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Abstract

The detection and description of local image features is fundamental for different

computer vision applications, such as object recognition, image content retrieval, and

structure from motion. In the last few years the topic deserved the attention of different

authors, with several methods and techniques being currently available in the literature.

The SIFT algorithm, proposed in [2], gained particular prominence because of its

simplicity and invariance to common image transformations like scaling and rotation.

Unfortunately the approach is not able to cope with non-linear image deformations

caused by radial lens distortion. The invariance to radial distortion is highly relevant

for applications that either require a wide field of view (e.g. panoramic vision), or

employ cameras with specific optical arrangements enabling the visualization of small

spaces and cavities (e.g. medical endoscopy).

One of the objectives of this thesis is to understand how radial distortion impacts

the detection and description of keypoints using the SIFT algorithm. We perform a

set of experiments that clearly show that distortion affects both the repeatability of

detection and the invariance of the SIFT description. These results are analyzed in

detail and explained from a theoretical viewpoint. In addition, we propose a novel

approach for detection and description of stable local features in images with radial

distortion. The detection is carried in a scale-space image representation built using an

adaptive gaussian filter that takes into account distortion, and the feature description

is performed after implicit gradient correction using the derivative chain rule. Our

approach only requires a rough modeling of the radial distortion function and, for

moderate levels of distortion, it outperforms the application of the SIFT algorithm

after explicit image correction.



Chapter 1

Introduction

The detection and extraction of local image features - henceforth called keypoints -

is a low-level visual process. Such features must be stable in the sense that they can

be detected and recognized across different views of the same scene. The usefulness of

visual features is enormous and they are currently used in several computer vision tasks

like motion tracking, visual recognition, 3-D reconstruction and camera calibration.

Different algorithms for extracting keypoints and visual features have been proposed

in the last decades. The broadly used Canny edge detector [4] dates from the 80s and,

since then, many other algorithms have appeared aiming to detect and match image

features in a robust manner. Ideally these features must satisfy invariance properties,

namely to changes in scale, rotation, illumination and viewpoint.

The Canny edge detector [4] and afterward the Harris corner detector [5], were

invariant to image rotation and global illumination because they heavily relied on

image gradients. In the 90s Lindeberg devoted a lot of attention to the problem of

scale invariance [6]. He introduced in computer vision the concept of scale-space im-

age representation and set the backgrounds for scale invariant feature detection and

description.

With the Scale Invariant Features Transform, coined SIFT [7], David Lowe made

a significant contribution for keypoint detection and description. His method, initially

aiming object recognition, was carefully designed for being very stable and efficient.

Lowe decided to describe the keypoints using histograms of image gradients computed

in a neighborhood around the point. Before that point matching across views was

usually performed by simply correlating local image patches around the extracted key-

1
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(a) Viewpoint changes (b) Arthroscopic image (c) Catadioptric image

Figure 1.1: Images taken with different types of lens.

points. However, these methods were not robust because patches would change signifi-

cantly under simple image rotations [8]. Several studies showed that SIFT descriptors

are one of the most robust technique [8, 9] in terms of scale, rotation and minimal

viewpoint invariance.

Most keypoint detectors and descriptors were designed for images captured by pin-

hole cameras. However, the projection in many vision sensors that are broadly used

in daily applications can not be described by the standard pin-hole model. Immersive

environments, as well as surveillance systems, often require cameras with wide angle

lenses, where the bending of the light rays when crossing the optics causes radial

distortion. The distortion increases as we go far away from the center and is typically

described by non-linear terms that depend on the image radius. The same problem

arises when using cameras with mini-lenses or unconventional optical arrangements

such as medical endoscopes.

Recently Hansen et al. [10] proposed an approach to extend SIFT for the case wide

angle images. The method assumes that the calibration is known in advance, and

that the images are back projected into a unit sphere centered in the effective camera

viewpoint. Such transformation corrects the radial distortion and avoids that local

regions surrounding a point undergo considerable changes under the action of pure

rotation. A suitable scale space representation is obtained by solving the diffusion

equation on the sphere. Unfortunately the approach is complex and computationally

expensive because convolutions are performed in the frequency domain, which requires

a spectral representation of the image using spherical harmonics [11].
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1.1 Motivation

This thesis was developed in the context of the ArthroNav project, where the main

goal is to perform computer aided surgery using as guidance the endoscopic video. De-

tection and matching of features in endoscopic video is problematic because the images

present strong radial distortion (RD). Thus, our interest in detection and matching of

features under RD was initially motivated by this problem. However, the usefulness

of such research goes well beyond endoscopic imagery and medical applications. In

fact, and as stated in the introduction, many vision sensors that are broadly used in

daily applications can not be described by the standard pin-hole model. Examples are

cameras with fish-eye lenses, often used in robotics and surveillance, and catadioptric

sensors enabling panoramic imaging.

There is a broad variety of different methods and algorithms for detecting and

matching keypoints across views [1, 2, 12]. The thesis focuses only on the SIFT ap-

proach originally proposed by David Lowe [2, 7]. This technique is one of the most

robust in the literature, for which several improvements have been proposed [13, 14].

Nevertheless, and to the best for our knowledge, this is the first works proposing an

extension of the SIFT framework to the case of images with RD. Closely related is

the work of Hansen et al. [10]. They suggest back-projecting the image on an unitary

sphere and building a scale-space representation that is the solution of the diffusion

equation over the sphere. The keypoint detection is carried in the frequency domain

using spherical harmonics. Such representation minors the problems inherent to planar

perspective projection, enabling RD invariance and extra invariance to rotation. How-

ever, the approach requires perfect camera calibration and tends to be highly complex

and computationally expensive. In contrast the method herein presented carries all

the processing steps in the original image plane, only requires a rough modeling of the

distortion function, and is a minor modification to the original SIFT algorithm that

marginally increases the computation time.

1.2 Thesis Overview

This thesis is divided in four more chapters. In the next chapter the SIFT method

is described in detail. In the third chapter, a performance evaluation of the SIFT
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under RD is presented. Section 3.1 introduces the so called division model for radial

distortion [15, 16] that will be assumed through the remaining chapters. The data

sets used for evaluating detection and matching, as well as the adopted metrics and

criteria, are also explained. Chapter 4 derives the modifications to the SIFT algorithm

that enable to improve detection and matching in images with RD, and discusses

implementation issues with an impact on the computation time. The algorithm is

compared against applying the original SIFT directly in images with distortion and in

rectified images after RD correction. While the comparison in chapter 4 is carried over

synthetically generated distorted images, chapter 5 provides an experimental evaluation

on real imagery. In here, not only results with arthroscopic images are presented,

but also results using conventional cameras equipped with lenses that introduce RD.

Finally, conclusions about this work are reported.

The main contributions of the work can be summarized as follows:

• A thorough experimental evaluation of the performance of SIFT features in im-

ages with radial distortion. Although the invariance to scaling and rotation has

been evaluated by previous authors [1,8,9,13], to the best of our knowledge this

is the first study that focuses into invariance of SIFT features to non-linear image

distortion. It is provided experimental evidence that distortion strongly affects

both detection and matching across different views.

• The experimental study is complemented by a theoretical interpretation of the

observed results. This leads to a deep understanding about how RD impacts

performance.

• A novel algorithm for feature detection under radial distortion. The key idea

is to build the scale space representation using an adaptive gaussian filter. The

time of computational time of the proposed method is close to the original SIFT

over RD images, while the results of detection are improved.

• A novel algorithm for feature description is also explored. In here, a differen-

tial chain rule is used to invert the effect of the RD in the image gradients.

This method allows to improve the feature matching performance for moderate

amounts of non-linear deformation.
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Instead of applying the standard SIFT method directly over the distorted images

[17, 18], or perform image rectification to correct the distortion before running SIFT

[19], the proposed approach adapts the SIFT to the distortion information. The final

solution is a keypoint detector and descriptor that outperforms the standard SIFT

algorithm directly applied over radial distorted images and that provides better results

than image rectification for moderate levels of distortion.



Chapter 2

Scale Invariant Features Transform

2.1 The Multi-scale Approach: Scale-space Theory

Images of real world object and scenes when captured by a camera can vary under

different conditions. The appearance of the same scene point in different images can

substantially change with the viewpoint, the distance and the illumination conditions.

The objective of a keypoint detector is to find points and features that can be easily

recognized under varying image acquisition conditions. The scale and detail of a certain

image feature across different views can undergo substantial variation. The scale-space

theory allows to manipulate the image signal in a scale invariant manner by representing

it at several levels of scale. The signal is successively low-pass filtered until it reaches

an extrema (maximum or minimum) in scale which is the level where that particular

signal structure should be handled.

The multi scale representation of an image is usually built by convolving the signal

with a bi-dimensional Gaussian function (Eq.(2.1) and Eq.(2.2)). The filter standard

deviation σ is the scale parameter/dimension. The key idea is to increasingly blur the

image in order to obtain a measure of the signal variation in space. In fact, several

results [20–22] prove that convolving the image with the Gaussian is the canonical way

to obtain a scale-space representation of it.

G(x, y, σ) = 1
2πσ2 e

−x
2+y2

2σ2 (2.1)

L(x, y;σ) = I(x, y) ∗G(x, y;σ) (2.2)

6
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Given an image I(x, y) : R2 → R, its multi-scale representation L : R2 × R+ → R,

is defined as the solution of the heat diffusion equation (Eq.(2.3)):

∂σL(x, y, σ) = σ2∇2L(x, y;σ). (2.3)

with initial condition L(x, y; 0) = I(x, y) [23] and σ being the standard deviation of

the filter.

As any formal theory, the scale-space is based in several axioms (see [23,24]). Due

to its properties, such as linearity, positivity and semigroup property, the Gaussian

verify all the scale-space representation axioms. In addition the separability of the

isotropic Gaussian filter is an attractive property that enables gains the computational

time. Although this is not essential in terms of obtaining a suitable scale-space rep-

resentation. A fundamental point when building the multi-scale representation is that

the enhancement or creation of new structures is not allowed when smoothing the

image from finer to coarse scale (increasing the scale parameter). The axiom of non-

enhancement of new structures is meaningful in the sense that the structures with size

smaller than σ must vanish away at level σ2 of the scale-space representation, and can

not lead to additional extrema at coarser levels of scale. This implies that at any level

σ2, a maximum could not increase and a minimum coud not decrease. Once more, the

Gaussian verify this non-enhancement of local extremum property.

The scale-space framework in image processing relies on the Principle of Scale Se-

lection stated by Lindeberg [24]: In the absence of other evidence, assume that a

scale level, at which some combinations of normalized derivatives assumes a local max-

imum over scales, can be treated as reflecting a characteristic length of a corresponding

structure in the data.

In other words, as we cannot predict the size (how large) of a certain feature, this

framework provides a filtering of unknown structures just by convolving the image with

a Gaussian at different scales and pick an extrema in Eq.(2.3). At each scale, the point

that have a extrema at level σ2 is extracted since it is illustrative of the correlation

between the characteristic length of the signal feature and the standard deviation of

the filter σ.

Considering the same image blobs represented at two different scales. The filtering

process allows to have the same response in a scale invariant manner by convolving the
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images with the Gaussian and then solving the heat diffusion equation. Each image

signal will be successively filtered until it reach a maximum in scale and starts to vanish

in space and scale. This is the point where both structures should be handled since it

is where they share more information with each other.

The scale-space framework is important in all steps of the most common and ro-

bust algorithms to extract keypoints. Since provides normalized responses (Eq.(2.3))

independent on the scale of the image, and allows for robust detection and description

in the sense that all the computations required will be conducted in a scale invariant

manner [6, 25].

2.2 Detection of Keypoints

The detection of points of interest, called keypoints in the SIFT framework, is the

step where the most distinguishable points from an image are selected based on the

local image properties. To be able to detect keypoints with high repeatability rates,

a multi-scale approach, as introduced before, is necessary. Lowe [7] adopts a strategy

that approximates the Laplacian of the scale-space representation of L by Difference-

of-Gaussians (DoG). Let I(x, y) be an image and G(x, y, σ) a Gaussian function. The

blurred version of I(x, y) is obtained by its convolution with the Gaussian (Eq.(2.2))

and the DoG images are computed as:

DoG(x, y, kσ) = L(x, y, kσ)− L(x, y, σ) (2.4)

In fact, the DoG is an approximation of the normalized Laplacian-of-Gaussians:

∂L

∂σ
= L(x, y, kσ)− L(x, y, σ)

kσ − σ
(2.5)

σ∇2L = L(x, y, kσ)− L(x, y, σ)
kσ − σ

(2.6)

(k − 1)σ2LoG(x, y, σ) = DoG(x, y, kσ) (2.7)

The DoG approximates the LoG and provide the normalization required for scale

invariant keypoint detection [24]. For instance, let consider a zoom change between

the same scene. The normalized scale selection allows to absorb this scale difference
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Figure 2.1: Support regions around the same keypoint at different scales [1]. The
scale of selection is automatically scaled to cover the same region in the two images.

between them as it can be seen in Fig.(2.1).

The DoG pyramid strategy is intended to improve computational time and reduce

the noise when computing the second order derivatives. In discrete data (as images),

the derivatives are computed from pixel differences. If the first order derivatives are

themselves susceptible to noise, the LoG is two times more sensitive even with the

low-pass Gaussian blurring. Therefore the approximation DoG is attractive both in

terms of noise and computational efficiency.

In Lowe’s implementation, each group of 6 blurred images is called one octave

(Fig.2.2). Its properties were studied in detailed to provide the most repeatable detec-

tion rate of keypoints. For each octave, 5 DoG images are produced to cover S=3 scales

of keypoints selection but if more scales for keypoints selection are used the number of

keypoints increases but the SIFT computation time also increases. The value of S=3

was experimentally obtained was the one that provides the better ratio between the

number of keypoint detected and computational time.

The intervals of smoothness between images is defined by the number of scale to

cover in each octave, and in Lowe implementation is of 21/S. The keypoints are selected

as being extrema of the DoG images in a 27 pixels neighborhood in the scale-space

volume, as shown in the Fig.(2.3) [2].

After processing the first octave, the Gaussian image with standard deviation that

doubles σ0 (image blurring starts at σ0 = 1.6) is down-sampled by a factor of two,

taking every second pixel in each row and column. As the blurring of the image

contributes to the creation of larger structures, the down-sampling will not contribute

for aliasing. However, this assumption is only valid if is assumed that the image is

enough blurred (one pixel in the original becomes two in the fourth smoothed version

in each octave). At each octave, the first image starts to be sampled with σ0 = 1.6.

The down-sampling of the image by a factor of 2 is equivalent to increase the filter size

being however a more computational efficient approach. The value of σ0 = 1.6 was
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σ0=1.6 

σ5=1.6x25/3
 

σ4=1.6x24/3
 

σ3=1.6x23/3
 

σ2=1.6x22/3
 

σ1=1.6x21/3
 

Image sub-sampled.  
For the second octave, the σ’0= σ0 of the previous octave and the process is 
repeated. 

Gaussian pyramid  

Figure 2.2: Scheme of the DoG’s pyramid. 6 blurred versions of the original image
and 5 DoG images are needed to filter 3 scales for each octave.

Figure 2.3: In DoG images each pixel is compared with its neighborhood of 3x3x3
pixels in the DoG images. The goal is detect points that are simultaneously extrema
of ∂L

∂σ
and where σ2∇2L reaches a local maxima. A threshold is defined to select the

most stable points and its value is equal to 0.04/S, if the pixel has lower intensity the
point is discarded [2].
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once more experimentally obtained as the one that shows more repeatability rates in

detection [2].

To pick more extrema in the DoG images, the image size is doubled by bilinear

interpolation. With the interpolation, the signal will be stretch which will create

wider structures than in the original image. This effect will provide more keypoint

candidates because small structures in the image will be bigger which allows to pick

high frequencies of the image that the range of the DoG filtering does not consider in

original size image.

When building the DoG pyramid, at a coarse scale the search for extrema would

misestimate the spatial location of the feature. To avoid this issue, Lowe proposes a

technique that will minimize the estimation errors of location [26].

2.2.1 Keypoints Location

In general, and due to bilinear interpolation, Difference-of-Gaussians pyramid produces

too many keypoints and some of them belong to low contrast regions, or to non distin-

guisable edges, and therefore will not provide a reliable and consistent local descriptor

for image retrieval applications. To avoid these issues, Lowe implemented some sub-

pixel precision techniques that allow to correct errors of small shift on the location of

the keypoints due to smoothing and eliminate non interesting keypoints.

Sub-pixel precision

For accurate keypoints location, Lowe considered a method proposed by [26] that allows

a detailed interpolation of the points’ scale-space coordinates (image coordinates and

scale of detection) of the DoG. Using a Taylor expansion up to the quadratic term, it

is given that

DoG(x + ∆x) = DoG(x) +∇DoG(x)∆x + 1
2∆Tx H(DoG(x))∆x (2.8)

where x = (x, y, σ)T . H(DoG(x)) and ∇DoG(x) are, respectively, the Hessian matrix

and the first derivative of the DoG image. The derivatives are computed using pixel

differences of the smoothed neighborhood on a 3× 3× 3 volume around the keypoints.
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Differentiating to get the first order derivative it arises that:

H(DoG(x))∆x = −∇DoG(x) (2.9)

and the final offset, ∆x, is given by:

∆x = −H(DoG(x))−1∇DoG(x) (2.10)

To the highest levels of the pyramid this interpolation becomes of vital importance

due to the fact that the one pixel in those images correspond to a larger distance in

the base image. If the offset ∆x is higher than 0.5 in any dimension of the scale-space

coordinates, the sampled point is moved to an adjacent position of the image and the

accurate location is determined about this point.

Eliminating keypoints in low contrast regions

To eliminate keypoints in low contrast regions and avoid strong responses along edges,

SIFT uses a Hessian matrix (Eq.(2.11)) that rejects unstable points based on the prin-

cipal curvatures of DoG images. This Hessian is computed only in space and not in

the scale-space volume like in the previous step.

H =

 DoGxx DoGxy

DoGxy DoGyy

 (2.11)

Since for SIFT proposes only an estimation of the ratio between the eigenvalues of

Eq.(2.11) is needed, Lowe [7,26] uses a metric based on the determinant and the trace

of the Hessian and states that:

(tr(H))2

det(H) = (DoGxx +DoGyy)2

DoGxxDoGyy −DoG2
xy

<
(r + 1)2

r

being r = λ1
λ2

, where λ1 and λ2 are, respectively, the largest and the smallest eigen-

value of Eq.(2.11). Since the Hessian is computed from pixel difference and r is a

constant value, the verification if a point should be discarded or not is quite efficient.

Once more, Lowe [2, 7] experimentally proves that r = 10 is the optimal value. If a
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lower value is selected more keypoints points are discarded along edges.

2.3 Description of Keypoints

After the detection of the keypoint and the refinement of their location, the next steps

concern the computation of the final descriptor. In order to improve scale invariance,

all the computations from now on are performed at the scale of selection of the keypoint

in the Gaussian pyramid. This property is inherent to the use of the scale-space theory

and it is one reason why the normalized responses across scales is so important.

The keypoints description is divided in two main steps. The first is to assign a

characteristic orientation for each keypoints that will provide rotation invariance when

computing teh keypoints descriptor. The descriptor step is where the local image

information is encoded to be used for recognition and matching between scenes.

The the orientation and descriptor assignments to the keypoints are based on the

magnitude and orientation of the image gradients at the scale of selection (Eq.(2.12)

and Eq.(2.12)).

m(x, y) =
√

(L(x+ 1, y;σ)− L(x− 1, y;σ))2 + (L(x, y + 1;σ)− L(x, y − 1;σ))2

(2.12)

θ(x, y) = tan
(
L(x, y + 1;σ)− L(x, y − 1;σ)
L(x+ 1, y;σ)− L(x− 1, y;σ)

)
(2.13)

2.3.1 Rotation Invariance : Orientation Assignment

The computation of the orientation is based on a histogram of the orientations built

considering a neighborhood of 3σ, where is sigma the scale of selection of the keypoint.

In practice, when computing a discrete approximation of the gaussian function, pixels

at a distance of more than three times the standard deviation are small enough to

be considered effectively zero. Thus contributions from pixels outside that range can

be ignored. Each vote for account to the main orientation around the keypoint is

computed using circular region to provide rotational invariance in the computation.

The algorithm to compute the orientation can be summarized as follows:

1. A histogram of 36 bins covering the 360 degrees around the keypoints is used.
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Figure 2.4: The black point represent the candidate point position after passing the
elimination procedures. In the orientation histogram each bin represent 10 degrees
covering the 360 degrees around the keypoint. Each bin holds the sum of all the
magnitudes that count for it. Each sample is weighted by a Gaussian of 1.5σ to give
less emphasis to contributions far from the keypoint.

The magnitude of each pixel contributes for the bin that covers it orientation.

2. A Gaussian weighting function with 1.5σ is used to give less emphasis to contri-

butions far from the keypoint location.

3. The histogram of gradients could suffer the impact from the boundaries contri-

bution between bins. This effect is reduced by convoluting the histogram with

a Gaussian of 1.5σ. This minimizes the impact where a contribution could lye

from one bin to another adjacent bin [9, 26].

Each keypoint could hold more than one orientation. In fact, any orientation within

80% of the main orientation is also assigned to the keypoint. In here, if this condition is

verified, a new keypoint is created having the same scale-space coordinates but holding

a different orientation that will contribute to have a different descriptor. This process

greatly improves the robustness of the retrieval between images. Each orientation

assigned contributes with different local information around the keypoint that could

be successfully matched in another view [1,2, 25].

2.3.2 Local Image Description: 128-dimensional Descriptor

This stage concerns building the descriptor that encodes local image information for

posterior matching and recognition. SIFT descriptor is computed from a patch of

16×16 pixels around the keypoint after the rotation according to the main orientation

assigned in the previous step. This provides the desired rotation invariance.
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Figure 2.5: The patch used to compute the descriptor is rotated according to the
orientation (green arrow assigned). The same procedure shown in Fig.(2.4) is used to
account the values of the local magnitudes and orientations inside each 4 × 4 pixels
subregions.

The final descriptor is built by dividing the 16×16 neighborhood in 16 subregions

of 4×4 pixels. Each one providing 8 orientations which totalize the 128 components of

the descriptor. This division in sub-regions allows to have pixels shifts until 4 positions

in the image, while still contribute for the same sub-region [1, 2].

A Gaussian weighting function with standard deviation of one half the scale of the

keypoint is applied to give less emphasis to the descriptor contribution far from the

descriptor center. As, in general, SIFT produces too many keypoints and the descriptor

window has a reasonable size, this technique is employed to give less emphasis to

contributions that could lye very close to another keypoint descriptor. This technique

increases the stability and the distinctiveness of 128-dimensional vector. To refine the

elimination of boundary effects between each sub-region, interpolation is used to assign

each gradients contribution to the correspondent subregion histogram [9].

The SIFT descriptor, besides the invariance to scale and rotation, also presents in-

variance to affine transformation and non-linear changes of illumination. By computing

the descriptor from pixel differences, the changes in image brightness are discarded and,

since it is normalized to the unit length, contrast changes are cancelled. To increase

the robustness to non-linearities in illumination the descriptor is thresholded at 0.2

and then re-normalized [27]. This means that large gradients magnitudes are no longer

very important. The value of 0.2 was experimentally determined by Lowe recurring to

a large database of images [2].
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2.3.3 Matching between Keypoint

Initially, Lowe [2,7] proposed to obtain matches by using the euclidean distance between

a source and a target descriptor and considering a threshold of 0.8:

deuc =

√√√√128∑
i=1

(d1(i)− d2(i))2 < 0.8 (2.14)

Nevertheless, in the last few years, the ambiguity distance gained more popularity be-

cause of its enhanced performance [10, 13]. The ambiguity distance instead of thresh-

olding the euclidean distance between two descriptor, compare the distance between

the closest and the second closest descriptor. So, considering d2 the closest descriptor

and d3 the second closest descriptor , we can define the ambiguity distance as:

damb =

√√√√128∑
i=1

(d1(i)− d2(i))2

√√√√128∑
i=1

(d1(i)− d3(i))2

< 0.6 (2.15)

This is the measure adopted in all the experiments in this thesis and has also

been used in several studies in object recognition and image retrievel applications

[1, 9, 13, 28,29].



Chapter 3

SIFT evaluation under Radial

Distorted Images

Several algorithms for invariant feature detection and matching have been proposed

for images acquired by perspective cameras. However, the projection in many vision

sensors that are broadly used in daily applications can not be described by the standard

pin-hole model. Immersive environments, as well as surveillance systems, often require

cameras with wide angle lenses, where the bending of the light rays when crossing the

optics causes radial distortion. The distortion increases as we go far a way from the

center and is typically described by non-linear terms that are function of the image

radius. In feature detection techniques based on scale-space analysis, the image is

represented at increasing scales by convolution with the Gaussian function. Given the

set of scale-space images, scale-invariant features are found as local extrema of the first

derivative in the scale dimension.

During the course of his PhD thesis, Mikolajczyk [1,9,25] published several results

evaluating and comparing the most common used techniques for keypoint detection and

matching under the more varied circumstances (scale and rotation, affine viewpoint

changes, illumination changes and image compression). One of the contributions of

this thesis is extending such evaluation for the case of images undergoing non-linear

geometric deformations. We focus only in the SIFT algorithm, which proved to be one

of most stable in the above mentioned comparative studies, [1, 9, 25], and we assume

that the non-linear image deformation is radial distortion that can be fairly described

using the first-order division model [15,16].

17
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3.1 The Division Model for Radial Distortion

The effect of lens distortion in image acquisition can be often described using the first

order division model [15, 16]. Let x = (x, y) be a point in the distorted image I, and

x̂ = (u, v) the corresponding point in the undistorted image Î. The origin of coordinate

system is assumed to be coincident with the distortion center, which is approximated by

the image center [30]. The amount of distortion is quantified by parameter ξ (typically

ξ < 0), and undistorted image points x̂ are mapped into distorted points x by function

f :

f(x̂) =

fx(x̂)

fy(x̂)

 =


2u

1+
√

1−4ξ(u2+v2)

2v
1+
√

1−4ξ(u2+v2)

 , (3.1)

The distorted image can be rectified using the inverse of distortion function :

f−1(x) =

fu(x)

fv(x)

 =

 x
1+ξ(x2+y2)

y
1+ξ(x2+y)2)

 (3.2)

The function f is radially symmetric around the image center and its action can be

understood as a shift of image points towards the center along the radial direction.

The relationship between undistorted and distorted radius is given by :

r̂ = r

1 + ξr2 (3.3)

Radial distortion causes a space compression of the image information, which sub-

stantially changes the signal spectrum and introduces new high frequency components.

To provide the notion of how much the image is compressed, we will often express the

amount of distortion through the normalized decrease in the maximum image radius:

%distortion = r̂M − rM
r̂M

∗ 100 (3.4)

with r̂M and rM denoting respectively the maximum values for the undistorted and

distorted image radius.

Through this work we will always assume that image distortion follows the division

model. However, most of the proposed methods and techniques can be easily extended



CHAPTER 3. SIFT EVALUATION UNDER RADIAL DISTORTED IMAGES 19

to imagery affected by non-linear deformations that follow other types of parametric

models (e.g. catadioptric distortion).

3.2 SIFT Detection and Matching in Images with

Radial Distortion

The Difference of Gaussians (DoG) used during SIFT detection can be understood as

a band-pass filtering action. The number of octaves of the Gaussian pyramid somehow

define the range of image frequencies where the search for keypoints is performed. Since

the radial distortion (RD) changes the image spectrum, it is natural that, when using

a certain scale-space framework, the detection results are substantially different from

the ones that would be obtained if the image had no distortion. This section tries to

study both quantitatively and qualitatively the influence of RD during the detection

stage.

The evaluation of the SIFT detection under radial distortion is carried using two

distinct data sets. The first data set comprises a set of images collected in the internet

that covers different types of objects and scenes (Fig.(3.1)). The second data set is one

of the benchmarks used by Mikolajczyk in his evaluation work [1, 9, 25] (Fig.(3.2)) 1.

These images are related by a known homography that enables to check the correction

of SIFT detection and matching under rotation, scale and viewpoint changes.

The images of the two data sets are synthetically distorted assuming the division

model presented above (Fig.(3.3)). It can be observed that, as the radial distortion in-

creases, the image periphery is compressed. Since such compression tends to introduce

high frequency components, it is to expect that detection will be strongly affected in

the areas closer to image borders. It must also be taken into account that the total

number of detected points is usually proportional to the image size. In general a big

image will have more keypoints than a smaller one. Therefore, it is also to expect that

the number of keypoints decays with the amount of added distortion because the size

of the simulated image decreases.

In order to evaluate how distortion affects SIFT performance, we add radial dis-

tortion to the images of both data sets. The detection in each original image of data
1Available at http://www.robots.ox.ac.uk/ km
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Figure 3.1: Data set 1 (DS1) : Images used for the synthetic experiments. The data
set comprises a broad variety of scenes and visual contexts.

(a) Boat1 (b) Boat2 (c) Boat3

(d) Graffiti1 (e) Graffiti2 (f) Graffiti3

Figure 3.2: Data set 2 (DS2): The images in the top row are used to test scale
and rotation. We will be referrer to them as the boat sequence (scales changes are
of, approximately, 1.4 and 3.4 respectively). The images in the bottom row enable to
test viewpoint changes (30% and 40%). This sequence will be named as the graffiti
sequence. In each case, the normal scene (first image in both rows) is used to compare
detection and matching against the other two.
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(a) 5% (b) 25% (c) 55%

Figure 3.3: Syntheses of distorted images by artificially adding controlled amounts
of radial distortion. As it can be seen the image compression in the periphery is much
more noticeable than in the center (where it is assumed to be the distortion center).

set 1 is compared with the detection in its distorted versions. In addition the points

are matched in order to evaluate the resilience of SIFT descriptors to radial distortion.

A similar procedure was followed for the images of data set 2, but with detection and

matching being performed between different views of the same scene. The experiments

with data set 1 isolate the influence of radial distortion, enabling a thorough character-

ization of how it affects SIFT detection and matching. The experiments with data set

2 aim to measure the joint influence of radial distortion, rotation, scale and viewpoint

change.

3.2.1 Ground Truth and Metrics for Evaluating Detection Per-

formance

Consider an image of data set 1 and one of its distorted versions. Let S0 and S denote

the set of keypoints detected in the original and distorted images, respectively. The

elements of S can either be points that have already been detected in the original

image, or new keypoints that appear due to the high frequency components introduced

by radial distortion. Henceforth, we will denote the former by Sd and the latter by

Snew such that:

S = Sd ∪ Snew (3.5)

Sd = S0 ∩ S (3.6)

The set Sd contains keypoints in the distorted image detected at a correct spatial

location. However, and since SIFT detection produces normalized responses to scale,
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it is important to evaluate if these points are detected at the right scales. The cor-

rect assignment of scale is fundamental for achieving reliable matching across different

views. Therefore set Sd is split in two subsets: Sc containing the points detected at

correct scale and location, and Sws being the set of points close in space but not in

scale (detections at wrong scale).

Sc = S0 ∩ (S − (Snew ∪ Sws)) (3.7)

To decide if a point is detected at a wrong scale, first is checked if

εs =
∣∣∣∣1− s2 min(σx, σx̂)

max(σx, σx̂)

∣∣∣∣ (3.8)

where s represent the scale change between images (for the data set 1 its is assumed

that s = 1) and σ denotes the scale of selection of the keypoints2. As in [1, 2, 13],

we will allow a relative error in scale selection of
√

2. Since the scale is automatically

normalized when the keypoint are detected, in practice the εs metric is defined by

εs = |1− 1√
2
| ≤ 0.3 (3.9)

The repeatability in keypoint detection is evaluated using the following metric

%Repeatability = #Sc
#S0

∗ 100 (3.10)

with # denoting the number of keypoints in each set.

The occurrence of new spurious detections due to radial distortion is quantified as

follows:

%new detections = #Snew
#S ∗ 100 (3.11)

And finally the detection at wrong scale is characterized by the percentage of points

detected at incorrect scale with respect to the points detected at a correct image

location.

%Keypoints at Wrong Scale = #Sws
#Sd ∗ 100 (3.12)

For the case of data set 2 the transformed image is distorted (zoom+rotation or
2x̂ and x denote the keypoints detected at the original and distorted images, respectively
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viewpoint changes) and compared with the normal image (Fig.(3.2)). The ground truth

S0 comprises points that are simultaneously detected in a view pair, and satisfy the

homographic relation between images up to a threshold value [2, 13]:

S0 = (||x̂− Hxt)|| < σx) (3.13)

where x̂ stands for the normal image keypoints, H for the homography between the nor-

mal image and transformed image (second and third image for both rows of Fig.(3.2)).

The xt represents the keypoints in the transformed image. The considerations and

metrics discussed above for data set 1 are applied in the same manner.

3.2.2 Detection Results

This section presents the detection results in images with radial distortion. In order

to build the repeatability curves, the RD is varied from 5% til 65%, and for each case

the metrics introduced above are computed. From experimental results to evaluate

detection, three main conclusions are drawn:

1. The repeatability of correct keypoint detection always decrease with increasing

amounts of distortion.

2. New detections are more incident for higher values of distortion.

3. Changes in the scale selection of the keypoints are more incident for higher values

of distortion.

In all the cases the repeatability presents the same behavior. For lower values

of distortion (≈ 5%), the repeatability does not decrease significantly but this effect

becomes more pronounced as we increase the value of distortion. We observed that

the keypoints detection in images with RD occurs at a finer scale than in the original

image. This is a consequence of the compressive effect induced by the distortion. Since

image structures are compressed they will provide a scale-space extremum at a lower

level of the DoG pyramid.

The DoG range of filtering is constant all over the image, which leads to the lost

of keypoints at the first levels of the pyramid in RD images. By the experimental

results obtained and by the intuition of how the RD affects the image structures, we
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Figure 3.4: Data set 1 detection results. In these cases, as several images are used we
average the results and express the standard deviation in the data for each percentage
of distortion considered. The green line stands for the correctly detected keypoints,
the red for the points detected at wrong scales, and the black for the new detection,
that were not present in the original image.
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Figure 3.5: Boat1-Boat2 detection results. This images shows a small zoom change
and a considerable rotation. It can be seen that the new detection start to increase
from a lower value than in data set 1. The small scale change between views allows
that the image remains resilient to lower amounts of distortion, since the border of the
image is not present in the original one.

can conclude that the lost of keypoints is more incident on those that appear at the

lower scales than those detected at coarse levels of scale. In fact, keypoints detected at

higher levels of the pyramid start to decrease their value of scale rather than disappear.

They only vanish if their neighborhood is sufficiently compressed to not be considered

as a keypoint by the SIFT detector.

The boat1-boat3 case confirms all the conclusions taken from the detection results

analysis. This case presents a severe scale change, and the RD effect is only noticable

when the common parts between boat 3 and boat1 are affected by RD. The detection

at wrong scales and new detections rates start to be meaningful when the repeatability

of the detection starts to be affected.

For the data set 2, mainly in the graffiti sequence (Fig.(3.7) and Fig.(3.8)), is

observed that the detections at wrong scale is not as effective as in data set 1. In

fact, when the image is submitted to transformations as viewpoint changes, the SIFT
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Figure 3.6: Boat1-Boat3 detection results. The distortion only starts to affected
the detection repeatability for moderate amount of distortion due to the severe scale
change in this image.
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Figure 3.7: Graffiti1-Graffiti2 detection results. In here a scale change is also observed
but the effect is minimum and is considered 1.4 [1].

detector is invariant where the support regions around the keypoints does not change

considerably. In these cases, the keypoints detected between views are detected at lower

levels of smoothing, first and second octave of the DoG images. As mentioned before,

in these levels of the pyramid is where the lost of keypoint correctly detected starts

to occur due to the compressive effect of RD. As it can be seen in the experimental

results, the detection at wrong scale does not reach the same values that in data set 1,

where the goal is to test pure RD effect in the images.

The SIFT detector applies fixed size structures3 to build the DoG pyramid for the

detection Since the data in the periphery is more condensed, the Gaussian will pick

contributions different from the undistorted image, that made the detection unstable

(increasing number of newly keypoint detection).

We can conclude that the SIFT detector had two major problems that do not allow

to have a same performance over RD images as in perspective images:

• At the first levels of the pyramid, since the Gaussian works with fixed size it does
3By fixed size structure it should be understood the size of the Gaussian defined to each scale of

smoothness.
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Figure 3.8: Graffiti1-Graffiti3. As in the other cases, the repeatability is highly
affected by distortion. The scale change between images is of 2.4 [1].

not filter the compressed structures in the image periphery. The same reasoning

is applied for the scale changes at coarse levels of the DOG pyramid.

• By doubling the size of the image prior to smoothing, the image structures are

more wider so that DoG band-pass filtering can select them. Under radial dis-

tortion image, and due to the pixels shifting effect, nothing can ensures that the

interpolation will be as stable as in the original image. This process can also

introduce new detections that are not present in the original image.

3.3 Matching Evaluation under Radial Distortion

The SIFT computation of local image descriptors is based on image gradients computed

at the scale of keypoint selection. The distortion shifts the image pixels towards the

center along the radial direction. Such deformation impacts the image gradients and

consequently the SIFT descriptors. This section aims to characterize this change in

the descriptors that has direct consequences in the matching.
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(a) Original Image (b) 5%

(c) 25%
 

 
Point detected at correct scale
Points detected at different scale
New points detected

(d) 45%

 

 
Point detected at correct scale
Points detected at different scale
New points detected

Figure 3.9: Example of typical detection with distortion. The left side shows the
original image to which was added increasing amounts of radial distortion. The marks
represent the detected SIFT keypoints. The number of keypoints varies inversely with
distortion mainly because of the decrease in image size/resolution. The green triangles
correspond to points that are detected at the same scale both in original and distorted
images. The detection repeatability is clearly affected by distortion with the effect
being more pronounced in the image periphery. It is also interesting to observe that
several keypoints in the original image are still detected in the distorted images at a
lower scales.
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The characterization is performed through two different experiments. The first

experiment uses data set 1 and tries to isolate the influence of radial distortion in

the descriptors. The detector is independently ran in the original undistorted image

and in one of its distorted versions. The detected keypoints are matched and the

obtained correspondences are split into correct and incorrect ones. A correspondence

is considered to be correct if the image locations are consistent and the detection scales

are the same. This means that the set of correct matches is always a subset of Sc defined

in section 3.2.1. The second experiment uses data set 2 and studies the joint effect of

distortion, rotation, scale and viewpoint change. In this case the base image is kept

undistorted and it is matched against a distorted version of the second or third view.

3.3.1 Recall vs 1-precision Curves

In classification tasks is common the usage of ROC4 curves for performance evaluation.

This system of evaluation is based on sensitivity/recall against specificity. The recall

provides the true positive ratio while the specificity gives the true negative rate. How-

ever, in this feature/image retrieval applications is hard to evaluate a true negative

match between views. For this reason, instead of the usage of ROC curves, the recall

vs 1-precision curves are used [1, 9, 10,13]. The recall and 1-precision are given by :

recall = #correct matches
#Sc (3.14)

1− precision = #false matches
#false matches + #correct matches (3.15)

Finally this process is repeated varying the threshold of the Ambiguity distance from

0.4 to 1. As we increase the threshold, the number of keypoint descriptor that verify

the ambiguity distance (Eq.(2.15)) also increases. To define the interval of thresholds

considered, we decide to set the lower threshold as the one that observed at least one

match (correct or wrong) in all the cases tested. As upper limit, we leave the threshold

increase until all the keypoints in the original undistorted images had a match on the

distorted image.
4Receiver Operating Characteristic
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Figure 3.10: Matching performance evaluation for Data set 1. The effect of distortion
deteriorates the effectiveness of the SIFT descriptor.
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Figure 3.11: Matching performance evaluation for the boat sequence. Since the boat3
presents a severe scale change, the SIFT descriptor is not affected by RD.

3.3.2 Matching Performance Evaluation

To evaluate the SIFT descriptor performance independently of the detection under ra-

dial distortion effects, the distorted image is rectified and the SIFT detector is ran over

this rectified image. The keypoints’ descriptor are then calculated over the distorted

image. This allows to see the effectiveness of the SIFT descriptor computed over the

distorted image when the detection is more robust to distortion.

It can be observed from the performance evaluation curves that the SIFT descriptor

is as much affected as the repeatability of the detection. The effect of the distortion

over the descriptor is equally pronounced for rotation and viewpoint changes. When

the image is rotated and then distorted, the pixel shifting according to the center

of distortion lead to incorrect contributions for the descriptor that do not occur in

the original or even in the undistorted rotated image. Generally, the SIFT behaves

better for scale changes and small rotations, as in Boat3, than for viewpoint and severe
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Figure 3.12: Matching performance evaluation for the graffiti sequence. In both
cases, the behavior of the descriptor is highly affected. It must be regarded that SIFT
only provide good results of minor affine changes in the viewpoint.

rotations changes [1, 2].

For the boat sequence it is observed that SIFT only starts affect the matching

considerably when the common part between the views start to being affected. In the

Boat1-Boat3 retrieval, the effect is partially imperceptible for low level of the distortion,

the zoom effect is too severe and the descriptor is no really affected.

Since the descriptor is computed in a constant patch of 16×16 pixels, it is intuitively

easy to understand that when the image is compressed the patch will have contribu-

tions that do not occur for the original image. Although the SIFT descriptor is robust

to small shift in the histograms of each subregion of the descriptor, for higher amounts

of distortion this influence starts to be noticed and the descriptor starts lose its per-

formance. Another relevant constraint for the SIFT descriptor usage in RD images is

that the effectiveness of the Gaussian weighting function starts to lose its effectiveness.

As we increase distortion the contributions far from the keypoint tend to be more close

to the keypoint. Since this effect increases with RD, the Gaussian function starts to

give more emphasis to contributions that do not appear in the original image.

3.4 Conclusions and Perspectives

In this chapter was presented the SIFT performance over images with radial distortion

and the following conclusions can be done:

• The repeatability of the detection and the detections at wrong scales are due to

the compressive effect introduced by radial distortion. While the loss of repeata-

bility is more pronounced at lower levels of the DoG pyramid, the wrong scale
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detections are more noticeable at coarse levels of scale.

• The compression induced by RD in the image spectrum leads to unstable detec-

tions that do not occur on the original image.

• The descriptor lose in performance also due to the shifting according to the center

of distortion and because the window of the Gaussian weighting is maintained

constant all over the image.

Since the DoG detection works with fixed size structures, the detection starts to fail

where the features are more compress and are not considered in the range of the σ of

the Gaussians. One fact that should be highlighted is that, under simulation, the size

of the image decreases. Since the size of the image define the range of filtering of the

SIFT, and hence the number of keypoint detected, SIFT is not the more appropriated

approach in these cases.

One solution could be an adaptative Gaussians convolved with the image. In the

next chapter will be derived a solution that allows to construct a more reliable scale-

space representation of distorted images. Also the normalization of the scale space is

not correct. Also the support regions around the keypoint for the orientation assign-

ment should be automatically adapted to the size of the structure which will held to

a more accurate orientation determination since the same similar contributions will be

picked for the orientation in the original and in its distorted version.

It can be also observed that the descriptor is very affected by radial distortion. In

fact, if keypoint are detected at correct scales, the deformation induces by distortion

will not allow to match between view (data set 1 is the most clear example of this fact).

Since the image deformation could be analyzed as an image warping, in the chapter

4 we will also explore a solution based on a differential chain rule, which models the

distortion effect in the descriptor and that could be inverted.



Chapter 4

Detection and Matching

Improvements

Up to now, we discussed the details of the SIFT algorithm and studied its performance

in images with radial distortion. Such study allowed the identification of the main

issues avoiding an efficient keypoint detection and matching. This chapter proposes

several modifications to the original SIFT algorithm in an attempt to overcome the

detected problems. We aim to come up with a method of minimal additional complexity

that processes the images directly in the plane. We also take into account aspects of

computational efficiency. The SIFT computation is already computationally expensive

and the new approach must be carefully designed to be an efficient extension of SIFT

for images with radial distortion.

4.1 Adaptative Gaussian filtering

A new approach for image adaptive blurring that generates a set of scale-space radial

distorted images is introduced. An adaptive Gaussian filter that models the radial

distortion effect in the image, is presented in this section. We assume that the division

model provides a suitable description of the distortion and we base our derivations

on it. However, the framework herein discussed can be easily adapted to any other

parametric distortion model (e.g. catadioptrics).

34
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4.1.1 Derivation of an adaptive filter

Let Gσ be a bi-dimensional gaussian function with standard deviation σ, Î denote the

undistorted image, and I its corresponding distorted version. Like in section 3.1, the

origin of coordinate system is assumed to be coincident with the distortion center,

which is approximated by the image center [30]. The blurred image L̂σ is obtained by

convolving the undistorted image Î with the Gaussian kernel (Eq.(2.2)). The brightness

at pixel (s, t) is given by

L̂σ(s, t) =
+∞∑

u=−∞

+∞∑
v=−∞

Î(u, v) Gσ(s− u, t− v) (4.1)

This is the standard convolution that SIFT performs for the case of the image being

rectified to correct the distortion. In order to avoid interpolation and the computational

burden of rectification, we aim to work directly with the distorted image I. Let f be the

distortion function of Eq.(3.1) that maps the undistorted image coordinates (u, v) into

the distorted image coordinates (x, y) and quantifies the amount of radial distortion

by parameter ξ. It follows that

Î(u, v) = I(fx(u, v), fy(u, v)) (4.2)

Replacing Î by I in Eq.(4.1) and performing a change of variables using the inverse

distortion function (Eq.(3.2)), it arises that

L̂σ(s, t) =
α+∑

x=α−

β+∑
y=β−

I(x, y) Gσ(s− f−1
u (x, y), t− f−1

v (x, y)) (4.3)

with 
α± = ± 1√

−ξ

β± = ± 1√
−ξ

(4.4)

Let Lσ be the distorted version of the smoothed image L̂σ. Changing the variables

(s, t) by (h, k) using again the inverse distortion function, we can write

Lσ(h, k) =
α+∑

x=α−

β+∑
y=β−

I(x, y) Gσ(f−1
u (h, k)− f−1

u (x, y), f−1
v (h, k)− f−1

v (x, y)) (4.5)



CHAPTER 4. DETECTION AND MATCHING IMPROVEMENTS 36

Replacing the f−1 by the expression of Eq.(3.2) and performing some algebraic

manipulation, we finally obtain:

Lσ(h, k) =
α+∑

x=α−

β+∑
y=β−

I(x, y) Gσ

(
h− x+ ξr2(hδ2 − x)

1 + ξr2(1 + δ2 + ξr2δ2) ,

k − y + ξr2(kδ2 − y)
1 + ξr2(1 + δ2 + ξr2δ2)

)
.

(4.6)

where  δ =
√

h2+k2

x2+y2

r =
√
h2 + k2

(4.7)

Note that now the smoothing kernel depends on (x, y) and (h, k) and Eq.(4.6) is

no longer a straightforward convolution. However, if (h, k) is very close to the center,

then ξr2 ≈ 0 and the expression becomes a standard convolution. In this case there is

no need to compensate the filtering for the distortion. If the pixels radius is far from

the distortion center and the kernel is only significant in an area around the center of

the convolution points (h, k), we have δ ≈ 1 and the Eq.(4.6) can be simplified in

Lσ(h, k) ≈
α+∑

x=α−

β+∑
y=β−

I(x, y) Gσ

( 1
1 + ξr2 (h− x), 1

1 + ξr2 (k − y)
)

(4.8)

This last equation is an approximation of the accurate adaptative filter (Eq.(4.6)

(henceforth will be called the simplified adaptive filter). It represents a convolution by

an isotropic gaussian filter whose standard variation decreases with the radius in order

to adapt to the distortion. This isotropic approximation can be helpful in improving

computational efficiency while building the scale space representation.

As mentioned earlier, with the derivation stated in Eq.(4.6) the response of the

Gaussian filtering will be adapted to the distortion. For each convolution point is

taken into account its distance to the center according to the distortion model adopt

(see Fig.(4.1)). Using the simplification done in eq.(4.8), for a given scale σs, the filter

compresses the convolution window from σs to (1 + ξr2)σs . The effect of this action

increases while the filter moves far from the center of distortion. This new adaptive

filter takes into account contribution of pixels closer to the convolution point than the

naive filter when it is far from the distortion center. This is meaningful in terms of the

intuition of how to efficiently blur a distorted image. Indeed, far from the center the
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Figure 4.1: The Adaptative Gaussian Filter. It can be seen that as we increase the
distance to the center of distortion the filter adjusts the radial distortion effect.

image contains more details. Then the convolution window needs to be compressed

the to reduce the contribution of those new details introduced by the image structures

compression.

The filter presented in Eq.(4.6) does not obey all the scale-space axiom because is

missing the rotational invariance axiom. Nevertheless, in the literature some keypoint

detector for affine transformation in the viewpoint relax this axiom in order to improve

detection [8] but the scale of selection is normalized (iterative correction of the Gaussian

to be isotropic) to compute the descriptor. However, the accurate filter is not rotational

invariant, it allows to improve detection results.

For the simplified adaptive filter no precautions to build the multi-scale approach

are needed since it is just a re-scaling of the σ of the näıve filtering who still obeys all

the scale-space axioms.

4.1.2 Improving convolution time

In the initial stage of the implementation of the accurate adaptative filter, the gaus-

sian blur as done recurring to a conjunct of pre-computed filters. This turns out the

algorithm really slow, and the simplified adaptative filter becomes a more attractive

approach.

Lσ(h, k) ≈
α+∑

x=α−

β+∑
y=β−

I(x, y) e

(
− (h−x)2

2π(σ(1+ξr2))2−
(k−y)2

2π(σ(1+ξr2))2

)
(4.9)

Lσ(h, k) ≈
α+∑

x=α−

β+∑
y=β−

I(x, y) e
−

(
(h−x)2

2π(σ(1+ξr2))2

)
e
−

(
(k−y)2

2π(σ(1+ξr2))2

)
(4.10)

Since for each point of convolution the value of r is known, the kernel can be com-
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puted concerning the position of the pixel inside the image. In fact, ones can argue

that since the kernel is computed in each position this does not speedup significantly

the convolution. Although, it is possible to implement a speedup convolution that con-

sidered 5 multiplications at each time. This speedup convolution is also implemented

in SIFT to speedup the blurring process.

4.1.3 Reducing the Number of New Detections

The evaluation of SIFT detection presented in section 3.2.2 shows that radial distortion

introduces high frequency components in the image that lead to the detection of new

keypoints. Such keypoints are spurious in the sense that they do not arise in the original

undistorted images. Therefore, an ideal detector for images with radial distortion

should be able to ignore such artifacts caused by the deformation. We discuss ways of

achieving this objective.

Before blurring the image, the original SIFT starts by doubling the image size using

bilinear interpolation, and then convolves the result with a gaussian kernel of standard

deviation σ0 = 1.6. This procedure tends to be unstable under radial distortion because

the RD causes a shift in the pixel locations and there are no guarantees that interpo-

lation will be carried with the same brightness values. In other words, the outcome of

the interpolation step can have contributions that would not exist in the absence of

radial distortion.

It must be regarded that the DoG detector compares the extremum in scale and

space (Fig.(2.3)) and, when the image is distorted, pixels are highly compressed and

sometimes vanish. One solution is to double the image after blurring (the same value

of SIFT was chosen σ0 = 1.6 to start filtering) and check the extremum in these double

size version of the DoG images. The extrema are checked only in the pixels that are

present in the original image rather than cover the all image pixels as in SIFT. This

avoid the initial interpolation required by SIFT and the compression issues induced on

the periphery of the image.

Since only the comparison for extremum selection is performed in the DoG, the

blurred versions of the image that result from the convolution are kept at the same size.

This is meaningful in the sense that all the orientation and descriptor computations are

performed at the distorted image. The support region for the orientation computations
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is defined by the sub-scale of the keypoint : (1 + ξr2)σs. This also improves the

descriptor rotation invariance computation under distortion.

4.2 Descriptor Improvement

Since the above solution for detection concerns a SIFT compensation that adapts to

the distortion information and running the detection directly in the distorted space, a

solution to provide a descriptor more resilient to radial distorted images is necessary.

4.2.1 Dimensionality Reduction of the Descriptor

Initially, a solution based on the representation of the descriptor in a sub-space of the

128 dimensions was tested. The descriptor vectors were analyzed to check if occurs a

pattern on the number of dimensions affected to then discard them. For this, a PCA1

analysis was done, recurring to the following procedure:

• The features were followed along 35% of distortion, incremented by 1% at each

time. The features that were detected along all the distortion levels were stored

to further analysis. 100 images were considered which totalize more than 3000

keypoints.

• Then PCA was applied in order to find a representation of the data covering 95%

of the total variation of the descriptor.

• The number of meaningful dimensions according to the previous criteria were

stored.

It was observed that any pattern occur in the data selected, e.g. the number of

dimensions affected by distortion depends in the keypoints location inside the image

and also from image to image. The principal reason for this fail is the non-linear effect

introduced by the radial distortion in the image and by consequence in the image

gradients.
1Principal Component Analysis is a standard technique for dimensionality reduction and has been

used in computer vision tasks, namely in face recognition.
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4.2.2 Implicit Gradient Correction in Radial Distorted Images

The SIFT descriptor is based on image first order derivatives at the scale of selection of

the keypoints. Since the image mapping under radial distortion is modeled by Eq.(3.1),

a solution based on a differential chain rule that models the gradients in the distorted

image as being the same as in the original undistorted image was explored. The same

reasoning applied in this section can also be made with any type of imaging systems, as

long as they are described by a parametric models (e.g. catadioptric). The differential

chain rule of the distorted model is derived considering the image first order derivatives.

However, the implicit correction is performed at the scale of selection of the keypoint.

This is done just for a sake of simplicity and due to the differential property of the

convolution (Eq.(4.11)).

∂x,y(G ∗ I) = G ∗ ∂x,yI (4.11)

Applying the chain rule derivation on Eq.(4.2), we obtain


∂ Î
∂u

∂ Î
∂v

 =


∂I
∂x

∂fx
∂u

+ ∂I
∂y

∂fy
∂u

∂I
∂x

∂fx
∂v

+ ∂I
∂y

∂fy
∂v

 = J


∂I
∂x

∂I
∂y

 (4.12)

Using J as the jacobian of division model f (Eq.(3.1)), it follows that

J = 2
k(1 + k)2

(
k(1+k)+4ξu2 4ξuv

4ξuv k(1+k)+4ξv2

)
(4.13)

with k =
√

1− 4ξ(u2 + v2).

Since r̂ is given by the Eq.(3.3), k could be express in terms of distorted radius by

k = 1− ξr2

1 + ξr2 . (4.14)

Replacing x̂ = (u, v) by (x, y) = f(x̂) in the Jacobian expression and performing a

suitable algebraic manipulation, it is possible to obtain J as a function of the distorted

coordinates

J = 1 + ξr2

1− ξr2

1− ξ(r2 − 8x2) 8ξxy

8ξxy 1− ξ(r2 − 8y2)

 (4.15)

Instead of rectify the image of distortion and compute the gradients, this compen-
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sation is be applied over the distorted image. The SIFT descriptor computation will

be modified to take into account the derivations above with a rough estimation of the

distortion.

4.3 Results: Detection and Matching

Considering the derivations above, the detection can be performed using two different

filters. For an evaluation of both the simplified and the accurate adaptative filters,

we will consider the comparision with näıve SIFT directly over RD images and after

rectify the image from distortion. The latter is most common approach for detection

of keypoint under radial distorted images.

The evaluation of the descriptor for feature matching between images must be done

using always the same detector. In order to fulfill this requisite, we choose to detect

over the rectified image and then compute three types of descriptor for each feature:

• SIFT descriptor computation directly in the distorted image using original SIFT

descriptor.

• Descriptor computation directly over the distorted image but with the proposed

compensation for the gradients.

• SIFT descriptor computation on the rectified image.

This approach was only chosen because the rectification is the most stable case for

detection being as well the common approach under RD situations. This condition is

just to have the same number of positives (points detected at right scale and physical

location) for the 3 test cases.

The same metrics and considerations of chapter 3.4 that were applied before are

considered here. In this section, the result analysis will be divided by data set 1 and

data set 2.

4.3.1 Data set 1

From the Fig.(4.2) it can be observed that, our filters overcome the problem of distor-

tion for moderate amount of distortion. In all the cases, the accurate and the simplified
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adaptative filters show the highest scores for distortion until 25/35% of distortion. This

is the boundary where our method start to lose in performance comparing with the

rectification from distortion.

The derived filters for detection contributes with sub-scale approach inside each

scale of filtering. Their properties allows to overcome the two main limitations of SIFT

under RD. For the initial octaves of the scale pyramid, the Gaussian filter allows to

detect points that SIFT does not consider anymore. The detection at wrong scales

is also minimized since the adaptative Gaussians provides a more discretized search

between adjacent scales at coarse levels of the pyramid.

While we increase distortion, the image signal is tighted. Since a certain structure

of the image is enough compressed to vanish, it is impossible to be selected anymore.

So it is expected that for higher levels of distortion the rectification outperforms our

adaptative filters. Nevertheless, our approach presents an improvement of detection

until ≈ 35% of distortion.

From the experimental evidence it is clear that for lower levels of distortion the

method of implicit gradient correction outperforms the classic approaches, Fig.(4.2).

It is observed that the image rectification is more valid approach for higher levels of

distortion. Nevertheless, our method always provides better matching results when

comparing with the use of SIFT directly in distorted images. The gradient correction

technique allows to minimize the effect of the pixels shifting for moderate amounts of

radial distortion. The region around the keypoints for compute the main orientation

and the descriptor is also modified to perform the computations considering (1 + ξr2)σ

instead of σ. This allows to have similar contributions in the distorted and in the

original undistorted image, and then improve the descriptor resilience.

4.3.2 Data set 2

For the data set 2, it can be observed that the same improvements as before are

achieved under common image transformations. In this section only the particular

cases of boat1-boat2 and graffiti1-graffiti2 are presented. The two others can be seen

in Appendix A.

The SIFT detector is only invariant to moderate amounts of viewpoint change

when the region around the keypoint does not suffer significant changes. This occurs
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Figure 4.2: Comparison of the 4 method for detection under radial distortion. Clearly
the methods proposed outperforms the two standard approaches for moderate amounts
of distortion.
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(c) Implicit gradient correction

Figure 4.3: Recall curves. Our method is the most suitable approach at lower levels
of distortion until (≈ 25% of distortion).
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at the first levels of the pyramid (first and second octave of the DoG). In these cases,

our method also outperforms the most common methods for moderate amounts of

distortion due to the sub-scale property our filters provide (Fig.(4.6)).

In this data set, the wrong scale selection is not as evident as in data set 1. Since

our method overcomes the detection at wrong scale, we can conclude that the small

break in peformance of repeatability when comparing to data set 1 comes from the

keypoints vanishing under radial distortion effects. That is also why the rectification

allows better scores for higher amounts of distortion in this data set. The rectification

is not so sensible to the keypoints vanishing effect. By interpolating the image to

correct from distortion, the structures will be approximated to those present in the

original image.

For the boat and graffiti sequences (Fig.(4.5) and Fig.(4.7)) it can be seen that

the implicit gradient correction outperforms the other approaches until ≈ 25%/30%.

This is a very important fact that highlight the effectiveness of the implicit gradient

correction while preserve the role of capabilities of the original SIFT descriptor.

Concerning the boat sequence, namely the boat1-boat3 case, it can be seen that

the proposed method is capable of performing equivalently to SIFT even when the

distortion is not that pronounced (the zoom is very severe and the common parts

between views are not very affected by distortion). This confirms what was said in

the last paragraph and also proves that since the proposed method do not require any

interpolation of the image it does not deteriorate the descriptor performance.

We conclude that implicit gradients compensation over the distorted image is an

effective way to compute the descriptor. The integration of the detector proposed with

this new compensation for description will lead to an effective keypoint detector and

descriptor under radial distortion.

4.4 Conclusions

In this chapter, the main contribution of this thesis was formally presented as well

as experimental evidence of its performance. It can be observed that complex and

simplified adaptative filters are the most suitable approaches for keypoint detection

under moderate amounts of radial distortion. In all the cases, these filters always
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Figure 4.4: Detection evaluation for boat1-boat2 case. For lower of distortion our
method performs better than the two classic approaches.
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Figure 4.5: Recall curves for boat1-boat2 case. The method in (c) is the most suitable
approach at lower levels of distortion (≈ 30% of distortion).
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Figure 4.6: Detection evaluation for graffiti1-graffiti2 case. For lower percentage of
distortion our method performs better than the two classic approaches.
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Figure 4.7: Recall curves for graffiti1-graffiti2 case. The method in (c) is the most
suitable approach at lower levels of distortion (until ≈ 30% of distortion.
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outperform the näıve SIFT applied over radial distorted images and for moderate

levels of distortion the image rectification.

The accurate filter shows the best results in some cases, but, at this point, the

obvious solution is the application of the simplified filter. This filter obeys all scale-

space axioms and no constraints are needed when using it. It also allows to speedup

the processing of filter showing similar results to the accurate filter and, surprisingly,

overcoming it for some cases. Nevertheless, the accurate filter could be optimized in

order to fill the scale space theory by the projection of the filter to be isotropic. To

the best of our knowledge, this is the first work that proposes to extend SIFT to RD

images with all the processing being done over the image plane.

The gradient correction for the SIFT descriptor computation presents also a suitable

approach. It performs better than image rectification and it is a suitable approach to

integrate with the adaptative filters derived. However, for higher amount of distortion,

the implicit correction starts to have the same effect has the original SIFT descriptor.

One possible solution for higher values of distortion is the projection of the corrected

gradients to the rectified image coordinates. This step will not require gradient inter-

polation and could be performed by the inverse distortion mapping (Eq.(3.2)) just to

avoid the compressive effect over the gradients of the image.



Chapter 5

Experimental Real Cases

In this chapter it will be considered real case with images taken by cameras with lenses

that cause radial distortion. First, we show the improvement in real case images taken

from PointGrey cameras. In each case a comparison between the four methods for

detection in study will be performed. Since in this case it is not possible to build

repeatability curves, the results is expressed in terms of absolute values of keypoint

detected between scenes. For the descriptor, the simplified adaptative filter will be

used to extract the keypoint prior to the descriptor computation for the three types of

descriptor. In here, the used lens present distortion of ≈ 15% and ≈ 25%.

5.1 Real Images with Radial Distortion

Since the presented method shows under simulation better performance for lower levels

of distortion, in here is considered two different datasets (Fig(.5.1)). One with less then

25% of distortion and other with more than this threshold where the method proposed

performs worse than the rectification. For this, two data sets that consist of images

of a textured planar surface were acquired. This means that every two images are

related by an homography that enables verifying if the matches are correct and also to

generate the ground truth between images. In order to do this, a rough estimation of

the distortion parameter [3] to undistort the images is made. Then, the homography

between the different image views was generated by hand using ten correspondences.

The ground truth was generated by considering the criteria introduced in chapter 3.

For the Playmobil data set, it can be confirmed that the method proposed perform

48
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(a) Data set ’PlayMobil’ (RD≈15%)

(b) Data set ’Smile’ (RD≈25%)

Figure 5.1: The figure shows the two data sets employed in the real experiments. For
each case the radial distortion was roughly estimated using the projection of lines [3].
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Figure 5.2: Curves of precision-recall for keypoint matching. Our method of implicit
gradient correction shows the best performance for the PlayMobil data set. The im-
ages are taken from different viewpoints (Fig. 5.1(a)), which proves that our method
overcomes the problem of radial distortion while preserving the invariance properties
of the SIFT descriptors. Image rectification performs better for the Smile data set
which was acquired by a camera with ≈ 25% of distortion. These results are in perfect
accordance with those obtained under simulation.
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Table 5.1: The Playmobil1 is taken as the ground truth. It can be seen that our
simplified/accurate adaptative filters allows to have more points between scenes than
the standard approaches.

Methods PlayMobil1 PlayMobil2 PlayMobil3 PlayMobil4
Accurate \ Simplified adaptative filter 1234\ 1212 915\ 901 1195\1045 746\712

SIFT in RD images 1045 795 976 565
Image rectification 995 764 895 669

Table 5.2: The Smile 1 image is taken as the ground truth to compare with the other
two cases. It can be seen that our simplified/complex filters allows to have more points
between scenes than the standard approaches. It must be regard that the appearance
between scenes changes severely and which is a challenge for all the approaches tested.

Methods \ Images Smile1 Smile2 Smile3
Accurate \ Simplified adaptative filter 2394 \ 2285 2101 \ 1995 1205\ 1175

SIFT in RD images 2254 1598 875
Image rectification 2176 1675 975

better than the two classic approaches for small amount of distortion. The implicit

gradient correction method beats the two other approaches both in recall and precision.

From the smiles dataset, it can be observed that the image rectification performs better

than our method. This is the limit where the implicit method starts losing in matching

performance against rectifying the image from distortion and apply SIFT. Nevertheless,

our method performs better than applying SIFT directly in the distorted image.

5.2 Applications to Medical Imaging

The images were acquired by a Smith&Nephew Camera 460H with lens used in medical

interventions. Although the arthroscopic camera has a 576 × 720 pixels, the image is

characterized to have a smaller useful area. To process the images only the useful area

(≈ 550 × 520 pixels) is taken into account. Our simplified adaptative filter with the

implicit gradient correction is compared against SIFT over the arthroscopic images and

image rectification from distortion. In images of this size, SIFT detects in average 800

to 1000 keypoints.

Up to here, all the results obtained with the PointGrey Cameras can be extended

to the arthroscopic images assuming the first order division model for radial distortion.



CHAPTER 5. EXPERIMENTAL REAL CASES 51

Figure 5.3: Scene acquired with an Arthroscopic Camera. The lens used induce
strong radial distortion in the image.

In here, just some vizualization work will be explored.

We consider 10 arthroscopic images that could be consulted in Appendix B. For

each image, three types of methods are used. So, the näıve SIFT will be ran in distorted

images and rectified images, and the proposed simplified adaptative filter will be ran

over distorted images where the descriptor incorporate the implicit gradient correction

proposed. Since any pattern will be followed in here, and just the intuition of the

performance under arthroscopic images should be perceived, the image Fig.(5.4) will

be taken as basis. No selection of the positives detection between views is done and

the maximum number of corrected matches is selected by RANSAC1. To estimate the

maximum number of inliers (correct matches) a online function provided by Peter

Kovesi was used [31]. This function allows a robust fit of the fundamental matrix

from a initial set of correspondences between images, which allows to check the total

number of matches between views. To evaluate that the proposed approach is viable,

we show a comparative graphic of the computational time of each approach. For the

rectification of the images, also the step of distortion correction is incorporated in the

time evaluation (Fig.(5.5)).

Surprisingly, the rectification does not provide a substantial improvement in terms

of detection. Nevertheless, it supplies more correct matches between the different views

than the SIFT over RD images.

The proposed method allows to have more detected points in all the views. Also

the average number of corrected matches is higher which shows the effectiveness of
1RANSAC is an iterative method to estimate parameters of a mathematical model from a set of

observed data which contains outliers.
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Figure 5.4: Results for detection and matching for three methods in comparison.
The blue bar stands for the number of keypoints detected in the Image0 (Fig.(5.4)),
green bars for the number of keypoints detected in the query images of Appendix B
and the red ones for the maximum number of keypoints matched between the image0
and the correspondent image in the query. The black line averages the total number
of detections in the query images the blue cyan line the average number of matches
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Figure 5.5: The simplified filter performs close the näıve SIFT over radial distortion.
It is obvious that with bigger images our method will turn more slow than the SIFT.
The variations of the processing time of each image of the query are of milliseconds and
could neglected could be neglected comparing with the average time for each method.
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the implicit gradient correction under rotation and translation of the arthroscopic lens.

Just to show a visual improvement of the proposed method, the image0 will be matched

with the an image captured under rotation and translation of the arthroscopic lens.

It is observed in Fig.(5.6) that the standard approaches allow to have more matches

in the central part of the image. The proposed approach allows to have more points

matches in the periphery of the image. However, it must be regarded that the SIFT

method doubles the size of the image prior to keypoints selection which contributes with

larger structures in the image. The proposed method do not require any interpolation

before smoothing the image. The structures of the image are kept at the same size

as the original image and the interpolation is only needed to reduce the number of

new detections (avoid compressive effect in pixels induced by RD). Our method starts

filtering at the same scale as SIFT. However, it is possible to simulate the doubling

of the image size. For this, the initial value of sigma could be reduce to the interval

σ0 ∈ [0.8, 1.2], without lost of performance for the descriptor compensation derived.

From the experimental results (simulation and real cases), it can conclude that the

method is a suitable approach for use in cameras where the lens induce radial distortion.

The detection and descriptor correction methods always outperforms applying SIFT

in radial distorted images and for lower levels of distortion also the rectification from

distortion. Our method is a computation efficient approach that allows better results

for moderate amounts of radial distortion.
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(a) SIFT in distorted images (b) Simplified adaptative filter plus im-
plicit gradient correction

(c) Rectification of RD images

Figure 5.6: Matching between two arthroscopic imagesof the arthroscopic lens. The
proposed methods inliers was estimated in 715, beating the two standard approaches
with 615 and 495, for the rectification and SIFT over RD images, respectively.



Chapter 6

Conclusions and Outlook

The final derivable of this thesis is an algorithm that partial copes the problem of radial

distortion concerning the detection and matching between scenes. The new algorithm is

capable of outperform the two classic approaches for lower levels of distortion. When

the algorithm was built, all the basic theory of SIFT was used, so it is more than

possible to achieve better results and applying the proposed method.

It was also presented an evaluation of SIFT, under non-linear geometric deforma-

tion, focus on the case of radial distortion. This is a novel study that was not presented

before and it is one of the main contribution of this work. The major problems for

SIFT detection and description under RD images are the following:

• The repeatability of the detection and the detections at wrong scales are due to

the compressive effect introduced by radial distortion. While the loss of repeata-

bility is more pronounced at lower levels of the DoG pyramid, the wrong scale

detections are more noticeable at coarse levels of scale.

• The compression induced by RD in the image spectrum leads to unstable detec-

tions that do not occur on the original image.

• The descriptor lose in performance also due to the shifting according to the center

of distortion and because the window of the Gaussian weighting is maintained

constant all over the image.

A solution using a Gaussian adaptative filter for detection was derived and a ex-

perimental evaluation of its performance was presented. This is the first work that

propose to extend SIFT to RD images with all the processing being done in the image
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plane. However, this approach presents as main drawback the fact of distortion must

roughly known. In future steps, the study of the keypoints orientation to find a pattern

in their behavior under RD would help to discard the a priori information of the RD

coefficient.

The gradient correction for the SIFT descriptor computation presents also a suitable

approach. It performs better than image rectification and it is a suitable approach to

integrate with the detectors presented. However, for higher amount of distortion, the

implicit correction starts to present the same effect has the original descriptor computed

over the distortion image. One possible solution for higher values of distortion is the

projection the corrected gradients to an undistorted space. This step will not require

gradient interpolation, and could be performed by the inverse distortion mapping just

to avoid the compressive effect over the gradients of the image. This idea was explored

by Daniilidis for his SIFT compensation [29] and also by Mikolajczyk [1] to his affine

descriptor. This idea can also be extended to our case.



Appendix A

Experimental Results for data set 2

In this appendix are shown the remaining results for the experimental evaluation of

the data set 2.
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Figure A.1: Detection evaluate for boat1-boat3 case. Our method performs better
than the two classic approaches for considerable amounts of distortion.
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(b) Image rectification
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Figure A.2: Recall curves for boat1-boat3 case. In this case, where the distortion
is not that meaningful in terms of descriptor computation, our method show similiar
performance to näıve SIFT descriptor.
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Figure A.3: Detection evaluate for graffiti1-graffiti3case. Once more, the proposed
method performs better in terms of repeatability scores for moderate levels of distor-
tion.
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Figure A.4: Recall curves for graffiti1-graffiti3 case. The method in (c) is the most
suitable approach at lower levels of distortion (≈ 25% of distortion).



Appendix B

Arthroscopic images data set

This appendix show the arthroscopic images used for the real case experiments.

Figure B.1: Arthroscopic images dataset.
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