] From 7 : g. &g — a, let us define 7 : g = g, Pgl —
abyrm=mo(l1&x,,). Then, T is a Lie algebra homomorphism and

(T @7)(r) =r.

Therefore, ® can be uniquely extended to an associative algebra homomor-
phism 7 : Ug — Ua.
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2)Let M, be the category whose objects are a-modules and Hom _(V, W) =
Hom,(V, W)[[R]]. Let My be the Drinfeld category associated to g. We
have the pullback functor 7* : M, — M, defined by 7*(V) = V, as
vector spaces, and if v € 7(V), x-v = 7(z) - v, x € g. We have also 7* :
Hom, (V, W) — Hom y (7*V, 7*W) defined by (7* f)(z-v) = (7* f)(7(2)-
v) = f(7(x)-v)=7(x) flv)=a - (7T°f)(v) withz €g, veTV=V.

We may define on M, a braided monoidal structure, using the one of Mg:
the assomatlvity constraint on M, is & = (7 @ 7 @ 7)® € Ua®’[[h]] where
® € Ug®’[[1]] is the one of M, and the commutativity constraint on M, is
B=(r@7)8 € Ua®[[h] Where 3 € Ug®[[h]] is the one of M.

3)Let us consider the following functor F : M, — A defined by
F(V) = Homy, (Ug, 7*V) = F(7*V) and if f € Homy (V,W), ]:(f) =
().

The tensor structure on F is introduced in the same way that the one on
F, that is to say, let Jyw : F(V) @ F(W) — F(V ® W) be such that,
if v € F(V), w € F(W), then Jyw(d @ @) : Ug — 7*(V @ W) is the
composition

Jyw(@@ @) =0 @w)o (¢ ' @¢ ") od40(1® Pygy)o
o(1® (oo e%Q) ®1)o(1® @2_7:1))’4) 0 Py9340 (i ®i_) 0.

Proposition 2.17. J is a tensor structure on the functor F.

The general reconstruction theorem [13] (chapter 9) can be considered in
the present setting, obtaining in this way [9] a quasitriangular Hopf algebra
(End(F),, A, S, R).

Proposition 2.18. There exists an algebra isomorphism A Ua[[h]] —
End(F), between the topological usual associative algebra Ual[h)] and End(F).

This isomorphism A allows us to define on the algebra Ua[[h]] the pull-back
of the quasitriangular Hopf algebra structure on End(F): (Ua[[A]],, A, S, R).

Theorem 2.19. Suppose that (a, [, |q, €4 = dcr1) s a quasitriangular Lie bial-
gebra. Let g = g @ g7 be the classical double of the Lie bialgebra (g4, [, ]g,,€)
and let (Ug[[h]],, A, S, R) be the quasitriangular Hopf QUE algebra obtained
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by Etingof-Kazhdan quantization (theorem 2.15). Then, we have

A(a) = jgl -Ag(a)- Jp, where ., =(7®7)J, R=(7®7)R,
S(a)=Q " Su(a)- Q.  where Q = XSa(p) - ¢ Jry = P ® qi,a € Ua,
where 7 =10 (1@ xy,) and Aq, Sy are the usual ones on Ua.

(Ual[R]],-, A, S, R) is a quasitriangular Hopf QUE algebra and a quantiza-
tion, [7, 9], of the quasitriangular Lie bialgebra (a, |, |q,qa = der1).

Remark 2.20. J,, satisfies the relation
Doz - (Ag@ D)y - (T, ©1) = (1@ Ay, - (1@ J,,).
3. Quantization of nondegenerate triangular Lie bialge-

bras

Let (a,[,]q, €a = dcr1) be a nondegenerate triangular Lie bialgebra. In this
case r; € A*(a) and det(r1) # 0. So, as vector spaces we have

gr ={@f)in|vfea}t=a=g ={(fOr |Vfeda}

Then the classical double of g, is the classical double of the Lie bialgebra a.
If {e;} is a basis of a and {e’} is the corresponding dual basis, then
(TRT)Q=(T®T)(r12 +721) = (r1)12 4+ (11)21 = 0.

Proposition 3.1. Given a nondegenerate triangular Lie bialgebra a and a
Drinfeld associator ®, we have

d=(FRiend=10121, ®cUg™(H]

R=(7®7)R = (ajgl) (1®1)-J.,, J, €Ua?[[H]]

(Ag@ 1)y - (L, @1 =(1®A) ], - (1®J,)
(j,,l is called an invariant star product (ISP) on (a,[,]s, e = der1) [1, 6, 14,
15, 16)).

The quantization of the above nondegenerate triangular Lie bialgebra is the
triangular Hopf QUE algebra (Ua[[R]], -, A, S, R), denoted by Aqja,grs which
is obtained by a twist via j,ql from the usual Hopf QUE algebra (Ua[[h]], -,
Ag, Sq; Ra = 1)'

Let I' be a neighborhood of 0 in IR. Consider a family of elements r; =
r1 + 7ot 4+ r3t? + -+ € a A a such that, for each t € T, 7, is a nondegenerate
solution of the CYBE ([ry, ;] = 0). If (a, [, ]q) is a Lie algebra over C, the set
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(a, [, ]a €a = dcry) is a nondegenerate triangular Lie bialgebra, for each ¢t € T
The Lie algebra structure on a* is defined by

[flan]a,’it_( crt) (f1®f2) fl,f2€a*.

Let g = a@a” be the classical double of the Lie bialgebra (a, [, |4, €4 = dc1y),

that we will denote as g,, = a® a;, because the Lie algebra structure of a* is
defined as
[S,U]a:t = (d.r)' (€ @), (10)
We could begin with the Lie algebra defined from a by the extension of
scalars IK — K[[A]] [4, 2]. We prefer here to begin with a convergent series
inaAa t eI, K=R. When proving, for example, Proposition 3.4 that
follows, we see first both members of the equalities as formal power series
in ¢ and h. Then put t = h. The proof doesn’t depend on the field R and
is then true for any IK. We read in [17, 16] Drinfeld Theorem 7 [6] under
this optical. We don’t have today enough arguments to underestimate this
optical. This simple remark is to be joint to the "universality properties”

of ® in [7, 8] which are at the basis for the existence of the Quantization
Functor [9, 12]. See also [20].

Lemma 3.2. [19] The element J of theorem 2.15 will be now J,, € ngf?f[[h]]
given by

th = (qb*l@gb*l) <((I)_1)12.34((1315)2,3,40236%923((I)t_l)2,3,4((I)t)1,2,34(i+®i)Qb(l))

o Z i1j1 Wk k
= 1 X 1 —+ 'f’ h + ( c. T’t Qll ----- Li(k)sJ15e-0s ]l(k)’k) h ’
k>2

where when an ordered basis s chosen QQ;, ... iy 1oty o € UgRUg 1s indepen-
dent of r, but the algebra structure depends onry, andr =Y (e;0) @ (0;¢').

Applying 7 ® 7, to J,,, we come to the following:
Proposition 3.3. [19]

L)) ~ ~
J (J )t h — ((“t X M)Jt)t_h Q14 271ﬁ+ g A (27R+

Y DN N o R

12,J2,- AR R Aig joy (R),..., A
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with Hiy injorjnidiyyy(R)dss (R),R € U @ Ua independent of ri. and k,

A, . (R) e NN.

Proposition 3.4. [19] Let ® € T3[[h]] be a Drinfeld associator. Let ry =
1+ 1ot +1r3t2 4 - be a nondegenerate solution of the CYBE, for each t.
Let (a,[,]a,€q = dc1i) be the nondegenerate triangular Lie bialgebra defined

by ry. Let <L{a[[h]], AL S j%t) be the quantization obtained in the Etingof-
Kazhdan’s theorem, (proposition 3.1), as the quantization of the above non-
degenerate triangular Lie bialgebra, from the usual Hopf algebra by a twist
via (J;,) 7L i i

Consider the element J? = (J,,)i—n € Ua[[R]]&Ua[[R]], then

(a) (NA“ ® 1)Jf; : (J;I; ®1)=(1® Aa)Jf; (1® Jf;);

(b) Jp =1®@ 1+ 4r h+0(h?);

(¢) Defining A(a) = (J2)™' - Aqla) - Jn, R=(0J2)" - (1®1)-J2 and

Tk
S(a) = Q7' Sy(a)-Q, where Q = ¥S4(a;) by, J2 = Ya; @b, a;, b; € Ual[H]],
the set (Ual[h]],-,A,S,R) is a triangular Hopf QUE algebra obtained

twisting the usual Hopf algebra (Ua[[h]], -, Aq, Sa, Ra = 1) via the element
(J2)~! € Ua[[n])|@Ua[[R]]. We write it as Ay (5o )-1-
(I

Let ji be the star product determined, in the same way, by

7"2:7"1+T2t+"'+Tk—1tk_2+(7"k+3k)tk_1‘f—.-.

that also verifies v, € A*(a), and ry_is a nondegenerate solution of Yang-
Bazter equation, for each t. Then J,fI; and Jg,'; coincide up to order k — 1

and .
(k= (T2 = 55k

4. A result on triangular Hopf QUE algebras of the form
Agqpy p and Drinfeld associators

Denote by Agy, 71 [7] the triangular Hopf QUE algebra which is a quan-
tization of the nondegenerate triangular Lie bialgebra a and the twist, via
F~! € Ua @ Ua[[R]], of the usual triangular Hopf QUE algebra Ua[[R]].

Theorem 4.1. [19] Let a be a nondegenerate triangular Lie bialgebra and
Agn),p-1 a triangular Hopf QUE algebra which is a quantization of this Lie
bialgebra. Then:
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(a) There exist elements v, = r1 + roh + r3h® + -+ € A*(a)[[A]] and E™ =
1+ E"h+---+ ERY + - - - € Ua[h]], such that

F=A((E™)7Y) - Jp, - (E™ @ E™),

i.e., F'is an invariant star product equivalent to jrh (16, 16]).
(b) In this case the triangular Hopf QUE algebras Aqp) r— and Aa[[h]]vj%l
are isomorphic.

As a consequence, we notice Aqpp r-1 = Aa[[h]]’(j%)_l = Aa[[h]] ()1
when two different associators are considered.
_Using Knizhnik-Zamolodchikov associator ([7, 8, 19]) we have obtained for
J.., up to the term of order A%, exactly the same expression obtained by
Drinfeld ([6] and explicitly written in [21]).

5. Invariant star products on (a,[, ], eq = d.r1)

Let I" be a neighbourhood of 0 in IR. Consider a family of elements r; € aAa
such that, for each ¢ € I', r; is a nondegenerate solution of the CYBE.
Let g1, : A"(a) — A,(a) be the isomorphism defined by (u,'(a))""" =
(re) (g,

If G is a Lie group with Lie algebra g, the adjoint representation of G
induces a representation on the Chevalley complex H*(g) that is trivial.
This is one starting point for the proof of next theorem which is similar
for the Etingof-Kazhdan quantization to that for the Drinfeld quantization
of bialgebra a. See also [16, 17| and compare with the proof given there.

Theorem 5.1. Let jrh = (jrt)t:h and j?’% = (jrg)t:h be ISP on the nondege-
nerate triangular Lie bialgebra (a,],|q,ea = der1) which appear from E-K
quantization. Suppose By = i (1¢) = i+ Pot + -+ and B = py(r;) =
B+ ot + -

Then, jrh and jT% are equivalent ISP if, and only if, B; and B3] belong to the

same formal cohomological class. In other words, J,, and jr% are equivalent

ISP if, and only if, there exists a formal 1-cochain oy = ont + ast?>+ ... such
that 52 = ﬁt -+ chét.
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