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ABSTRACT. Let 2 and 2’ be two alternative *-algebras with identities 1g and 1y,
respectively, and e1 and eo = 19 — e nontrivial symmetric idempotents in 2(. In this
paper we study the characterization of multiplicative *-Lie-type maps. As application, we
get a result on alternative W *-algebras.
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1. INTRODUCTION AND PRELIMINARIES

The study of additivity of maps have received a fair amount of attention of mathemati-
cians. The first quite surprising result is due to Martindale who established a condition
on a ring such that multiplicative bijective maps are all additive [17]. Besides, over the
years several works have been published considering different types of associative and
non-associative algebras among them we can mention [3} (8, 9l [10} [11} [12} [13]]. In order
to add new ingredients to the study of additivity of maps, many researches have devoted
themselves to the investigation of two new products, presented by Bresar and Fosner in
[2] [14], where the definition is as follows: for a,b € R, where R is a *—ring, we denote
by {a,b}. = ab+ ba* and [a, b]. = ab — ba* the %-Jordan product and the x-Lie product,
respectively. In [5]], the authors proved that a map ¢ between two factor von Newmann
algebras is a #-ring isomorphism if and only if ¢({a,b}.) = {¢(a),¢(b)}«. In [7], Fer-
reira and Costa extended these new products and defined two other types of applications,
named multiplicative *-Jordan n-map and multiplicative *-Lie n-map and used it to impose
condition such that a map between C*-algebras is a *-ring isomorphism.

With this picture in mind, in this article we will discuss when a multiplicative x-Lie n-
map is a x-isomorphism in the case of alternative x-algebras and, just as it was done in [6],
we provide an application on alternative W *-algebras. Throughout the paper, the ground
field is assumed to be the field of complex numbers.

Let2( and 2’ be two algebras with identities 1o and 1g/, respectively,and ¢ : 2 — A’
a map. We have the following concepts:

i. @ preserves product if p(ab) = @(a)p(b), for all elements a,b € 2 ;
ii. @ preserves Lie product if p(ab — ba) = ¢(a)p(b) — p(b)p(a), for any a,b € 2A;
iii. ¢ is additive if p(a + b) = p(a) + p(b), for any a,b € 2A;
iv. @ is isomorphism if @ is a bijection additive that preserves products and scalar
multiplication;
v. @ is unital if p(lg ) = lg/.
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(CAPES)-Finance 001. The second author was supported by the Centre for Mathematics of the University of
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An algebra 2 is called x-algebra if 2 is endowed with a involution. By involution, we
mean a mapping * : 2 — 2 such that (z + y)* = 2* + y*, (*)* = z and (2xy)* = y*z*
forall z,y € A. An element s € 2 satisfying s* = s is called symmetric element of 2 .

Let 2 and 2’ be two x-algebras and ¢ : 2 — 2’ a map. We have the following
definitions:

i. @ preserves involution if ¢(a*) = p(a)*, for all elements a € 2 ;
ii.  is x-isomorphism if  is an isomorphism that preserves involution;
iii. ¢ is x-additive if it preserves involution and it is additive.

Definition 1.1 (To see [7]). Consider a %-algebra 2, we denote [x1, 2], = z122 — 227,
forall 1, 2 € A and the sequence of polynomials,

pl*(‘r) =z and DPn., (:I:laan cee 7xn) = I:p(nfl)*(xlax27 ceey (En_l),l'n}* 9
for all integers n > 2 and x1,...,x, € 2A.
Thus, ps, (z1,%2) = [T1,%2], = T122 — zox], for all z1, o € A, p3, (T1,22,23) =

[[x1,®2], , 23], , for all x, x2, 3 € A, etc. Note that po, is the product introduced by
Bresar and Fosner [2}114]]. Then, using the nomenclature introduced in [7] we have a new
class of maps (not necessarily additive).

Definition 1.2. Consider two x-algebras 2 and 2A’. A map ¢ : A — A’ is multiplicative
x-Lie n-map if

(P(pn* (,Tl,ibz, sy Ly 7$n)) = DPn. (‘p(xl)a 90(‘T2)7 cees Sp(xj)v s Sp(xn))v

forall z1,xs,...,x, € A, where n > 2 is an integer. Multiplicative *-Lie 2-map, *-Lie
3-map and *-Lie n-map are collectively referred to as multiplicative *-Lie-type maps.

An algebra 2 (not necessarily associative or commutative) is called alternative algebra
if it satisfies the identities a?b = a(ab) and ba? = (ba)a, for all elements a,b € 2. One
easily sees that any associative algebra is an alternative algebra. An alternative algebra
is called prime if for any elements a, b € 2 satisfying the condition a2l b = 0, then either
a=0o0rb=0.

We consider an alternative algebra 2l with identity 1y . Fix a nontrivial idempotent
element e; € 2 and denote ex = 1o — e;. It is easy to see that (exa)e; = ex(ae;) (k,j =
1,2) for all @ € 2. Then 2 has a Peirce decomposition

20 =Aq1 DAz @ Azq B Asa,
where ;1= exe; (k,j = 1,2) (see [L3]), satisfying the following multiplicative rela-
tions:
(i) Apj™Ar; S Ajp (k,j = 1,2);
(iii) UpjUpmy = {0},1f j # mand (k,5) # (m,1), (k,j,m,l =1,2);
(iv) $zj =0, forall xy; € Uy; (k,j =1,2; k # j).

2. MAIN THEOREM

In the following we shall prove a part of the main result of this paper.

Theorem 2.1. Let 2l and A’ be two alternative *-algebras with identities 1oy and 1y,
respectively, and ey and eo = 1y — ey nontrivial symmetric idempotents in 2. Suppose
that A satisfies
(1) (e;A)x = {0} forany j € {1,2} implies x =0
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Suppose also that ¢ : A — A’ is a multiplication bijective unital map which satisfies

(2 Sp(pn* (a’7 b,§,...,8)) = pn, (Sp(a)v o(b), 90(5)7 s p(6)),
foralla,b € A and & € {eq, ea, 1y }. Then @ is x-additive.

The following claims and lemmas have the same hypotheses as the Theorem 2.1 and we
need them to prove the x-additivity of .

Claim 2.1. *(21 ;) C A, for j,k € {1,2}.
Proof. 1f aj; € Ay  then

ar; = (exakje;)” = (e;)"(arj)*(ex)” = ej(an;) ex € A jx.

([
It is easy to check the following result (see [6]]).
Claim 2.2. Let z,y, h in U such that o(h) = o(x) + ¢(y). Then, given z € A,
@(pn*(I?ﬂZ’g?" "5)) = w(pn*(x7z7§5' b ’5)) +90(pn*(y7z7§5' "75))
and
w(pn*(zj?h’g?" "5)) = w(pn*(z5:r’€7" "5)) +90(pn*(z7y5€7" '5))
for & € {e1,e2,1a}.
Claim 2.3. ¢(0) = 0.
Proof. Since ¢ is surjective, there exists 2 € 2 such that ¢(x) = 0. Then,
90(0) = (p(pn* (07 @, Lo, . 1o )) = DPn. ((p(O), Sp(x)v 90(191 )7 R (p(l‘«’l ))
= Pn. (<P(O)a 07 <P(12t )a ceey (p(lgl )) =0.
([

The next results aim to show the additivity of .

Lemma 2.1. For any a11 € 211 and bas € A 59, we have
@(a11 + ba2) = p(a11) + (ba2).

Proof. Since ¢ is surjective, given ¢(a11) + p(bee) € A’ there exists h € A such that
(p(h) = gﬁ(all)—Fgﬁ(bQQ). We may write h = h11—|—h12—|—h21—|—h22, with hjk (S Q[jk (k,] =
1,2). Besides, by Claims[2.2]and 23]

<P(pn* (615 h7 €1y---, 61)) = Sﬁ(pn* (615 a11,€1,-- -, 61)) + ‘P(pn* (617 b227 €1y 561))7
that is,

@(=ha1 + h3) = ¢(0) + ¢(0) = 0.

Then, by injectivity of ¢, —ha1 + h3; = 0. Thus ho; = 0. Moreover,

<P(pn* (625 h7 €2,..., 62)) = Sﬁ(pn* (625 ai1,€2,..., 62)) + ‘P(pn* (627 b227 €2,... 562))7
that is,

(p(—h12 + hIQ) = O
Again, by injectivity of ¢ we conclude that hj2 = 0.
Furthermore, given dy; € 2 91,

©(pn.(d21,h,e1,...,e1)) = @(Pn. (do1,a11,€1, ..., €1)) + ©(Pn. (d21,b22, €1, ..., €1)),

that is,
sﬁ(d21h11 - (d21h11)*) = <P(d21a11 - (d21a11)*)-
3



Then we conclude, by injectivity of o, that do1h11 — (da1h11)* = d21a11 — (d21a11)*, that
is, dgl(hll — au) = 0. Even more, (62%[)(h,11 — au) = 0, which 1mp11es that h11 = a1
by Condition () of Theorem[2.11

Finally, given dij2 € %12, a similar calculation gives us hoa = baa. Therefore h =
aiy + baa. O

Lemma 2.2. Forany a1z € A 12 and bay € A o1, we have <p(a12—|—b21) = gﬁ(a12)+§0(b21).

Proof. Since ¢ is surjective, given ¢(a12) + ¢(b21) € A’ there exists h € A such that
o(h) = ¢(a12)+¢(be1). We may write b = hy1+hig+ho1 +hag, with b, € Ujp (k, j =
1,2). Now, by Claims[2.2land 23]
o(pn, (e1,h,e1,...,€1)) = @(pn, (€1,a12,€1, .. .,€1)) + @(pn, (e1,b21,€1,...,€1)),
that is,
@(—ha1 + h3) = p(=ba1 + b3).
Then, by injectivity of ¢, —ha1 + hi; = —ba1 + b5;. Thus ha1 = b2;1. Moreover,
o(pn, (e2,h,e2,...,€2)) = @©(pn, (€2,a12,€2,...,€2)) + ©(pn, (e2,b21, €2, ...,€2)),
that is,
@(—hi2 + hi,) = p(—ai2 + ajy).

Again, by injectivity of ¢ we conclude that h12 = ao.
Furthermore, given da; € 2 o1,

@(da1h11 — (d21h11)™) = @(pn, (d21, by €1, ... e1))
= @(pn, (d21,a12,€1,...,€1)) + @(pn, (d21,b21,€1,...,€1)) = 0.

Then we conclude, by injectivity of ¢, that de1h11 — (d21h11)* = 0, that is, do1h11 = 0.
Even more, (e22 )h11 = 0, which implies that h;; = 0 by Condition (1) of Theorem 211

Finally, given dj» € 2A;2, a similar calculation gives us hos = 0. Therefore, we
conclude that h = a19 + bay. O

Lemma 2.3. For any a1y € A 11, bio € A 12, co1 € W21 and das € A 99 we have
(a1 + biz + ca1 + da2) = p(ai1) + ¢(bi2) + p(c21) + ©(da2).

Proof. Since g is surjective, given p(a11) + ¢(b12) + ¢(ca1) + ¢(daz2) € 2’ there exists
h € A such that p(h) = @(a11) + p(b12) + ¢(c21) + ©(d22). We may write h =
hi1 + hi2 + hor + hog, with hj, € 2, (k,j = 1,2). Applying Lemmas[2.1land 2.2 we
have
p(h) = p(a11) + p(bi2) + p(ca1) + p(d22) = p(ai + d22) + (bi2 + c21).

Now, observing that p,,, (e1, a11 + daz,e1,...,e1) =0 = py,, (e1,b12,€1,...,e1) and by
Claims[2.2)and 2.3] we obtain

Sp(pn* (617 h7 €1y, 61))

= p(pn.(e1,a11 +daz,e1,...,€1)) + @(pn.(€1,b12 + c21,€1,...,€1))

= <P(pn* (615 C21,€1, - .- 561))7
that is,

@(=ha1 + h3y) = p(—ca1 + c3).
Then, by injectivity of ¢, —ha1 + h3; = —ca1 + ¢5;. Thus ha1 = co1.
4



In a similar way, using es rather than e; in the previous calculation, we conclude that
hio = b1a. Also, given o1 € A o1,
<P(pn* ($21, h7 €ly---, 61))
= ¢(pn. (T21,011 + d2a; . .., €1)) + p(pn, (v21,b12 + 21, €1, ..., €1))
= sﬁ(pn* (£C21, ai1, €1, - .-, 61))7
since Pn. (,Tgl, b1 + c21, €1, ... ,61) =0 = pn, (l‘gl,dgg, ceey 61). Again, by injectivity
of ¢ we conclude, by following the same strategy as in the proof of Lemma 2.1} that

h11 = a11. Now, using es rather than e; and x5 rather than x5 in the previous calculation
we obtain h22 = d22. Therefore, h = a1 + b12 + co1 + d22. O

Lemma 2.4. For any aji,bjr, € Ui, with j # k, we have p(a;, + bjr) = (ar) +
@(bjk)-
Proof. We shall prove the case 7 = 1 and k = 2. The other case is done in a similar way.
Since ¢ is surjective, given ¢(a12) + ¢(b12) € A’ and p(—ajy) + p(—bi,) there exist
h € A and t € A such that (h) = p(a12) + ¢(b12) and p(t) = p(—aiy) + ©(—bis).
We may write h = hi1 + hio + ho1 + hoo and © = €11 + 12 + to1 + to2, With hjp, i €
W (k,j=1,2).

First we show that i € 21 15. By Claim 2.2l we get

<P(_h21 + h;l) = <P(pn* (617 h’a €1, - 561))
= ¢(pn. (€1,a12,€1, ..., €1)) + @(pn, (€1, b12,€1,...,€1)) = 0.
Then, by injectivity of ¢ we obtain he; = 0. Also, given djs € 2 19,
@(dizhaz — (d12h22)*) = ¢(pn, (d12, h, €2, ..., €2))
= Sﬁ(pn* (d127 a12,€2, ..., 62)) + Sﬁ(pn* (d127 bl?a €2,..., 62)) = 07

that is, diahoo = 0, which implies that hes = 0 by Condition (I)) of Theorem 2.1l Now,
using ds; € 2oy rather than dpo in the previous calculation, we conclude that h1; = 0.
Therefore, h = hio € A 9.

In a similar way, we obtain ¢ = 51 € 2 ;. Finally, by Lemma2.3]

¢(arz + big — ajy — bis) = p(pn. (€1 + a12,e2 + b1z, e2,..., €2))
= pn.(pler + a12), (e + bi2), p(ez), . . ., p(e2))
= pn.(ple1), ple2), plez), . .., p(e2))
+ P (le1), p(b12), p(e2), - . ., p(e2))
+ Pn. (p(a12), ple2) plez), - - p(e2))
+ P, (p(a12), o(br2), (e2), - . ., p(e2))
= <p(pn* (e1,€2,€2,...,€2))
©(pn, (e1,b12,€2, ..., €2)
©(pn, (a12,€2,€9,. .., 62)
gp(pm (a12,b12, €2, . ..
= p(a12 —ajy) + <P(b12 - b12)
p(a12) + ¢(bi2) + ¢(—ais) + @(—bis)
o(

hi2) 4+ o(ta1) = @(hi2 +ta1).
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Since ¢ is injective, we have a1z + b2 — ajy — bjy = hio + to1, thisis, b = hiy =

a2 + bia. g
Lemma 2.5. For any a;;,b;; € 2 ;;, with j € {1,2}, we have p(a;j; + bj;) = v(a;j;) +
@ (bj)-

Proof. We shall prove the case j = 1, since the other case is done in a similar way.

Since ¢ is surjective, given p(a11) + ¢(b11) € A’ there exists h € 2 such that ¢(h) =
w(a11) +@(bi1). We may write h = hi1 + hig + ho1 + hoo, with by, € 2 (k,j = 1,2).
Now, by Claim 2.2]
@(—ha1 + h3y) = (pn. (e1, by e, ... e1))
= o(pn. (e1,a11,€1,...,€1)) + @(pn, (e1,b11,€1,...,€1)) = 0.
Then, by injectivity of ¢ we obtain hg; = 0. Also,
@(—hi2 + hiz) = ©(pn. (€2, h €2, ... €2))
= ©(pn, (e2,a11,€2,...,€2)) + ©(pn, (€2,b11,€2,...,€2)) =0,
that is, h12 = 0 by injectivity of ¢. Moreover, given di2 € A 12,
<P(d12h22 - (d12h22)*) = Sﬁ(pn* (d127 hiea, ..., 62))
= @(pn, (d12,011,€2,...,€2)) + ©(pn, (d12,b11,€2,...,€2))
= 0.

Then, by injectivity of ¢, diahes = 0, which implies that has = 0 by Condition (I of
Theorem[2.1] Finally, given da; € A 21, by Lemmas2.3and 2.4 we have

@(d21hi1 — (d21h11)*) = @(pn. (d21, h,e1,...,e1))
@(pn. (do1,a11, €1, ... €1)) + @(pn. (d21, brv, €1, ... €1))
(d21a11 — (d21a11)™) + @(d21b11 — (d21b11)™)
(d21a11) + o(—(d21a11)") + @(d21b11) + p(—(da1b11)™)
(
(

da1a11 + do1bi1) + (—(d21a11)” — (d21b11)")
do1(a11 +b11) — (aj; +b71)d3;),
that is, do1h11 — (dglhll)* =dn (a11 + b11> — (QTI + le)dSI’ by injectivity of ©. Thus,

dgl(hll — (a11 + bll)) = 0, which 1mphes that h11 = a11 + b11 by Condition (m) of
Theorem 211 O

P
¥
¥
P

Proof of Theorem 2.1. Now using Lemmas 23] 2.4 and [2.3]is easy see that ¢ is additive.
Besides, using additivity of ¢ and since ¢ is unital, we have fora € A,

2" %(p(a) = p(a)*) = pu. ((a), a7,y 1) = P (9(a) (1), - p(1)
= ¢(pn. (0, 1o, 120)) = 9(2"*(a — a”))
=2""%p(a - a”) = 2"(p(a) — p(a)),
then ¢(a*) = p(a)* and we conclude that ¢ preserves involution. O

Remark 2.1. Observe that the Theorem[Z 1 holds for any field of characteristic different of
2. In the proof the Theorem21lwe established the additivity of ¢ without using the unital
assumption of .



Theorem 2.2. Let 2l and A’ be two alternative x-algebras with identities 19 and 1y,
respectively, and e; and ea = lg — ey nontrivial symmetric idempotents in 2. Let ¢ :
A — A’ be a complex scalar multiplication bijective unital map. Suppose that A satisfies
the conditions of the Theorem 21| namely,

(e;A)x = {0} forany j € {1,2} implies x =0,
(P(pn* (au b&,... 75)) = Pn. (Sp(a)v (p(b), 90(5)7 e 790(5))7
foralla,be A and & € {eq,ea, 19 }

Even more, if 2 satisfies the condition
3) (p(e;)A" )y = {0} foranyj € {1,2} implies y =0,
then @ is x-isomorphism.

With this hypothesis and Theorem 2.1] we have already proved that  is x-additive. It
remains for us to show that ¢ preserves product. In order to do that we will prove some
more lemmas. Firstly, we observe that,

Claim 2.4. g; = @(e;) is an idempotent in A, for j € {1,2}.
Proof. Since ¢ is a complex scalar multiplication, it follows that
2" lig; = 2" Vip(e;) = p(2"Hiej) = @(pn. (iej, €5, 1, - 1a))
= pn.(i0(e;), p(€5), o(L1a), - -, p(1a1))
= pn. (ig(ej), o(es), Lar, ., Tar)) = 2" Hig(e;)? = 2" gy,

Then we can conclude that g; = qu. Moreover, since e; is a idempotent in 2l we have
that p,,, (e, Lo, ..., 1o ) = 0. Besides,

O = <P(O) = (p(pn*(eja 1Qla' R 1%)) :pn*(qjv 1Ql'a L} 1Ql/)
Thus, ¢; — ¢;* = 0, thatis, ¢; = ¢;*. 0

Lemma 2.6. For any a € A, p(eja) = p(ej)p(a) and p(ae;) = ¢(a)p(e;), with
je{1,2}.
Proof. Firstly, observe that
pn. (ia,ej, Lo, .., 1) = 2" %i(ae; + eja*)
and
Po.(a,ej, 1o, ..o 1y ) = 2" %(ae; — eja*).
Still, by Condition (2]) of Theorem[2.1land x-additivity of ¢,

(2" %i(ae; + eja*)) = o(pn. (ia, €5, 1o, ..., 1o ) = pn. (@(ia), p(e;), Lacr,s .., 1arr)
= 2 i(pa)ple;) + ol (a)")
and
02" 2(ae; — eja*)) = @(pn. (a,e5, Lo, ... 1)) = pu. (@(a), ple;), ars .., Lar)

= 2""*(p(a)p(e;) — p(ej)p(a)”).
Now, since ¢ is x-additive, multiplying the second equality by ¢ and adding these two
equations we obtain p(ae;) = ¢(a)p(e;). The second statement is obtained in a similar
way. (|
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Consider the Peirce decomposition of 21" with respect to idempotents ¢; = ¢(e;) of A’
(with j € {1,2}) given by 2" = 7, ® A7, ® A5y ® Ady, where A}, 1= ¢, 'g; for
k,je{1,2}.

Lemma 2.7. (2 j5) C A, for j, k € {1,2}.
Proof. Given x € 2 ji, we have x = e;xej, and then, by Lemmal[2.6]

o(x) = plej)p(zer) = p(ej)o(x)pler) € Al

O
Lemma 2.8. For j # k, we have:
° Ifajk S Q[jk and by, € A 1. then ga(ajkbkk) ga(ajk)gp(bkk);
o Ifaj, € Ajp and by € A jy, then p(ajibsr) = w(azr)e(bjr);
e Ifaj; € A jandbjy € A ji, then (azbjr) = (aj;)e(bjk);
e Ifaji €Ay and by; € Ay then p(a;ibr;) = (ajr)p(br;).
Proof. In order to prove the first statement, on the one hand, by Lemma[2.7]
Plajebir) — o(ajrbir)” = @(ajeber — (ajkbrk)”) = @(Pn. (ajk: bkk, €k, - - -, €x))
= pn*(sﬁ(ajk), ©(bkk), Gk - - - Qk)
= p(ajr)p(bkk) — (plajr)e(brk))”
and then <p(ajkbkk) = <p(ajk)<p(bkk).
Now to prove the second statement, we have
o(ajubir) — e(ajibir)* — 2" 2p(bjrajr)* + 2" >p(bjral,)"
= @(arbir) — (aubjn)* — 2" (bjrar)* + 2" 3 (bjraj,)*)
= o(Pn. (@jk:bjks €5, - - €5)) = Pn. (P(ajn), p(bjk)s @5y - - - 5 q5)
= w(ajr)p(bjr) — plajr) e(bjk)*
— 2" p(bjr) plar)” + 2" >p(bik) e(a},)*
and then ¢(a;jrbjr) = o(ajk)p(bjk)-
The others statements are proved in a similar way. O

Since alternative algebras are flexible, we have
(@kjs ajj; bjs) + (bjj, azj, wrs) = 0,
forall x; € Apy, aj;,b5; € Aj;, fork, j € {1,2}.
Lemma 2.9. Ifa;;,b;; € A ;;, with j € {1,2}, then v(a;;b;;) = ¢(a;;)e(bj;).
Proof. Let z; be an element of 2 1, with j # k. Using Lemma[2.§ we obtain
(k) lasbis) =p(xrja;bs) = o((Trjaz;)bi;)
=(p(zrs)e(a;5))e(biz) = e(xr;)(laj;)e(bss))

that is,
p(wrs) (p(ag;b55) — laj;)e(bs;)) = 0.
Now, by Lemmal.7l () € 2} ; as well as p(a;;b;5) and ¢(a;;)¢(bj;) € A7, Then,
(pex)A")(p(aj;bj;) —p(aj;)e(bj;)) = 0, which implies that (a;;b;5) = ©(a;;)e(bs;)
by Condition () of Theorem[2.21 O
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Proof of Theorem 2.2. By additivity of ¢ and Lemmas 2.8 and[2.9] it follows that ¢(ab) =
p(a)p(b), forall a, b € A, this is, ¢ preserves product as required. O

3. COROLLARIES
Now we present some consequences of our main results.

Corollary 3.1. Ler 2l and 21’ be two alternative *-algebras with identities 1oy and 1g(/,
respectively, and e and ey = lg — ey nontrivial symmetric idempotents in 2. Let ¢ :
A — R’ be a complex scalar multiplication bijective unital map. Suppose that A satisfies

(e;A)x = {0} forany j € {1,2} implies x =0.
Even more, suppose that ' satisfies

(p(e))2A" )y = {0} foranyj € {1,2} implies y = 0.
In this conditions, p : A — A’ is a multiplicative x-Lie n-map if and only if  is *-
isomorphism.

It is easy to see that any prime alternative algebra satisfy Conditions (1) and (@), so we
have the following result:

Corollary 3.2. Let 2 and 2’ be two prime alternative *-algebras with identities 1g and
1o+, respectively, and e1 and e = 19 — e1 nontrivial symmetric idempotents in 2. In this
condition, a complex scalar multiplication ¢ : A — ' is a bijective unital multiplicative
x-Lie n-map if and only if ¢ is x-isomorphism.

To finish we will give an application of the Corollary 3.2l A complete normed alterna-
tive complex *-algebra A is called an alternative C*-algebra if it satisfies the condition:
la*al| = ||a||®, for all elements a € A. Alternative C*-algebras are non-associative gen-
eralizations of C*-algebras and appear in various areas in Mathematics (see more details
in the references [18]] and [19]]). An alternative C*-algebra A is called an alternative W*-
algebra if it is a dual Banach space and a prime alternative W *-algebra is called alternative
W*-factor. It is well known that non-zero alternative W *-algebras are unital.

Corollary 3.3. Let 2l and 2’ be two alternative W*-factors. In this condition, a complex
scalar multiplication ¢ : L — 2’ is a bijective unital multiplicative *-Lie n-map if and
only if p is x-isomorphism.
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