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ABSTRACT. Let A and A ′ be two alternative ∗-algebras with identities 1A and 1A ′ ,

respectively, and e1 and e2 = 1A − e1 nontrivial symmetric idempotents in A . In this
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1. INTRODUCTION AND PRELIMINARIES

The study of additivity of maps have received a fair amount of attention of mathemati-

cians. The first quite surprising result is due to Martindale who established a condition

on a ring such that multiplicative bijective maps are all additive [17]. Besides, over the

years several works have been published considering different types of associative and

non-associative algebras among them we can mention [3, 8, 9, 10, 11, 12, 13]. In order

to add new ingredients to the study of additivity of maps, many researches have devoted

themselves to the investigation of two new products, presented by Brešar and Fošner in

[2, 14], where the definition is as follows: for a, b ∈ R, where R is a ∗−ring, we denote

by {a, b}∗ = ab+ ba∗ and [a, b]∗ = ab− ba∗ the ∗-Jordan product and the ∗-Lie product,

respectively. In [5], the authors proved that a map ϕ between two factor von Newmann

algebras is a ∗-ring isomorphism if and only if ϕ({a, b}∗) = {ϕ(a), ϕ(b)}∗. In [7], Fer-

reira and Costa extended these new products and defined two other types of applications,

named multiplicative ∗-Jordan n-map and multiplicative ∗-Lie n-map and used it to impose

condition such that a map between C∗-algebras is a ∗-ring isomorphism.

With this picture in mind, in this article we will discuss when a multiplicative ∗-Lie n-

map is a ∗-isomorphism in the case of alternative ∗-algebras and, just as it was done in [6],

we provide an application on alternative W ∗-algebras. Throughout the paper, the ground

field is assumed to be the field of complex numbers.

Let A andA ′ be two algebras with identities 1A and 1A ′ , respectively, andϕ : A → A ′

a map. We have the following concepts:

i. ϕ preserves product if ϕ(ab) = ϕ(a)ϕ(b), for all elements a, b ∈ A ;

ii. ϕ preserves Lie product if ϕ(ab− ba) = ϕ(a)ϕ(b)− ϕ(b)ϕ(a), for any a, b ∈ A ;

iii. ϕ is additive if ϕ(a+ b) = ϕ(a) + ϕ(b), for any a, b ∈ A ;

iv. ϕ is isomorphism if ϕ is a bijection additive that preserves products and scalar

multiplication;

v. ϕ is unital if ϕ(1A ) = 1A ′ .
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(CAPES)-Finance 001. The second author was supported by the Centre for Mathematics of the University of

Coimbra - UIDB/00324/2020, funded by the Portuguese Government through FCT/MCTES.
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An algebra A is called ∗-algebra if A is endowed with a involution. By involution, we

mean a mapping ∗ : A → A such that (x+ y)∗ = x∗ + y∗, (x∗)∗ = x and (xy)∗ = y∗x∗

for all x, y ∈ A . An element s ∈ A satisfying s∗ = s is called symmetric element of A .

Let A and A ′ be two ∗-algebras and ϕ : A → A ′ a map. We have the following

definitions:

i. ϕ preserves involution if ϕ(a∗) = ϕ(a)∗, for all elements a ∈ A ;

ii. ϕ is ∗-isomorphism if ϕ is an isomorphism that preserves involution;

iii. ϕ is ∗-additive if it preserves involution and it is additive.

Definition 1.1 (To see [7]). Consider a ∗-algebra A , we denote [x1, x2]∗ = x1x2 − x2x
∗

1,

for all x1, x2 ∈ A and the sequence of polynomials,

p1∗(x) = x and pn∗
(x1, x2, . . . , xn) =

[

p(n−1)∗(x1, x2, . . . , xn−1), xn

]

∗
,

for all integers n ≥ 2 and x1, . . . , xn ∈ A .

Thus, p2∗(x1, x2) = [x1, x2]∗ = x1x2 − x2x
∗

1, for all x1, x2 ∈ A , p3∗(x1, x2, x3) =
[[x1, x2]∗ , x3]

∗
, for all x1, x2, x3 ∈ A , etc. Note that p2∗ is the product introduced by

Brešar and Fošner [2, 14]. Then, using the nomenclature introduced in [7] we have a new

class of maps (not necessarily additive).

Definition 1.2. Consider two ∗-algebras A and A ′. A map ϕ : A −→ A ′ is multiplicative

∗-Lie n-map if

ϕ(pn∗
(x1, x2, . . . , xj , . . . , xn)) = pn∗

(ϕ(x1), ϕ(x2), . . . , ϕ(xj), . . . , ϕ(xn)),

for all x1, x2, . . . , xn ∈ A , where n ≥ 2 is an integer. Multiplicative ∗-Lie 2-map, ∗-Lie

3-map and ∗-Lie n-map are collectively referred to as multiplicative ∗-Lie-type maps.

An algebra A (not necessarily associative or commutative) is called alternative algebra

if it satisfies the identities a2b = a(ab) and ba2 = (ba)a, for all elements a, b ∈ A . One

easily sees that any associative algebra is an alternative algebra. An alternative algebra A

is called prime if for any elements a, b ∈ A satisfying the condition aA b = 0, then either

a = 0 or b = 0.

We consider an alternative algebra A with identity 1A . Fix a nontrivial idempotent

element e1 ∈ A and denote e2 = 1A − e1. It is easy to see that (eka)ej = ek(aej) (k, j =
1, 2) for all a ∈ A. Then A has a Peirce decomposition

A = A11 ⊕ A12 ⊕ A21 ⊕ A22,

where Akj := ekAej (k, j = 1, 2) (see [15]), satisfying the following multiplicative rela-

tions:

(i) AkjAjl ⊆ Akl (k, j, l = 1, 2);
(ii) AkjAkj ⊆ Ajk (k, j = 1, 2);

(iii) AkjAml = {0}, if j 6= m and (k, j) 6= (m, l), (k, j,m, l = 1, 2);
(iv) x2

kj = 0, for all xkj ∈ Akj (k, j = 1, 2; k 6= j).

2. MAIN THEOREM

In the following we shall prove a part of the main result of this paper.

Theorem 2.1. Let A and A ′ be two alternative ∗-algebras with identities 1A and 1A ′ ,

respectively, and e1 and e2 = 1A − e1 nontrivial symmetric idempotents in A . Suppose

that A satisfies

(1) (ejA )x = {0} for any j ∈ {1, 2} implies x = 0
2



Suppose also that ϕ : A → A ′ is a multiplication bijective unital map which satisfies

(2) ϕ(pn∗
(a, b, ξ, . . . , ξ)) = pn∗

(ϕ(a), ϕ(b), ϕ(ξ), . . . , ϕ(ξ)),

for all a, b ∈ A and ξ ∈ {e1, e2, 1A }. Then ϕ is ∗-additive.

The following claims and lemmas have the same hypotheses as the Theorem 2.1 and we

need them to prove the ∗-additivity of ϕ.

Claim 2.1. ∗(A kj) ⊂ A jk, for j, k ∈ {1, 2}.

Proof. If akj ∈ A kj then

a∗kj = (ekakjej)
∗ = (ej)

∗(akj)
∗(ek)

∗ = ej(akj)
∗ek ∈ A jk.

�

It is easy to check the following result (see [6]).

Claim 2.2. Let x, y, h in A such that ϕ(h) = ϕ(x) + ϕ(y). Then, given z ∈ A ,

ϕ(pn∗
(h, z, ξ, . . . , ξ)) = ϕ(pn∗

(x, z, ξ, . . . , ξ)) + ϕ(pn∗
(y, z, ξ, . . . , ξ))

and

ϕ(pn∗
(z, h, ξ, . . . , ξ)) = ϕ(pn∗

(z, x, ξ, . . . , ξ)) + ϕ(pn∗
(z, y, ξ, . . . ξ))

for ξ ∈ {e1, e2, 1A }.

Claim 2.3. ϕ(0) = 0.

Proof. Since ϕ is surjective, there exists x ∈ A such that ϕ(x) = 0. Then,

ϕ(0) = ϕ(pn∗
(0, x, 1A , . . . , 1A )) = pn∗

(ϕ(0), ϕ(x), ϕ(1A ), . . . , ϕ(1A ))

= pn∗
(ϕ(0), 0, ϕ(1A ), . . . , ϕ(1A )) = 0.

�

The next results aim to show the additivity of ϕ.

Lemma 2.1. For any a11 ∈ A 11 and b22 ∈ A 22, we have

ϕ(a11 + b22) = ϕ(a11) + ϕ(b22).

Proof. Since ϕ is surjective, given ϕ(a11) + ϕ(b22) ∈ A ′ there exists h ∈ A such that

ϕ(h) = ϕ(a11)+ϕ(b22). We may write h = h11+h12+h21+h22, with hjk ∈ Ajk (k, j =
1, 2). Besides, by Claims 2.2 and 2.3

ϕ(pn∗
(e1, h, e1, . . . , e1)) = ϕ(pn∗

(e1, a11, e1, . . . , e1)) + ϕ(pn∗
(e1, b22, e1, . . . , e1)),

that is,

ϕ(−h21 + h∗

21) = ϕ(0) + ϕ(0) = 0.

Then, by injectivity of ϕ, −h21 + h∗

21 = 0. Thus h21 = 0. Moreover,

ϕ(pn∗
(e2, h, e2, . . . , e2)) = ϕ(pn∗

(e2, a11, e2, . . . , e2)) + ϕ(pn∗
(e2, b22, e2, . . . , e2)),

that is,

ϕ(−h12 + h∗

12) = 0.

Again, by injectivity of ϕ we conclude that h12 = 0.

Furthermore, given d21 ∈ A 21,

ϕ(pn∗
(d21, h, e1, . . . , e1)) = ϕ(pn∗

(d21, a11, e1, . . . , e1)) + ϕ(pn∗
(d21, b22, e1, . . . , e1)),

that is,

ϕ(d21h11 − (d21h11)
∗) = ϕ(d21a11 − (d21a11)

∗).
3



Then we conclude, by injectivity of ϕ, that d21h11− (d21h11)
∗ = d21a11− (d21a11)

∗, that

is, d21(h11 − a11) = 0. Even more, (e2A )(h11 − a11) = 0, which implies that h11 = a11
by Condition (1) of Theorem 2.1.

Finally, given d12 ∈ A 12, a similar calculation gives us h22 = b22. Therefore h =
a11 + b22. �

Lemma 2.2. For any a12 ∈ A 12 and b21 ∈ A 21, we have ϕ(a12+b21) = ϕ(a12)+ϕ(b21).

Proof. Since ϕ is surjective, given ϕ(a12) + ϕ(b21) ∈ A ′ there exists h ∈ A such that

ϕ(h) = ϕ(a12)+ϕ(b21). We may write h = h11+h12+h21+h22, with hjk ∈ Ajk (k, j =
1, 2). Now, by Claims 2.2 and 2.3

ϕ(pn∗
(e1, h, e1, . . . , e1)) = ϕ(pn∗

(e1, a12, e1, . . . , e1)) + ϕ(pn∗
(e1, b21, e1, . . . , e1)),

that is,

ϕ(−h21 + h∗

21) = ϕ(−b21 + b∗21).

Then, by injectivity of ϕ, −h21 + h∗

21 = −b21 + b∗21. Thus h21 = b21. Moreover,

ϕ(pn∗
(e2, h, e2, . . . , e2)) = ϕ(pn∗

(e2, a12, e2, . . . , e2)) + ϕ(pn∗
(e2, b21, e2, . . . , e2)),

that is,

ϕ(−h12 + h∗

12) = ϕ(−a12 + a∗12).

Again, by injectivity of ϕ we conclude that h12 = a12.

Furthermore, given d21 ∈ A 21,

ϕ(d21h11 − (d21h11)
∗) = ϕ(pn∗

(d21, h, e1, . . . , e1))

= ϕ(pn∗
(d21, a12, e1, . . . , e1)) + ϕ(pn∗

(d21, b21, e1, . . . , e1)) = 0.

Then we conclude, by injectivity of ϕ, that d21h11 − (d21h11)
∗ = 0, that is, d21h11 = 0.

Even more, (e2A )h11 = 0, which implies that h11 = 0 by Condition (1) of Theorem 2.1.

Finally, given d12 ∈ A 12, a similar calculation gives us h22 = 0. Therefore, we

conclude that h = a12 + b21. �

Lemma 2.3. For any a11 ∈ A 11, b12 ∈ A 12, c21 ∈ A 21 and d22 ∈ A 22 we have

ϕ(a11 + b12 + c21 + d22) = ϕ(a11) + ϕ(b12) + ϕ(c21) + ϕ(d22).

Proof. Since ϕ is surjective, given ϕ(a11) + ϕ(b12) + ϕ(c21) + ϕ(d22) ∈ A ′ there exists

h ∈ A such that ϕ(h) = ϕ(a11) + ϕ(b12) + ϕ(c21) + ϕ(d22). We may write h =
h11 + h12 + h21 + h22, with hjk ∈ Ajk (k, j = 1, 2). Applying Lemmas 2.1 and 2.2 we

have

ϕ(h) = ϕ(a11) + ϕ(b12) + ϕ(c21) + ϕ(d22) = ϕ(a11 + d22) + ϕ(b12 + c21).

Now, observing that pn∗
(e1, a11 + d22, e1, . . . , e1) = 0 = pn∗

(e1, b12, e1, . . . , e1) and by

Claims 2.2 and 2.3 we obtain

ϕ(pn∗
(e1, h, e1, . . . , e1))

= ϕ(pn∗
(e1, a11 + d22, e1, . . . , e1)) + ϕ(pn∗

(e1, b12 + c21, e1, . . . , e1))

= ϕ(pn∗
(e1, c21, e1, . . . , e1)),

that is,

ϕ(−h21 + h∗

21) = ϕ(−c21 + c∗21).

Then, by injectivity of ϕ, −h21 + h∗

21 = −c21 + c∗21. Thus h21 = c21.

4



In a similar way, using e2 rather than e1 in the previous calculation, we conclude that

h12 = b12. Also, given x21 ∈ A 21,

ϕ(pn∗
(x21, h, e1, . . . , e1))

= ϕ(pn∗
(x21, a11 + d22, . . . , e1)) + ϕ(pn∗

(x21, b12 + c21, e1, . . . , e1))

= ϕ(pn∗
(x21, a11, e1, . . . , e1)),

since pn∗
(x21, b12 + c21, e1, . . . , e1) = 0 = pn∗

(x21, d22, . . . , e1). Again, by injectivity

of ϕ we conclude, by following the same strategy as in the proof of Lemma 2.1, that

h11 = a11. Now, using e2 rather than e1 and x12 rather than x21 in the previous calculation

we obtain h22 = d22. Therefore, h = a11 + b12 + c21 + d22. �

Lemma 2.4. For any ajk, bjk ∈ A jk, with j 6= k, we have ϕ(ajk + bjk) = ϕ(ajk) +
ϕ(bjk).

Proof. We shall prove the case j = 1 and k = 2. The other case is done in a similar way.

Since ϕ is surjective, given ϕ(a12) + ϕ(b12) ∈ A ′ and ϕ(−a∗12) + ϕ(−b∗12) there exist

h ∈ A and t ∈ A such that ϕ(h) = ϕ(a12) + ϕ(b12) and ϕ(t) = ϕ(−a∗12) + ϕ(−b∗12).
We may write h = h11 + h12 + h21 + h22 and t = t11 + t12 + t21 + t22, with hjk, tjk ∈
Ajk (k, j = 1, 2).

First we show that h ∈ A 12. By Claim 2.2 we get

ϕ(−h21 + h∗

21) = ϕ(pn∗
(e1, h, e1, . . . , e1))

= ϕ(pn∗
(e1, a12, e1, . . . , e1)) + ϕ(pn∗

(e1, b12, e1, . . . , e1)) = 0.

Then, by injectivity of ϕ we obtain h21 = 0. Also, given d12 ∈ A 12,

ϕ(d12h22 − (d12h22)
∗) = ϕ(pn∗

(d12, h, e2, . . . , e2))

= ϕ(pn∗
(d12, a12, e2, . . . , e2)) + ϕ(pn∗

(d12, b12, e2, . . . , e2)) = 0,

that is, d12h22 = 0, which implies that h22 = 0 by Condition (1) of Theorem 2.1. Now,

using d21 ∈ A 21 rather than d12 in the previous calculation, we conclude that h11 = 0.

Therefore, h = h12 ∈ A 12.

In a similar way, we obtain t = t21 ∈ A 21. Finally, by Lemma 2.3

ϕ(a12 + b12 − a∗12 − b∗12) = ϕ(pn∗
(e1 + a12, e2 + b12, e2, . . . , e2))

= pn∗
(ϕ(e1 + a12), ϕ(e2 + b12), ϕ(e2), . . . , ϕ(e2))

= pn∗
(ϕ(e1), ϕ(e2), ϕ(e2), . . . , ϕ(e2))

+ pn∗
(ϕ(e1), ϕ(b12), ϕ(e2), . . . , ϕ(e2))

+ pn∗
(ϕ(a12), ϕ(e2), ϕ(e2), . . . , ϕ(e2))

+ pn∗
(ϕ(a12), ϕ(b12), ϕ(e2), . . . , ϕ(e2))

= ϕ(pn∗
(e1, e2, e2, . . . , e2))

+ ϕ(pn∗
(e1, b12, e2, . . . , e2))

+ ϕ(pn∗
(a12, e2, e2, . . . , e2))

+ ϕ(pn∗
(a12, b12, e2, . . . , e2))

= ϕ(a12 − a∗12) + ϕ(b12 − b∗12)

= ϕ(a12) + ϕ(b12) + ϕ(−a∗12) + ϕ(−b∗12)

= ϕ(h12) + ϕ(t21) = ϕ(h12 + t21).
5



Since ϕ is injective, we have a12 + b12 − a∗12 − b∗12 = h12 + t21, this is, h = h12 =
a12 + b12. �

Lemma 2.5. For any ajj , bjj ∈ A jj , with j ∈ {1, 2}, we have ϕ(ajj + bjj) = ϕ(ajj) +
ϕ(bjj).

Proof. We shall prove the case j = 1, since the other case is done in a similar way.

Since ϕ is surjective, given ϕ(a11) + ϕ(b11) ∈ A ′ there exists h ∈ A such that ϕ(h) =
ϕ(a11)+ϕ(b11). We may write h = h11+h12+h21+h22, with hjk ∈ Ajk (k, j = 1, 2).
Now, by Claim 2.2

ϕ(−h21 + h∗

21) = ϕ(pn∗
(e1, h, e1, . . . , e1))

= ϕ(pn∗
(e1, a11, e1, . . . , e1)) + ϕ(pn∗

(e1, b11, e1, . . . , e1)) = 0.

Then, by injectivity of ϕ we obtain h21 = 0. Also,

ϕ(−h12 + h∗

12) = ϕ(pn∗
(e2, h, e2, . . . , e2))

= ϕ(pn∗
(e2, a11, e2, . . . , e2)) + ϕ(pn∗

(e2, b11, e2, . . . , e2)) = 0,

that is, h12 = 0 by injectivity of ϕ. Moreover, given d12 ∈ A 12,

ϕ(d12h22 − (d12h22)
∗) = ϕ(pn∗

(d12, h, e2, . . . , e2))

= ϕ(pn∗
(d12, a11, e2, . . . , e2)) + ϕ(pn∗

(d12, b11, e2, . . . , e2))

= 0.

Then, by injectivity of ϕ, d12h22 = 0, which implies that h22 = 0 by Condition (1) of

Theorem 2.1. Finally, given d21 ∈ A 21, by Lemmas 2.3 and 2.4 we have

ϕ(d21h11 − (d21h11)
∗) = ϕ(pn∗

(d21, h, e1, . . . , e1))

= ϕ(pn∗
(d21, a11, e1, . . . , e1)) + ϕ(pn∗

(d21, b11, e1, . . . , e1))

= ϕ(d21a11 − (d21a11)
∗) + ϕ(d21b11 − (d21b11)

∗)

= ϕ(d21a11) + ϕ(−(d21a11)
∗) + ϕ(d21b11) + ϕ(−(d21b11)

∗)

= ϕ(d21a11 + d21b11) + ϕ(−(d21a11)
∗ − (d21b11)

∗)

= ϕ(d21(a11 + b11)− (a∗11 + b∗11)d
∗

21),

that is, d21h11 − (d21h11)
∗ = d21(a11 + b11)− (a∗11 + b∗11)d

∗

21, by injectivity of ϕ. Thus,

d21(h11 − (a11 + b11)) = 0, which implies that h11 = a11 + b11 by Condition (1) of

Theorem 2.1. �

Proof of Theorem 2.1. Now using Lemmas 2.3, 2.4 and 2.5 is easy see that ϕ is additive.

Besides, using additivity of ϕ and since ϕ is unital, we have for a ∈ A ,

2n−2(ϕ(a)− ϕ(a)∗) = pn∗
(ϕ(a), 1A ′ , . . . , 1A ′) = pn∗

(ϕ(a), ϕ(1A ), . . . , ϕ(1A ))

= ϕ(pn∗
(a, 1A , . . . , 1A )) = ϕ(2n−2(a− a∗))

= 2n−2ϕ(a− a∗) = 2n−2(ϕ(a) − ϕ(a∗)),

then ϕ(a∗) = ϕ(a)∗ and we conclude that ϕ preserves involution. �

Remark 2.1. Observe that the Theorem 2.1 holds for any field of characteristic different of

2. In the proof the Theorem 2.1 we established the additivity of ϕ without using the unital

assumption of ϕ.
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Theorem 2.2. Let A and A ′ be two alternative ∗-algebras with identities 1A and 1A ′ ,

respectively, and e1 and e2 = 1A − e1 nontrivial symmetric idempotents in A . Let ϕ :
A → A ′ be a complex scalar multiplication bijective unital map. Suppose that A satisfies

the conditions of the Theorem 2.1, namely,

(ejA )x = {0} for any j ∈ {1, 2} implies x = 0,

ϕ(pn∗
(a, b, ξ, . . . , ξ)) = pn∗

(ϕ(a), ϕ(b), ϕ(ξ), . . . , ϕ(ξ)),

for all a, b ∈ A and ξ ∈ {e1, e2, 1A }.

Even more, if A ′ satisfies the condition

(3) (ϕ(ej)A
′)y = {0} for any j ∈ {1, 2} implies y = 0,

then ϕ is ∗-isomorphism.

With this hypothesis and Theorem 2.1 we have already proved that ϕ is ∗-additive. It

remains for us to show that ϕ preserves product. In order to do that we will prove some

more lemmas. Firstly, we observe that,

Claim 2.4. qj = ϕ(ej) is an idempotent in A ′, for j ∈ {1, 2}.

Proof. Since ϕ is a complex scalar multiplication, it follows that

2n−1i qj = 2n−1iϕ(ej) = ϕ(2n−1iej) = ϕ(pn∗
(iej, ej , 1A , . . . , 1A ))

= pn∗
(iϕ(ej), ϕ(ej), ϕ(1A ), . . . , ϕ(1A ))

= pn∗
(iϕ(ej), ϕ(ej), 1A ′ , . . . , 1A ′)) = 2n−1iϕ(ej)

2 = 2n−1i qj
2.

Then we can conclude that qj = qj
2. Moreover, since ej is a idempotent in A we have

that pn∗
(ej, 1A , . . . , 1A ) = 0. Besides,

0 = ϕ(0) = ϕ(pn∗
(ej , 1A , . . . , 1A )) = pn∗

(qj , 1A ′ , . . . , 1A ′).

Thus, qj − qj
∗ = 0, that is, qj = qj

∗. �

Lemma 2.6. For any a ∈ A , ϕ(eja) = ϕ(ej)ϕ(a) and ϕ(aej) = ϕ(a)ϕ(ej), with

j ∈ {1, 2}.

Proof. Firstly, observe that

pn∗
(ia, ej, 1A , . . . , 1A ) = 2n−2i(aej + eja

∗)

and

pn∗
(a, ej , 1A , . . . , 1A ) = 2n−2(aej − eja

∗).

Still, by Condition (2) of Theorem 2.1 and ∗-additivity of ϕ,

ϕ(2n−2i(aej + eja
∗)) = ϕ(pn∗

(ia, ej, 1A , . . . , 1A )) = pn∗
(ϕ(ia), ϕ(ej), 1A ′ , . . . , 1A ′)

= 2n−2i(ϕ(a)ϕ(ej) + ϕ(ej)ϕ(a)
∗)

and

ϕ(2n−2(aej − eja
∗)) = ϕ(pn∗

(a, ej , 1A , . . . , 1A )) = pn∗
(ϕ(a), ϕ(ej), 1A ′ , . . . , 1A ′)

= 2n−2(ϕ(a)ϕ(ej)− ϕ(ej)ϕ(a)
∗).

Now, since ϕ is ∗-additive, multiplying the second equality by i and adding these two

equations we obtain ϕ(aej) = ϕ(a)ϕ(ej). The second statement is obtained in a similar

way. �
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Consider the Peirce decomposition of A ′ with respect to idempotents qj = ϕ(ej) of A ′

(with j ∈ {1, 2}) given by A ′ = A ′

11 ⊕ A ′

12 ⊕ A ′

21 ⊕ A ′

22, where A ′

kj := qkA
′qj for

k, j ∈ {1, 2}.

Lemma 2.7. ϕ(A jk) ⊂ A ′

jk, for j, k ∈ {1, 2}.

Proof. Given x ∈ A jk, we have x = ejxek and then, by Lemma 2.6,

ϕ(x) = ϕ(ej)ϕ(xek) = ϕ(ej)ϕ(x)ϕ(ek) ∈ A
′

jk.

�

Lemma 2.8. For j 6= k, we have:

• If ajk ∈ A jk and bkk ∈ A kk then ϕ(ajkbkk) = ϕ(ajk)ϕ(bkk);
• If ajk ∈ A jk and bjk ∈ A jk then ϕ(ajkbjk) = ϕ(ajk)ϕ(bjk);
• If ajj ∈ A jj and bjk ∈ A jk then ϕ(ajjbjk) = ϕ(ajj)ϕ(bjk);
• If ajk ∈ A jk and bkj ∈ A kj then ϕ(ajkbkj) = ϕ(ajk)ϕ(bkj).

Proof. In order to prove the first statement, on the one hand, by Lemma 2.7

ϕ(ajkbkk)− ϕ(ajkbkk)
∗ = ϕ(ajkbkk − (ajkbkk)

∗) = ϕ(pn∗
(ajk, bkk, ek, . . . , ek))

= pn∗
(ϕ(ajk), ϕ(bkk), qk, . . . , qk)

= ϕ(ajk)ϕ(bkk)− (ϕ(ajk)ϕ(bkk))
∗

and then ϕ(ajkbkk) = ϕ(ajk)ϕ(bkk).
Now to prove the second statement, we have

ϕ(ajkbjk)− ϕ(ajkbjk)
∗ − 2n−3ϕ(bjkajk)

∗ + 2n−3ϕ(bjka
∗

jk)
∗

= ϕ(ajkbjk)− (ajkbjk)
∗ − 2n−3(bjkajk)

∗ + 2n−3(bjka
∗

jk)
∗)

= ϕ(pn∗
(ajk, bjk, ej, . . . , ej)) = pn∗

(ϕ(ajk), ϕ(bjk), qj , . . . , qj)

= ϕ(ajk)ϕ(bjk)− ϕ(ajk)
∗ϕ(bjk)

∗

− 2n−3ϕ(bjk)
∗ϕ(ajk)

∗ + 2n−3ϕ(bjk)
∗ϕ(a∗jk)

∗

and then ϕ(ajkbjk) = ϕ(ajk)ϕ(bjk).
The others statements are proved in a similar way. �

Since alternative algebras are flexible, we have

(xkj , ajj , bjj) + (bjj , ajj , xkj) = 0,

for all xkj ∈ A kj , ajj , bjj ∈ A jj , for k, j ∈ {1, 2}.

Lemma 2.9. If ajj , bjj ∈ A jj , with j ∈ {1, 2}, then ϕ(ajjbjj) = ϕ(ajj)ϕ(bjj).

Proof. Let xkj be an element of A kj , with j 6= k. Using Lemma 2.8 we obtain

ϕ(xkj)ϕ(ajjbjj) =ϕ(xkjajjbjj) = ϕ((xkjajj)bjj)

=(ϕ(xkj)ϕ(ajj))ϕ(bjj) = ϕ(xkj)(ϕ(ajj)ϕ(bjj))

that is,

ϕ(xkj)(ϕ(ajjbjj)− ϕ(ajj)ϕ(bjj)) = 0.

Now, by Lemma 2.7, ϕ(xkj) ∈ A ′

kj as well as ϕ(ajjbjj) and ϕ(ajj)ϕ(bjj) ∈ A ′

jj . Then,

(ϕ(ek)A
′)(ϕ(ajjbjj)−ϕ(ajj)ϕ(bjj)) = 0, which implies that ϕ(ajjbjj) = ϕ(ajj)ϕ(bjj)

by Condition (3) of Theorem 2.2. �
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Proof of Theorem 2.2. By additivity of ϕ and Lemmas 2.8 and 2.9, it follows that ϕ(ab) =
ϕ(a)ϕ(b), for all a, b ∈ A , this is, ϕ preserves product as required. �

3. COROLLARIES

Now we present some consequences of our main results.

Corollary 3.1. Let A and A ′ be two alternative ∗-algebras with identities 1A and 1A ′ ,

respectively, and e1 and e2 = 1A − e1 nontrivial symmetric idempotents in A . Let ϕ :
A → A ′ be a complex scalar multiplication bijective unital map. Suppose that A satisfies

(ejA )x = {0} for any j ∈ {1, 2} implies x = 0.

Even more, suppose that A ′ satisfies

(ϕ(ej)A
′)y = {0} for any j ∈ {1, 2} implies y = 0.

In this conditions, ϕ : A → A
′ is a multiplicative ∗-Lie n-map if and only if ϕ is ∗-

isomorphism.

It is easy to see that any prime alternative algebra satisfy Conditions (1) and (3), so we

have the following result:

Corollary 3.2. Let A and A ′ be two prime alternative ∗-algebras with identities 1A and

1A ′ , respectively, and e1 and e2 = 1A −e1 nontrivial symmetric idempotents in A . In this

condition, a complex scalar multiplication ϕ : A → A ′ is a bijective unital multiplicative

∗-Lie n-map if and only if ϕ is ∗-isomorphism.

To finish we will give an application of the Corollary 3.2. A complete normed alterna-

tive complex ∗-algebra A is called an alternative C∗-algebra if it satisfies the condition:

‖a∗a‖ = ‖a‖
2
, for all elements a ∈ A. Alternative C∗-algebras are non-associative gen-

eralizations of C∗-algebras and appear in various areas in Mathematics (see more details

in the references [18] and [19]). An alternative C∗-algebra A is called an alternative W ∗-

algebra if it is a dual Banach space and a prime alternativeW ∗-algebra is called alternative

W ∗-factor. It is well known that non-zero alternative W ∗-algebras are unital.

Corollary 3.3. Let A and A
′ be two alternative W ∗-factors. In this condition, a complex

scalar multiplication ϕ : A → A ′ is a bijective unital multiplicative ∗-Lie n-map if and

only if ϕ is ∗-isomorphism.
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