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Abstract: In Portugal, the rapid growth in housing in and near wildland–urban interfaces (WUIs)
increases the wildfire risk to lives and structures. The goal of our study was to assess wildfire hazard
in the Central Region of Portugal and in the contact areas of the 60,373 km of WUIs existing in the
study area. The degree to which wildfire is a hazard to the landscape and the different urban interfaces
areas was assessed using the spatial arrangement of land use/land cover (LULC), topography, and
historical incidence of burnt area. The results show that in more than half of the Central Region
territory, the wildfire hazard is high or very high; however, most WUIs are in contact with low
or very low hazard classes in a total of 87% of the segments. The LULC analysis in the different
wildfire hazard classes in WUI contact areas shows that agricultural crops are predominant in the
low and very low hazard classes, while in the very high and high hazard classes shrub communities,
coniferous and scrub forests dominate, respectively. These results can assist in designing appropriate
prevention measures and improving the effectiveness of fire prevention.

Keywords: wildfire; wildland–urban interface; probability; susceptibility; central Portugal

1. Introduction

Fire is a vital part of many ecosystems and the Earth system as a whole [1]; however,
in the last few decades, the increase in large fires recorded in various parts of the world has
caused major concern about their important environmental, economic, and social impacts.
When wildfires do occur in the vicinity of settlements, the consequences from a human
perspective are much greater than when they occur far from settlements [2]. Consequently, in
North America, Australia, and Western European countries, increasing attention is being given
to the wildland–urban interface (WUI), defined as the area where wildfires pose the greatest
risk to people due to the proximity of flammable vegetation [3–7]. This WUI vegetation,
which is not always properly managed (thanks to a lack of regulations in some countries or a
lack of their enforcement when they do exist), can act as a vector facilitating fire propagation
from the wildland to structures (and then possibly from structure to structure, evolving
into a conflagration) but also from the WUI towards the wildland. On the other hand,
the WUI is where more wildfires occur due to human fires, since most fires are human-
induced [1,8,9]. Thus, wildfires occurring in WUIs, or in their vicinity, often present a severe
risk to human life, cause significant damage to human-made structures and property, and lead
to human casualties [6,10]. In the last twenty years, the expansion of urban and WUI areas
has increased the density of fires and related risks [11–14], as well as the cost of protecting
houses from fire [15]. Several disasters are strong reminders of such events, such as the 2005
and 2017 wildfires in Portugal [16–18], the 2009 Victorian bushfires [19], the 2018 Camp Fire
in Northern California [20,21], the Australian bushfires [22,23], and the wildfires in Eastern
Attica, Greece [24]. The increasing frequency of such events shows that there is an urgent need
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to understand these phenomena and the existing risks so as to predict their consequences and
implement adequate mitigation measures, thereby increasing the resilience of the community
and the built environment [25].

In Europe, Portugal has historically been one of the most affected countries and has
experienced great material and human losses. In June 2017, in the Pedrogão Grande fire, in
Central Portugal, 66 civilian fatalities were recorded, and 253 other people were injured.
In this catastrophic event, more than 450 houses were destroyed, and over 49 companies
were directly affected by the fire. In total, 53,000 hectares of land burned, including
20,000 hectares of forest. In the same year, in October, 41 people died after hundreds of fires
(more than 500) resulting from extremely dry conditions and strong winds from Hurricane
Ophelia, and more than 800 houses and 500 companies were affected, mainly in the center
of Portugal.

In Portugal and elsewhere, the increase in WUIs results from two main factors,
namely the growing suburbanization and the abandonment of traditional rural lifestyles.
Pereira et al. [26] concluded that among the southern European countries, Portugal had the
highest rates of changes in land use in the 2000–2006 period. This period was marked by a
significant increase in urban areas and sclerophyllous vegetation and a decrease in forest
areas and natural grasslands, because of urbanization, rural abandonment, and wildfires.
The demographic pressure, mainly in Portugal’s coastal region, with high population den-
sity and unbalanced land-use planning options, has led to the spread of urban areas, which
have become closer and closer to the forest areas. This urban growth has not always been
continuous but is scattered around the area due to the absence of public programs, and its
occupation occurred under the auspices of private initiatives that which were not always
interlinked. As a result, buildings and groups of buildings have emerged in areas intended
to be urban but lacking proper planning and were in the vicinity of forest areas and hence
exposed to relevant fire risks. Simultaneously, rural areas have been abandoned in recent
years, which has contributed to the lack of management of forest areas [27–29], and the
greater accumulation of fuel biomass. Wild and agricultural land tends to be replaced by
urban areas close to the forest, and this significantly increases the threats that wildfires
present to urban areas [28,30–32].

WUI fires in Mediterranean Europe, as in all WUI fire-prone areas, pose enormous
management challenges in terms of civil protection and fire mitigation. These fires often
exceed the capacities of firefighters, who have to respond simultaneously to wildfire sup-
pression, community evacuation, and protection of structures. In this context, scientists
have been focusing more on the interfaces, paying particular attention to their characteriza-
tion and mapping and evaluating the risk of fires in these areas [6,13,29,33–41]. According
to Caballero [34], WUI problems have at least three different scales that must be approached
in different ways, but consistently between them are landscape, settlement, and house
levels. Similar to other forms of risk management, the management of wildfire risks begins
with an assessment of the probability of a wildfire event and the susceptibility of highly
valued resources and assets to wildfire [38,39]. In fact, spatially defining the WUI and
assessing different levels of wildfire hazard is essential to provide decision-makers with
accurate and defensible hazard data.

In this context, the main objective of this work is to evaluate the probability of and
susceptibility to wildfires in the Central Region of Portugal. It is also intended to charac-
terize the predominant typologies of WUIs in the study area and to evaluate the degree
of hazard in the areas in contact with the different urban interfaces. As the vegetation
(land use/land cover, LULC) is a well-known hazard factor due to the range of types and
intensity of human activities in different LULCs in and outside WUIs, the main LULC types
were analyzed considering the different hazard levels and WUI typologies. The final goal is
to produce maps that identify the municipalities with the largest extents of WUIs in contact
with high and very high wildfire hazards in order to identify areas that are in more need of
urgent interventions in terms of fuel management, thus enabling the reduction in the fire
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risk and therefore preventing catastrophic fires such those that occurred in 2005 and, more
recently, in 2017.

2. Materials and Methods
2.1. Study Area

The Central Region of Portugal covers an area of 28,199 km2 and is composed of
100 municipalities. With quite variable altitudes (Figure 1), Central Portugal is a rather
rugged territory, especially its central block, where the mountains of the Cordilheira Central
are located, and further west, the mountains nearer the coastline. The maximum altitude
is found in the Serra da Estrela and reaches 1993 m. It is also in this sector that the most
rugged slopes are found (Figure 2). Nearer the coast, altitudes are relatively low and slopes
are less steep. In the inland areas, on the Beira plateaus north of Serra da Malcata, the
altitude varies between 400 and 800 m, while to the south, on the Castelo Branco plain, the
altitude is around 500 m. In both areas, the slopes are relatively gentle.
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In recent decades, the Central Region has seen major changes in land use and land
cover (Figure 3 and Table 1). According to the 2018 Land Cover map (Figure 3), the most
typical use class is the Pinus pinaster (maritime pine) forests at 22.4%, followed by eucalyptus
forests at 17.2%, and native scrubland at 13.3%. In evolutionary terms, considering the
period from 1995 to 2018, some of these changes result from the little spatial relevance
featured in the 1990s (1995), one example being the invasive species forests (mainly Acacia
species) (Table 1), whose coverage percentage increased very significantly. However, the
most significant changes occurred in eucalyptus forests, whose area doubled and which
currently occupy more than 6000 km2. Meanwhile, the areas taken up by pasture land and
maritime pine forests declined (−60% and −22%, respectively).
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Table 1. Changes in Land Use and Cover between 1995 and 2018.

Classes
1995 2007 2010 2015 2018 1995/2018

km2 % km2 % km2 % km2 % km2 % Change (%)

Artificial Territory 1161 4.1 1475.4 5.2 1522.2 5.3 1546.3 5.4 1578.5 5.5 36%
Agriculture 5252.3 18.5 6373 22.4 6361 22.3 6104.8 21.4 6141 21.6 17%

Agriculture with
natural and

semi-natural spaces
705.6 2.5 431.9 1.5 443.2 1.6 472.8 1.7 501.1 1.8 −29%

Pasture land 2963.1 10.4 1354.8 4.8 1316 4.6 1460.6 5.1 1184.7 4.2 −60%
Agroforestry
areas—Holm
oak/Cover

364 1.3 359.8 1.3 359.7 1.3 355.3 1.2 358.5 1.3 −2%

Other agroforestry
areas 16.2 0.1 19.6 0.1 19.6 0.1 18.4 0.1 19.1 0.1 93%

Agroforestry
areas—other oaks 39.9 0.1 49.3 0.2 49.2 0.2 46.7 0.2 48.6 0.2 22%

Cork oak and holm
oak forests 712.1 2.5 805.8 2.8 803.9 2.8 819.8 2.9 842.7 3.0 35%

Forests of other oaks 834.2 2.9 921.2 3.2 919.6 3.2 929.2 3.3 945.5 3.3 13%
Other broadleaf

forests 750.7 2.6 837.1 2.9 830.8 2.9 836.2 2.9 863.9 3.0 15%

Eucalyptus forests 3251.6 11.4 4275.6 15.0 4390.8 15.4 4635.2 16.3 4906.6 17.2 51%
Forests of invasive

species 0.5 0.0 113 0.4 112.5 0.4 111.3 0.4 115 0.4 21769%

Maritime pine
forests 8116.6 28.5 6911.9 24.3 6795.6 23.9 6545.4 23.0 6364.2 22.4 −22%

Forests of other
coniferous trees 128.5 0.5 225.3 0.8 226.2 0.8 222.4 0.8 234.7 0.8 165%

Scrubland 3596 12.6 3714.8 13.1 3713.3 13.0 3763.2 13.2 3774.9 13.3 5%
Sparse vegetation 187.3 0.7 190.8 0.7 189.7 0.7 236.6 0.8 182.6 0.6 −2%

Wetlands and others 382.5 1.3 402.6 1.4 408.5 1.4 357.7 1.3 400.4 1.4 5%

Central Portugal has been the region most affected by wildfires since records began.
The morphological contrasts, the heterogeneous climate features, and an unbalanced
demographic occupation have made this region highly susceptible to wildfires [42]. It
should be noted that the fires of 2003 (425,000 ha), 2005 (338,000 ha), and 2017 (540,000 ha)
mostly affected the Central Region. Considering the history of wildfire, which results from
the overlapping of burnt areas from 1975 to 2020, we can say that the Central Region is
strongly affected by wildfires, particularly in the more mountainous areas and the northern
and north-eastern interior districts (Figure 4). In fact, fire has already struck most of
the territory in the region at least once (20.7%), but there are vast areas that have been
devastated by fire 2 or 3 times in recent years (18.8%). It is also possible to identify areas
that have been burnt 6 or more times in the last 45 years. The areas most affected by fires
are in the municipalities in the mountainous areas of Central Portugal, especially Gouveia,
Celorico da Beira, Mangualde, and Fornos de Algodres. Some of the municipalities in the
north-eastern part also report extensive areas that have been affected by wildfire more than
once in the last four decades. The municipalities of Castro Daire and Vila Nova de Paiva in
the north should also be mentioned, along with Pampilhosa da Serra, Arganil, Castanheira
de Pera, Figueiró dos Vinhos, and Sertã, located in the last part of the chain of mountains
that make up the Cordilheira Central.

2.2. Wildland–Urban Interface Definition

The definition of urban–forestry interfaces for the Central Region resulted from the
adaptation of the Built Environment Charter 2018 and the Urban-Rural Interface Charter
2018 (Carta de Áreas Edificadas 2018 and Carta da Interface Urbano-Rural de 2018), pro-
duced by the Directorate-General of the Territory (DGT). In line with these maps, the WUI
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is defined as an area where structures and wildland vegetation are in direct contact or in
close proximity, separated by a clearly defined boundary [43], defined as the perimeter
(or the segment) of the built-up area. In order to introduce detail to the interfaces identified
in the aforementioned products, we decided to reorder it in only 4 types of infrastructure
(Table 2), although in this work, only continuous built-up areas, discontinuous built-up
areas, and industrial areas were incorporated, as they are more sensitive to the loss of
people and goods.
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Table 2. Types of Wildland–Urban Interface.

Type of Infrastructure

WUI Type Code and Name in Land Use Land Cover Map 2018

CBA (Continuous built-up area) 1.1.1.1 Continuous built-up area, predominantly vertical
1.1.1.2 Continuous built-up area, predominantly horizontal

DBA (Discontinuous Built-up area)

1.1.2.1 Discontinuous built-up area
1.1.2.2 Sparse discontinuous built-up area

1.1.3.1 Parking areas and sites
1.1.3.2 Empty spaces without construction

1.2.3.1 Agricultural facilities
1.5.3.1 Areas under construction

1.5.2.2 Rubbish and scrap
1.6.2.1 Campsites
1.6.4.1 Cemeteries

1.6.5.1 Other tourist facilities and equipment
1.7.1.1 Parks and gardens

Industry

1.2.1.1 Industry
1.2.2.1 Trade

1.3.1.2 Non-renewable energy production infrastructure
1.3.2.2 Waste and wastewater treatment infrastructure

1.6.1.2 Sports facilities
1.6.2.2 Leisure facilities

Road Network 1.4.1.1 Road network and associated spaces
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2.3. Wildfire Hazard

The method used for assessing the wildfire hazard resulted from adapting the method-
ological proposal presented by Oliveira et al. [44]. This method is divided into three steps:
(i) assessment of wildfire susceptibility, (ii) calculation of wildfire probability, and (iii) deter-
mination of the wildfire hazard as the product of multiplying probability by susceptibility.
All of the elaborated maps have a spatial resolution of 10 by 10 m.

Inputs for assessing susceptibility included the variable slopes, altimetry, and land
cover. The land use and land cover maps (LULCM) came from the Directorate-General of
the Territory and had a scale of 1:25,000; they cover the years 1995, 2007, 2010, 2015, and
2018. The areas burned between 1975 and 2020 were included as a dependent variable.

The proposed methodology includes the Likelihood Ratio (LR), a fairly common
component that is based on Bayesian statistics and used by several other authors [45–47].
After reclassifying the variables slopes, the altitude, and the various land use and land
cover classes contained in the Land Use and Land Cover Maps, the Likelihood Ratio
of the Variable (LRi), for each class i of each variable was calculated according to the
following formula:

LRi = (Si/S)/(Ni/N)
Si = Number of burnt pixels corresponding to class i,
S = Total burnt pixels
Ni = Number of pixels of the class i
N = Total pixels of the study area
The burnt area information from 1975 to 2019 was considered for the altimetry and

slope variables, apart from 2005 and 2020, which were used to validate the model. Regard-
ing the land use and land cover variable, the procedure differed slightly from that used by
Oliveira et al. [44], since for each land cover map, a series of years of burnt area, successive
up to a maximum of 9, was used, according to the following proposal: LULCM 1995, burnt
areas from 1995 to 2003; LULCM 2007, burnt areas from 2006 to 2009; LULCM 2010, burnt
areas from 2010 to 2014; LULCM from 2015, burnt areas from 2015 to 2017; LULCM from
2018, burnt areas from 2018 and 2019.

Taking into account the dynamics that affect the land use and land cover throughout
the period under analysis, the use of reference years close to the year when the land use
and land cover map was created permits greater accuracy in assessing the predisposition
of each class to the occurrence of a fire. Naturally, over time, the classification that was
assigned to a particular area when preparing the land use and cover maps changes and
can result in something quite different from what was previously classified. Therefore, no
burnt areas are considered beyond 9 years after the date of land use and cover maps, in
order to reduce the possibility that, at a more distant point in time, the present land cover
class is no longer up to date, which may result in some bias in the LR results.

According to the proposal by Oliveira et al. [44], LRi scores below 1.0 indicate a
negative correlation between variable (x/y class) and burnt areas. On the other hand,
higher values indicate a positive correlation, which increases in parallel with the value
of LRi.

The final product of the susceptibility, for each pixel, results from the sum of the
likelihood ratios associated with its classes in the variables landcover, slope, and elevation.
The product obtained for susceptibility is afterward combined with probability to give the
final product, i.e., the hazard.

The probability that a wildfire will burn a given point or area for a specified period of
time was the assumption adopted in this study, instead of the probability that a fire would
start at a given location and time. In fact, the number of ignitions in Portugal is very high,
and they occur mainly in areas of higher population density [48] and to some extent within
or near wildland–urban interfaces. However, a small percentage of fires are responsible for
the large number of burnt areas in the Central Region of Portugal, and it is these significant
wildfires (with burnt areas of 10,000 to 20,000 ha) that put people and their property at
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risk. For this reason, we considered that the burnt area is the most suitable variable when
analyzing the wildfire hazard in Portugal.

In calculating the probability variable, the overlapping of burnt areas in the study
area was accounted for. For this purpose, the data from the shapefiles provided by the
Portuguese Institute for Conservation of Nature and Forests ((ICNF, https://www.icnf.pt/
(accessed on 10 January 2022) were transformed into raster format. This process resulted
in a raster for each year, with each burnt pixel in the burnt area being assigned a value of
1. Summing the rasters made it possible to spatialize the recurrence of fires in the 1975 to
2020 period. Subsequently, these data were reclassified to obtain the annual probability of
wildfire as a result of dividing the number of times a pixel has burnt by the number of years
in the series. The areas that did not burn during the study period were assigned a value of
0.01, which corresponds to an annual probability of 1%, thus allowing their inclusion in
multiplication operations.

Subsequently, 5 classes were defined for the final model, adopting the following
assumptions: (i) the “very high” class had to validate 50% of burnt area, and the “very low”
class could not incorporate the burnt area, in the years used for result validation, 2005 and
2020. The remaining classes were defined considering the following assumptions: (i) model
data, (ii) validated burnt area, (iii) breaks in the model success curve, and (iv) the trend
lines of the segments between these breaks (Table 3 and Figure 5). From this point onwards,
with these fractions, the model line that translates this relationship between Hazard values
and burnt area was drawn, making it possible to arrive at the breaks of this line and obtain
the classes in question. Simply put, the accumulated fraction was calculated for the number
of pixels with a hazard value x and for the number of pixels burnt in that score x. From
this point onwards, with these fractions, the model line was drawn that translates this
relationship between the hazard values and the burnt area, allowing one to reach the breaks
of this line and obtain the classes (Figure 5).
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Finally, the SDMtoolbox (v2.5 for ArcMap 10.0), a python-based ArcGIS toolbox, was
used to validate the model by calculating the AUC (Area Under the Curve). This evaluation
summarizes the ROC (Receiver Operating Characteristic) curve in a value that basically
allows the quality of a model’s predictions to be measured; i.e., if a model’s predictions is
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100% correct, the AUC value would be 1. The results for the Central Region of Portugal
point to a good model performance, with an AUC greater than 0.80 (Figure 6).

Table 3. Hazard class properties.

Hazard Classes Hazard Scores Success Curve Trend Class Area (%) Burnt Area (%)

Very High 0.101–1.597 y = 2.3106x + 8 × 10−6 21.5 50
High 0.032–0.101 y = 1.8899x + 0.1052 28.5 48.5

Moderate 0.027–0.032 y = 0.1584x + 0.9016 6.3 1.1
Low 0.021–0.027 y = 0.0215x + 0.9798 11.5 0.4

Very low 0.009–0.021 y = 0.0063x + 0.994 32.2 0
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To identify the contacts between different types of WUI and Hazard classes, at land-
scape scale, an intersection of the WUI was made with the final Hazard raster, thus enabling
the identification of the most recurrent contacts and the location of the most problematic
interfaces in terms of hazard. Finally, the predominant LULCs in contact with the different
types of interface were identified.

3. Results
3.1. WUIs in the Central Region

The central region of Portugal is made up of WUI totaling 60,373 km in length, the
predominant typology being discontinuous built-up area (80.6%), followed by continu-
ous built-up area (13.1%) and, finally, industry (6.3%) (Figure 7). Spatially, the contrasts
between the municipalities of the coast and the interior are evident. In effect, the inland
municipalities have the lowest interface proportions (km/km2), with 14 municipalities
with less than 1 km of interface/km2. On the other hand, it is in the coastal region in which
the density of interfaces shows the highest values, with 15 municipalities registering more
than 4 km of WUI/km2.
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3.2. Wildfire Hazard at Landscape Scale
3.2.1. Wildfire Susceptibility and Probability

The fire susceptibility map results from the favorability scores were obtained through
LRi for the three variables integrated into the model. Thus, the areas with an altitude
between 400 and 1500 m (especially for those between 800 and 1500 m altitude) (Table 4)
with slopes greater than 15◦ and occupied by brush, sparse vegetation, oak forests, and
maritime pine are those with a higher susceptibility to wildfires (Tables 5 and 6). Spatially,
the maximum values of wildfire susceptibility occur in the mountainous regions of central
Portugal, as well as in the most inland areas of the Central Region (Figure 8). On the
contrary, in a strip along the coast, where the altitude and slopes are dominantly low, the
susceptibility to wildfires is quite low.

Table 4. Likelihood ratio scores (LRi) for altitude.

Altitude (m) LRi (1975–2019)

0–100 0.365
100–200 0.69
200–300 1.02
300–400 1.06
400–500 1.127
500–600 1.375
600–700 1.417
700–800 1.486

800–1000 1.572
1000–1500 1.847
1500–2000 0.895
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Table 5. Likelihood Ratio scores (LRi) for slope.

Slopes (◦) LRi (1975–2019)

0–5 0.454
05–10 0.716
10–15 0.92
15–20 1.095
>20 1.211

Table 6. Likelihood Ratio scores (LRi) for the Land Use and Land Cover maps.

Classes 1995 2007 2010 2015 2018 Weighted Average LRi

Artificial 0.066 0.079 0.083 0.281 0.087 0.103
Agriculture 0.476 1.185 0.743 0.715 0.759 0.692

Agriculture with natural and
semi-natural spaces 0.231 0.332 0.256 0.370 0.240 0.270

Pasture land 0.412 1.208 0.657 0.364 0.563 0.584
Agroforestry areas—Holm oak/cover 2.494 6.110 2.417 1.279 0.762 2.646

Other agroforestry areas 0.238 0.015 0.132 0.081 0.011 0.142
Agroforestry areas—other oaks 0.152 0.405 0.212 0.178 0.000 0.190
Cork oak and holm oak forests 0.658 2.655 0.428 0.312 0.413 0.809

Forests of other oaks 0.853 0.648 0.531 0.207 0.037 0.590
Other broadleaf forests 1.499 3.471 1.845 0.911 0.721 1.696

Eucalyptus forests 0.593 0.597 0.926 1.367 0.355 0.753
Forests of invasive species 0.771 0.394 0.914 1.394 1.217 0.878

Maritime pine forests 0.000 0.397 0.887 2.297 0.243 0.591
Forests of other coniferous trees 1.090 0.533 0.975 1.526 1.548 1.089

Scrubland 0.300 0.500 0.530 0.588 0.228 0.412
Sparse vegetation 2.035 3.240 2.734 1.344 1.472 2.213

Wetlands and others 0.326 0.863 0.211 0.240 0.211 0.351
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The probability map (Figure 9), based on the recurrence of burnt areas in the 1975–2020
period, shows a maximum value of 0.33 (33%). Thus, the areas classified with this value,
taking into account the period of 45 years used, might have burned more than a dozen
times. The areas with the highest probability of burning occurring are in the north-east of
the Central Region. The central mountain range (Cordilheira Central), consisting of several
mountains, also shows a high probability of the occurrence of wildfires, with extensive
burnt areas.
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3.2.2. Wildfire hazard

Spatially, in the Central Region, the hazard classes with the most representation are
high and very low, both with values around 29%, followed by very high (21.6%), low
(13.7%), and finally, moderate (6.1%). These results show that in more than half the territory
of the Central Region, the wildfire hazard is high or very high (Figure 10). The analysis at
the municipal level shows that 20 municipalities are distinguished by the predominance of
the very high hazard class (Figure 11). They tend to be located from north-east to south-west
and include the most mountainous areas of the Central Region. The high class includes
34 municipalities in the central and northern interior of the Central Region. However, the
municipalities where the low hazard class predominates follow the western coastal strip
and the more southern interior of the Central Region.

3.3. Wildfire Hazard in WUI in the Central Region

The intersection of the different wildfire hazard classes at the Central Region level with
the different kinds of WUI means that we can confirm that most of them are in contact with
low or very low hazard classes in a total of 87% of the segments (Figure 12). On the other
hand, the high and very high hazard classes represent 3.9% and 0.3%, respectively, although
the high hazard class is in contact with about 9% of the WUIs classed as discontinuous
urban built-up.
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Considering this analysis at the municipality level, it is possible to identify, however,
municipalities where the high or very high wildfire hazard classes in contact with WUIs are
of more concern (Figures 13 and 14). Thus, with the highest percentage of WUIs in contact
with very high wildfire hazard, the Pampilhosa da Serra municipality stands out, with
37.5% of the interfaces (Figure 13). This is followed by neighboring municipalities such as
Arganil, Góis, and Oleiros, where the contact ranges between 10 and 20%. If we consider
the high-hazard class, the Oliveira do Hospital municipality is notable for having about
96% of its WUIs in contact with this class, followed by Seia (50.3%), Mação (50.8%), Arganil
(52.8%), Santa Comba Dão (53%), and Pedrogão Grande (58%) (Figure 14). In general, these
municipalities take in the southern part of the range of mountains of Central Portugal, but
also a zone known as the interior pine forest, which, as the name indicates, is characterized
by the predominance of coniferous forests and is highly inflammable.

The analysis of the type of LULC present in the various classes of wildfire hazard
in WUI contact areas shows that in the classes of low and very low hazard, agricultural
crops predominate, while in the highest classes, i.e., very high and high, shrub commu-
nities and coniferous forests and bushes predominate, respectively. Note that in the
WUI contacts where the hazard is very high, scrubland is present in around 60% of the
segments. Fast-growing woodlands dominated by eucalyptus forests are not very well
represented in WUI contacts with high or very high hazard classes, ranging as they do
between 20 and 30% (Figure 15).
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When land cover, the degree of hazard, and the different kinds of WUIs are assessed,
it is found that agricultural crops predominate in all interface types (Figure 16), though
there is a clear presence of a significant percentage of scrubland and bushes in contact
with interfaces where the urban built-up is discontinuous and the hazard is high or very
high. Despite being less abundant, scrubland also emerges in contact with the continuous
built-up area whose hazard is high.
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4. Discussion

Wildfires in Portugal affect extensive areas of the territory and often threaten urban
areas, from the edges of large cities and towns to the small rural villages. The total length
of the WUIs in the Central Region exceeds 60,000 km, with discontinuous built-up area
being a dominating factor. According to the Land Cover Map (2018) specifications, this
corresponds to built-up area mostly occupied by isolated residential buildings associated
with mosaics of cultivated land and other areas with vegetation, predominantly scrub.
The results also reflect substantial regional variations in the length and density of WUI, in
direct correlation with population density. In fact, the coastal municipalities significantly
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increased their population in the past few decades, and nowadays, they have the highest
population densities and urban concentrations. Around 2/3 of the Portuguese population
lives in the urban and suburban areas of the coastal regions between the metropolitan areas
of Lisbon and Porto [48]. At the same time, both the central inland municipalities and those
in the northern and southern regions were severely affected by population exodus, leading
to a reduction in the size of herds, the abandonment of farmlands, and a reduction in the
amount of forest fuels consumed by grazing and being used as firewood [48–51].

Following the worldwide trend [4,52–54], the WUI areas are increasing in Portugal [55]
as a result of the increasing mixture of urban settlements and woodland due to (i) urbanized
spaces that are expanded to forested areas and (ii) scrubland and woodland that are
colonizing rural areas due to the rural abandonment [41,55,56]. Moreover, areas where
urban zones and wildlands meet or intermingle are shown to have a positive relationship
with the risk of wildfires igniting [6,57,58]. Given the growth of WUIs in Central Portugal,
mainly dominated by scattered and isolated houses, wildfire prevention measures are
needed to reduce the hazard to and vulnerability of urban and rural areas. In the region
under study, local variations in biophysical characteristics (altitude, slopes, and LULC)
gave rise to significant differences in the wildfire hazard, showing that the most fire-prone
regions are in the most mountainous areas. This agrees with the results obtained by
Oliveira et al. [44] since the methodology used was broadly the same, the main difference
only being in the land use types used. The relationship of wildfire hazard, at the landscape
scale, with the WUIs showed that the vast majority of WUIs have contact with very low
and low wildfire hazard classes, where agricultural land is the most widespread land use.

The less fire-proneness of agricultural areas has been recognized in various works in
different areas [48,56,59,60]. Thus, farmland around isolated houses and villages can act as
a buffer zone against wildfires, except in the case of extreme wildfire episodes, when fire
selectivity in specific land cover types is drastically reduced [44,61].

However, in the vicinity of WUIs with high and very high classes of hazard, scrub-
lands and pinewood were the most frequent LULC types in our study area. Several
authors [44,48,50,61–63] found a positive relationship between shrubland-type vegetation
and burned areas. Various studies performed in Mediterranean areas found that cropland
and broadleaf forests are less prone to fire in comparison with shrubland, grassland, and
coniferous forest [26,64,65]. In fact, shrubland and grassland vegetation can rapidly colo-
nize abandoned farmland and areas affected by fire [26,50], growing every year, which is
encouraged by the high levels of precipitation, mainly in the coastal region and in areas
with higher elevation. The low profitability of shrublands [66] and the lack of incentives
for their management at a time when wildfire hazard reduction through fuel management
was not compulsory near houses and settlements explain the predominance of this land
cover. The high flammability of Pinus pinaster is also recognized by several authors [66,67]
and confirmed by the levels of LRi recorded for the period of 2010–2015.

Studies on experimental fuel management, such as decreasing the amount of fuel
load per unit area, have proved effective in reducing fire risk by up to 50% in urban
interfaces [68–70]. Two main actions can be taken, namely fuel reduction in the forest
surrounding the WUI, to provide a “defensible space” or safe protection buffer for homes
during a wildfire, and homeowners’ efforts to decrease the flammability of their property
and its immediate surroundings.

This is in addition to ensuring accessibility for firefighters so that they can provide
further protection [71]. Several approaches have been used to explore the optimal loca-
tion for fuel treatment [72–77]. For example, Syphard et al. [73] and Miner [74] found
significant benefits from reducing vegetation around 5–20 m from a structure, after which
the protective effect of carrying out fuel treatments farther away was not evident. Gib-
bons et al. [72], in a coarse-scale analysis in Australia, conclude that the defensible space
closest to the structure (i.e., within the first 40 m) was significantly more important than
vegetation cover further away. Even though these studies advocate that reducing vegeta-
tion cover close to the built-up areas can diminish the potential for the loss of structures,
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extensive conclusions continue to be difficult to assess because the studies were carried
out at various scales of analysis using different measurements and were limited to the
unique geographies of the study regions [78]. In addition, the relative contribution of
defensible space compared to other variables is still unclear, although some studies suggest
its relative importance changes according to housing pattern, structural characteristics, lo-
cation, and scale [73,79,80]. For example, Syphard et al. [73] observed that housing patterns
and arrangements were more important than defensible space for explaining structure
loss in southern California. This result is coherent with other studies that have mostly
observed that housing arrangement and topographic variables are more influential in
explaining structure loss than vegetation amount and configuration [81,82] or other proxies
for vegetation [83].

The disastrous fires of 2003 and 2005 that occurred in Portugal led the national govern-
ment to approve the Decree-Law 124/2006 of 28 June. This created a program of “measures
and actions to be developed within the National Wildfire Defence System” with the objec-
tive of protecting and defending both people and property and forest resources. However,
after the 2017 fire events, the law was changed by Decree-Law 10/2018, of 14 February,
which revoked the aforementioned decree law, classified as “inefficient at containing fires
progression and safeguarding the safety of people and property”. Under Decree-Law
10/2018, it is mandatory for isolated buildings and urban villages to have a protection
buffer area, where fuel reduction or removal must be implemented. The land use in this
buffer area must be restricted to low-fuel activities such as agriculture and grazing, and for
which native or less flammable species, such as broadleaf trees, were prescribed. Its width
varies from up to 50 m for isolated buildings and 100 m for settlements.

Although it holds that fuel management should be carried out in all rural and forest
areas throughout the country and that all these places should be monitored, the government
has established priority areas for monitoring, which coincide with the parishes known
to have the highest level of wildfire hazard, which number more than one thousand at
the national level. Fuel management is mandatory in these parishes, and their number
is updated every year. Despite the mandatory fuel management zones around strategic
locations where total or partial removal of existing biomass must be carried out every
year between September and May, the level of implementation in Portugal has not yet
been confirmed. Furthermore, LULC data do not provide information on the level of
fuel management implemented. The most detailed official Portuguese LULC data is not
released on a yearly basis, which implies that the urban–rural interface hazard map is often
out of date.

In addition to the above-mentioned measures, the legislative changes prompted by the
2017 wildfire episodes also established the “Safe Village” and the “Safe People” programs
under Resolution no. 157-A/2017. These programs consist of “settlements and forest
protection” and aim at establishing ‘structural measures for people, goods, and buildings
in the WUI’, with the implementation and management of protection zones for settlements
and strategic infrastructure identification, such as critical points and places of refuge”.
They also intend to develop awareness-raising actions and self-protection measures for the
public in the event of a wildfire. However, at the national level, there is a lack of studies on
the effectiveness of these programs, the constraints of their implementation, and whether
these programs are changing the behaviors and attitudes of homeowners with respect to
wildfire risk reduction, preparedness, and coping capacity should a fire occur.

The same resolution also approved a “Program to Reduce the Number of Fires”. The
purpose was to involve society and the system’s agents in education programs about the
forest and the use of fire and thus to change social habits and behavior by specifically
targeting the different groups responsible for these fires. In Portugal, as well as in the
Mediterranean region, most fire ignitions are human-induced, which is why understanding
the spatial influence of human activities on the distribution of fire ignitions is essential for
managing and mitigating ignition risk. Thus, future studies should focus on the human
activities and motivations (deliberate or negligent ignitions) related to fires, the places
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where they occur (within or beyond WUIs), the topographic features, and the type of LULC,
since these factors are essential to mitigating ignition risk and adjusting fire management
measures, at both landscape and WUI scales.

5. Conclusions

Understanding the spatial variations in wildfire hazards at the landscape/municipal
and WUI levels can assist in the design of suitable prevention measures and improve the
effectiveness of fire prevention; it can also provide support for environmental and civil
protection policies such as the allocation of firefighting resources.

This study led to the following findings:

(i) The evaluation of wildfire hazard at the landscape scale, based on Oliveira et al.’s [44]
methodology, showed that high and very high classes are dominant in more than half
of the study area.

(ii) At the WUI scale, high and very high hazard classes predominate in 4.5% of the
segments in direct contact with built-up areas; however, 9% of the WUIs classified as
discontinuous urban built-up are in contact with high hazard classes.

(iii) The municipalities with the highest wildfire hazard, at both landscape and WUI
scales, are located in the inland and most mountainous areas of the Central Region,
characterized by the predominance of shrubland and coniferous forests.

(iv) The use of “the WUI” as a spatial risk analysis unit is an innovative approach in
Portugal. It allows the identification of specific locations with higher levels of hazard
to wildfire.

(v) This approach could be critical in reducing wildfire risk, since understanding what
influences such locations’ susceptibility to wildfires can provide enough detail and
guide the design of spatially targeted strategies in the management, preparedness,
and mitigation plans.

(vi) LULC management seems to be the basic tool at our disposal to reduce the wildfire
hazard at the landscape scale significantly and effectively, as well as the hazard in the
WUI areas at the same time.

At the landscape scale, LULC management requires long-term commitment and
investment, while at the WUI level, the responsibility for managing wildfire hazard falls on
homeowners, who should actively create and maintain a home buffer area of reduced fire
fuel with low flammability potential to burn. Creating wildfire-risk-reduction buffer zones
at the perimeter of the home requires regular, ongoing maintenance to be effective.

However, wildfire risk at WUIs is not only a result of biophysical factors (topography
and LULC), but it is also related to people and built environments, which present huge
management challenges when it comes to fire mitigation and civil protection because of
the exposed communities, houses, infrastructure, and ecosystems. Future studies should
therefore pay attention to biophysical factors connected to vulnerability, which could
include socioeconomic factors, type of construction, coping capacity, and other variables.
Determining the location of the most vulnerable populations and the socioeconomic aspects
that determine vulnerability is critical for reducing wildfire risks and for developing and
enhancing policies to mitigate human impacts. In this context, more accurate analyses will
be needed to better characterize WUIs, using accurate biophysical and socioeconomic and
high-resolution data. The implementation of WUI fire mitigation measures in communities
also requires effective communication from local authorities, tailored policies, education,
and awareness of homeowners.

Moreover, the influence of the future climate in the Mediterranean region should not
be forgotten, since climate change projections indicate longer dry, hot summers and more
frequent and intense extreme weather events, leading to larger and more destructive fires.
The expectation is that extreme weather conditions pose a higher wildfire risk, and the loss
of human lives and property damage are likely to increase, highlighting the need for these
changes to be quantified and integrated in risk analyses to support and anticipate for the
adaptation of forest and fire management policies.
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