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1. Introduction

Let u be a linear functional, defined in the linear space of polynomials
with real coefficients. A linear functional u is Laguerre-Hahn affine if the
corresponding formal Stieltjes function satisfies a first order linear differential
equation,

φ(x)S ′(x) = B(x)S(x) + C(x) (1)

with φ,B, C polynomials (cf. [11]). It is known that the Laguerre-Hahn
affine class and the semi-classical class coincide. This result follows from
[10, 12], where it is established that u is Laguerre-Hahn affine if, and only if,
u satisfies a functional Pearson equation, D (φu) = ψu, where φ and ψ are
polynomials (φ is the same polynomial as in (1)).

Laguerre-Hahn affine functionals on the real line are also characterized
in terms of first order structure relations for the corresponding sequence of
orthogonal polynomials on the real line, {Pn},

φ(x)P ′
n+1(x) = Cn(x)Pn+1(x) +Dn(x)Pn(x), n = 0, 1, . . .

where Cn, Dn are polynomials of bounded degree (cf. [10, 11, 12]).
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In [8, 18], an analogue theory for hermitian linear functionals defined in the
linear space of Laurent polynomials with complex coefficients was outlined.
The concept of semi-classical functional was extended to this set of function-
als; a hermitian linear functional u is said to be semi-classical if it satisfies
a Pearson equation D (Au) = Bu, where A,B are polynomials (see, in sec-
tion 3, the definition of the derivation operator D ), and the corresponding
sequences of orthogonal polynomials, semi-classical orthogonal polynomials
on the unit circle, were defined; the Laguerre-Hahn affine class on the unit
circle was defined in terms of a first order linear differential equation with

polynomial coefficients for the formal series G(z) =
+∞
∑

n=−∞

cnz
n, where cn is

the n-th moment of the hermitian functional u,

A(z)G′(z) = B1(z)G(z) +H(z). (2)

Since then, the comparison between both theories, namely the characteriza-
tion of the functionals in terms of differential properties for the corresponding
sequences of orthogonal polynomials, as well the generating functions for the
moments, has been the central theme in some works (see [1, 2, 9, 13, 16, 18]).

In [2, 13, 18], it is established that u is Laguerre-Hahn affine and the cor-
responding G satisfies (2) if, and only if, the corresponding u satisfies the
generalized Pearson equation D (Au) = Bu+ zHL, where L is the Lebesgue
operator and B is a polynomial depending on A,B1. Moreover, in [2, 13], the
authors obtain conditions on the coefficients of equation (2) and, also, on the
polynomial coefficients of a differential equation for the formal Carathéodory
function F ,

A(z)F ′(z) = B1(z)F (z) + C(z) (3)

in order to establish the semi-classical character of the corresponding func-
tional. Some examples of functionals and the corresponding sequences of or-
thogonal polynomials that are not semi-classical are given, thus showing that,
in the complex case, the Laguerre-Hahn affine class and the semi-classical
class do not coincide.

In this work, following a different approach from the referred works, we
study the relation between a first order differential equation for the Carathéo-
dory function, (3), and the distributional equation for the corresponding u
(we remind that, in many ways, the Carathéodory function is the analogue
of the Stieltjes function (see [14])). We prove that if F satisfies a first order
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differential equation (3) in |z| < 1, then the corresponding linear functional u
satisfies a generalized Pearson equation D (Au) = Bu +HL, where L is the
Lebesgue operator and B,H are polynomials given explicitly in terms of
A,B1, C. Then, we deduce first order structure relations for the correspond-
ing sequences of orthogonal polynomials on the unit circle (analogue of the
structure relations for orthogonal polynomials on the real line, studied in
[10, 11, 12]). Finally, using these structure relations, we obtain a differential
system for semi-classical orthogonal polynomials on the unit circle (the ana-
logue of the result established for semi-classical orthogonal polynomials on
the real line in [7], by Magnus).

This paper is organized as follows: in section 2 we give the definitions and
state the main results which will be used in the next sections. In section 3 we
study the relation between the first order linear differential equation for F ,
and the generalized Pearson equation for u (see theorem 3). In section 4, we
establish the equivalence between a first order differential equation for F and
a system of differential relations for the sequence of orthogonal polynomials,
for the sequence of associated polynomials of the second kind and for the
sequence of functions of the second kind. We deduce a differential system for
sequences of semi-classical orthogonal polynomials on the unit circle.

2. Preliminary results

Let Λ = span {zk : k ∈ Z} be the space of Laurent polynomials with
complex coefficients, Λ′ its algebraic dual space, P = span {zk : k ∈ N} the
space of complex polynomials and T = {z ∈ C : |z| = 1} (or, using the
parametrization z = eiθ, T = {eiθ : θ ∈ [0, 2π[} ) the unit circle.

Given a sequence of moments (cn) of a linear functional u : Λ → C, cn =
〈u, ξ−n〉, n ∈ Z, c0 = 1, the minors of the Toeplitz matrix are defined by

∆k =

∣

∣

∣

∣

∣

∣

∣

∣

c0 c1 · · · ck
c−1 c0 · · · ck−1
...

...
...

c−k c−k+1 · · · c0

∣

∣

∣

∣

∣

∣

∣

∣

, ∆0 = c0, ∆−1 = 1, k ∈ N

Definition 1. (cf. [17]). The linear functional u is:
a) hermitian if c−n = cn, ∀n ≥ 0,
b) regular or quasi-definite if ∆n 6= 0, ∀n ≥ 0,
c) positive definite if ∆n > 0, ∀n ≥ 0.
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If u is a positive definite hermitian functional there exists a non-trivial
probability measure µ supported on the unit circle such that

〈u, ξ−n〉 =
1

2π

∫ 2π

0

ξ−ndµ(θ), n ∈ Z, ξ = eiθ.

Hereafter we will use the notation 〈uθ, . 〉 to denote the action of the linear
functional u over the variable θ, θ ∈ [0, 2π[.

Definition 2. Let {φn} be a sequence of complex polynomials with deg(φn)
= n and u a hermitian linear functional. We say that {φn} is a sequence of
orthogonal polynomials with respect to u (or {φn} is a sequence of orthogonal
polynomials on the unit circle) if

〈u, φn(ξ)φm(1/ξ)〉 = Knδn,m, Kn 6= 0, n,m ∈ N, ξ = eiθ.

If the leading coefficient of each φn is 1, then {φn} is said to be a sequence
of monic orthogonal polynomials.

It is well known (see [3, 4, 5]) that a given hermitian linear functional u is
regular if, and only if, there exists a sequence {φn} of orthogonal polynomials
with respect to u. Sequences of monic orthogonal polynomials {φn} satisfy
each of the following recurrence relations, for n ≥ 1,

(R1) φn(z) = zφn−1(z) + anφ
∗
n−1(z)

(R2) φ∗n(z) = φ∗n−1(z) + anzφn−1(z)

with an = φn(0), and initial conditions φ0(z) = 1, φ−1(z) = 0, and the
polynomials {φ∗n} are defined by φ∗n(z) = znφn(1/z), n = 0, 1, . . . , where n =
deg(φn). Also, |an| 6= 1, ∀n ∈ N, in the regular case and |an| < 1, ∀n ∈ N,
in the positive-definite case.

We consider the formal series associated with the hermitian linear func-
tional u (whose sequence of moments is (cn) and c0 = 1), and denote it
by F,

F (z) = 1 + 2

+∞
∑

k=1

ckz
k, |z| < 1 , F (z) = −1 − 2

+∞
∑

k=1

ckz
−k , |z| > 1 (4)

Since, for each θ ∈ [0, 2π[, the following expansions take place,

eiθ + z

eiθ − z
= 1+2

+∞
∑

k=1

(eiθ)−kzk, |z| < 1 ,
eiθ + z

eiθ − z
= −1−2

+∞
∑

k=1

(e−iθ)kz−k, |z| > 1
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then, formally,

〈uθ,
eiθ + z

eiθ − z
〉 = F (z) (5)

Thus, we will also say that the series in (4) correspond (formally) to the
function F defined by (5). In the positive definite case, F is the Carathéodory
function corresponding to u, and is represented by

F (z) =

∫ 2π

0

eiθ + z

eiθ − z
dµ(θ), z ∈ C \ T

where µ is the probability measure associated with u.
Given a sequence of monic orthogonal polynomials {φn} with respect to u,

the sequence of associated polynomials of the second kind {Ωn} are defined
by

Ωn(z) = 〈uθ,
eiθ + z

eiθ − z

(

φn(e
iθ) − φn(z)

)

〉, n = 1, 2, . . .

Ω0(z) = 1.

The associated polynomials {Ωn} also satisfy recurrence relations,

Ωn(z) = zΩn−1(z) − anΩ
∗
n−1(z), n = 1, 2, . . .

with initial conditions Ω0(z) = 1, Ω−1(z) = 0.
The functions of the second kind associated with {φn} are defined by

Qn(z) = 〈uθ,
eiθ + z

eiθ − z
φn(e

iθ)〉, n = 1, 2, . . .

Q0(z) = F (z)

and {Qn} satisfy the following recurrence relations (cf. [15]),

Qn(z) = zQn−1 − anQ
∗
n−1(z), n = 1, 2, . . .

with Q0(z) = F (z) and Q∗
0(z) = −F (z).

Theorem 1 (cf. [3, 4, 5]). Let {φn} be a sequence of monic orthogonal
polynomials on the unit circle and {Ωn}, {Qn} the sequence of the associated
polynomials and the functions of the second kind, respectively. Then the
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following equations hold, ∀n ≥ 1,

Qn(z) = Ωn(z) + F (z)φn(z), (6)

Q∗
n(z) = Ω∗

n(z) − F (z)φ∗n(z) (7)

φ∗n(z)Ωn(z) + φn(z)Ω
∗
n(z) = 2hnz

n (8)

φ∗n(z)Qn(z) + φn(z)Q
∗
n(z) = 2hnz

n (9)

with hn =
∏n

k=1(1 − |ak|
2) and Q∗

n = znQn(1/z).

As a consequence we get the following results (see [15]).

Corollary 1. Let {Qn} be the sequence of functions of the second kind asso-
ciated with {φn}. Then, the following holds, ∀n ≥ 1,

Qn(z) = 2hnz
n + O(zn+1), |z| < 1 (10)

Qn(z) = 2an+1hnz
−1 + O(z−2), |z| > 1 . (11)

Corollary 2. Let {φn} be a sequence of monic orthogonal polynomials on
the unit circle and {Ωn} the sequence of associated polynomials of the second
kind. Then, the following holds:

a) If there exists k ∈ N such that φk(α) = Ωk(α) = 0, then α = 0;
b) If there exists k ∈ N such that φk(α) = Qk(α) = 0, then α = 0.

3. The first order differential equation for the Carathéo-

dory function

Let u ∈ Λ′ be a regular hermitian functional and f ∈ Λ. We define the
linear functional fu ∈ Λ′ as

〈fu, g(ξ)〉 = 〈u, f(ξ)g(ξ)〉, g ∈ Λ,

and the derivative Du ∈ Λ′ as

〈D u, f(ξ)〉 = −i〈ξu, f ′(ξ)〉 = −i〈u, ξf ′(ξ)〉.

In [2, 13, 18] it is established the equivalence between the Laguerre-Hahn
affine character of a hermitian linear functional u, and the distributional
equation

D(Au) = Bu + zHL (12)

where L is the Lebesgue operator and A,B,H are polynomials. We remark
that when H = 0 and A 6≡ 0 in (12), u is said to be semi-classical.
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In this section we study the relation between regular hermitian function-
als u that satisfy (12) and a first order differential equation for the corre-
sponding F.

We begin by establishing some properties for the function F . Throughout
this section we will use the representation (5) for F.

Lemma 1. If A and B are polynomials and u is a hermitian linear functional,
the following relations hold, for |z| 6= 1:

〈B(eiθ)uθ,
eiθ + z

eiθ − z
〉 = P (z) + B(z)F (z) , (13)

A(z)F ′(z) = −A′(z)F (z) +Q(z) +
1

zi
〈D (Au),

eiθ + z

eiθ − z
〉 (14)

where P and Q are the polynomials defined by

P (z) = 〈uθ,
eiθ + z

eiθ − z

(

B(eiθ) −B(z)
)

〉 (15)

Q(z) = −A′(z) − 〈uθ, 2e
iθ

deg(A)
∑

k=2

A(k)(z)

k!
(eiθ − z)k−2〉 (16)

Proof : Since

〈B(eiθ)uθ,
eiθ + z

eiθ − z
〉 = 〈u,

eiθ + z

eiθ − z

(

B(eiθ) −B(z)
)

〉 +B(z)〈uθ,
eiθ + z

eiθ − z
〉

and 〈uθ,
eiθ + z

eiθ − z

(

B(eiθ) − B(z)
)

〉 is a polynomial we get (13) with P defined

as referred.
To obtain (14) we proceed as follows:

A(z)F ′(z) = 〈uθ,
2eiθ

(eiθ − z)2
A(z)〉

= −〈uθ,
2eiθ

(eiθ − z)2
(A(eiθ) −A(z))〉 + 〈uθ,

2eiθA(eiθ)

(eiθ − z)2
〉

= −〈uθ, 2e
iθ

deg(A)
∑

k=1

A(k)(z)

k!
(eiθ − z)k−2〉 + 〈uθ,

2eiθA(eiθ)

(eiθ − z)2
〉
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But
deg(A)
∑

k=1

A(k)(z)

k!
(eiθ − z)k−2 =

A′(z)

eiθ − z
+

deg(A)
∑

k=2

A(k)(z)

k!
(eiθ − z)k−2

and, multiplying and dividing by z in the second term and taking into account
that

〈uθ,
2zeiθA(eiθ)

(eiθ − z)2
〉 = −〈A(eiθ)uθ, e

iθ ∂

∂θ

(

eiθ + z

eiθ − z

)

〉,

we get

A(z)F ′(z) = −A′(z) (F (z) + c0) − 〈uθ, 2e
iθ

deg(A)
∑

k=2

A(k)(z)

k!
(eiθ − z)k−2〉

−
1

z
〈A(eiθ)u, eiθ ∂

∂θ

(

eiθ + z

eiθ − z

)

〉

Now we use the definition of D and assume that c0 = 1, to get

A(z)F ′(z) = −A′(z)F (z) +Q(z) +
1

zi
〈D (Au),

eiθ + z

eiθ − z
〉,

with Q given by (16).

Remark . Throughout this section we will use the notation

PA,B(z) = zQ(z) − iP (z)

where the polynomials P and Q are defined in terms of A and B by (15)
and (16), respectively.

Next, we recover a result established in [2, 13], but here a different approach
is used.

Theorem 2. Let u be a regular hermitian functional. If u satisfies D (Au) =
Bu + ξH(ξ)L, where L is the Lebesgue functional, and A,B,H are polyno-
mials, then F satisfies the first order differential equations

zA(z)F ′(z) = (−iB(z) − zA′(z))F (z) + PA,B(z) − 2izH(z), |z| < 1(17)

zA(z)F ′(z) = (−iB(z) − zA′(z))F (z) + PA,B(z), |z| > 1 (18)

Conversely, if F satisfies (17) and (18), then u satisfies the functional equa-
tion

D (Au) = Bu+ ξH(ξ)L.
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Proof : Let u satisfy D (Au) = Bu + ξH(ξ)L. By substituting D (Au) =
Bu+ ξH(ξ)L in (14) we obtain

A(z)F ′(z) = −A′(z)F (z) +Q(z) +
1

iz
〈Bu,

eiθ + z

eiθ − z
〉 +

1

iz
〈eiθH(eiθ)L,

eiθ + z

eiθ − z
〉

From (13) follows

A(z)F ′(z)

= −A′(z)F (z) +Q(z) +
P (z) + B(z)F (z)

iz
+

1

iz
〈eiθH(eiθ)L,

eiθ + z

eiθ − z
〉 (19)

Let eiθH(eiθ) = h1e
iθ + · · · + hl(e

iθ)l, for some l ∈ N.
Since, for |z| < 1,

〈eiθH(eiθ)L,
eiθ + z

eiθ − z
〉 = 〈(h1e

iθ + · · · + hl(e
iθ)l)L, 1 + 2

+∞
∑

k=1

(eiθ)−kzk〉

= 2
(

h1z + h2z
2 + · · · + hlz

l
)

,

= 2zH(z)

then, for |z| < 1, (19) is equivalent to

A(z)F ′(z) = −A′(z)F (z) +Q(z) +
1

zi
(P (z) + B(z)F (z)) +

1

iz
2zH(z)

and we obtain the equation

zA(z)F ′(z) = (−iB(z) − zA′(z))F (z) + C1(z), |z| < 1,

with C1(z) = zQ(z) − iP (z) − 2izH(z) = PA,B(z) − 2izH(z).
On the other hand, for |z| > 1,

〈eiθH(eiθ)L,
eiθ + z

eiθ − z
〉 = 〈(h1e

iθ + · · · + hl(e
iθ)l)L,−1 − 2

+∞
∑

k=1

(eiθ)kz−k〉 = 0.

Therefore, for |z| > 1, (19) is equivalent to

zA(z)F ′(z) = (−iB(z) − zA′(z))F (z) + C2(z),

with C2(z) = zQ(z) − iP (z) = PA,B(z).
Conversely, let F satisfy equations (17) and (18). We observe that, if F

satisfies a differential equation with polynomial coefficients

zA(z)F ′(z) = (−iB(z) − zA′(z))F (z) + C(z),
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then, from (14) and (13), we obtain

〈Bu,
eiθ + z

eiθ − z
〉 − P (z) + iC(z) = izQ(z) + 〈D (Au),

eiθ + z

eiθ − z
〉

and the following equation follows

〈D (Au) − Bu,
eiθ + z

eiθ − z
〉 = R(z) (20)

where R(z) = iC(z) − P (z) − izQ(z) = iC(z) − iPA,B(z).
We now study equation (20) in both domains, |z| < 1 and |z| > 1:

a) since, if |z| < 1, equation (17) holds, then C(z) = PA,B(z)− 2izH(z), and
(20) becomes

〈D (Au) −Bu,
eiθ + z

eiθ − z
〉 = 2zH(z)

Since
eiθ + z

eiθ − z
= 1 + 2

+∞
∑

k=1

(eiθ)−kzk, |z| < 1, last equation is equivalent to

〈D (Au) − Bu, 1〉+ 2

+∞
∑

k=1

〈D (Au) −Bu, (eiθ)−k〉zk = 2zH(z) (21)

b) since, if |z| > 1, equation (18) holds, then C(z) = PA,B(z) and (20)
becomes

〈D (Au) − Bu,
eiθ + z

eiθ − z
〉 = 0

Since
eiθ + z

eiθ − z
= −1 − 2

+∞
∑

k=1

(eiθ)kz−k, last equation is equivalent to

−〈D (Au) − Bu, 1〉 − 2
+∞
∑

k=1

〈D (Au) −Bu, (eiθ)k〉z−k = 0 (22)

Finally, from (21) and (22), we have

〈D (Au) −Bu, (eiθ)k〉 = 0, ∀k ≥ 0

〈D (Au) −Bu, (eiθ)−k〉 = 0, ∀k > deg(H) + 1

〈D (Au) −Bu, (eiθ)−k〉 = hk, k = 1, . . . , deg(H) + 1
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with zH(z) = h1z + h2z
2 + · · · + hlz

l.
Therefore, we obtain the functional equation D (Au) − Bu = ξH(ξ)L.

Note that if u is a semi-classical functional such that D (Au) = Bu, then the
function F associated with u satisfies a first order linear differential equation
with polynomial coefficients,

zA(z)F ′(z) = (−iB(z) − zA′(z)))F (z) + C(z), |z| 6= 1,

as is stated in [18].

Corollary 3. Let F satisfy

zA(z)F ′(z) = (−iB(z) − zA′(z))F (z) + C(z), |z| 6= 1 .

Then, the corresponding linear functional u is semi-classical and satisfies
D (Au) = Bu if and only if C(z) = PA,B(z).

Finally, we study the case of one differential equation for F . We will need
the following lemma, which is a generalization of a result from [1].

Lemma 2. Let u be a regular hermitian functional. If there exist polynomials
A,B,H such that D (Au) = Bu + HL, where L is the Lebesgue functional,
then the following equation holds,

D (A+A)u = (B +B)u+ (H +H)L (23)

Conversely, if (23) holds, then there exist polynomials Ã, B̃, H̃ such that
D (Ãu) = B̃u+ H̃L.

Proof : If D (Au) = Bu+HL, then

〈D (Au), ξk〉 = 〈Bu+HL, ξk〉, ∀k ∈ Z.

Applying conjugates, follows

〈D (Au), ξ−k〉 = 〈Bu+HL, ξ−k〉, ∀k ∈ Z.

Therefore, we get

〈D ((A+A)u), ξn〉 = 〈(B +B)u+ (H +H)L, ξn〉, ∀n ∈ Z

and (23) follows.
Conversely, if u satisfies (23), then

〈D ((A+A)u), ξk〉 = 〈(B +B)u, ξk〉 + 〈(H +H)L, ξk〉, ∀k ∈ Z.
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From the definition of D , we obtain for all k ∈ Z ,

−ik〈u, (A(ξ)+A(1/ξ))ξk〉 = 〈u, (B(ξ)+B(1/ξ))ξk〉+〈L, (H(ξ)+H(1/ξ))ξk〉.

Let s = max{deg(A), deg(B), deg(H)} . Last equation can be written as

− ik〈u, ξs(A(ξ) + A(1/ξ))ξk−s〉

= 〈u, ξs(B(ξ) + B(1/ξ))ξk−s〉 + 〈L, ξs(H(ξ) +H(1/ξ))ξk−s〉 , k ∈ Z .

If we write k = s+m and

A1(ξ) = ξs(A(ξ) +A(1/ξ))

B1(ξ) = ξs(B(ξ) + B(1/ξ))

H1(ξ) = ξs(H(ξ) +H(1/ξ))

then A1, B1, H1 are polynomials, and last functional equation is

−i(s+m)〈u,A1(ξ)ξ
m〉 = 〈u,B1(ξ)ξ

m〉 + 〈L, H1(ξ)ξ
m〉

which is equivalent to

−im〈u,A1(ξ)ξ
m〉 = 〈u, (B1(ξ) + isA1(ξ))ξ

m〉 + 〈L, H1(ξ)ξ
m〉.

From the definition of D , follows

〈D (A1u), ξ
m〉 = 〈(B1 + isA1)u, ξ

m〉 + 〈H1L, ξ
m〉, ∀m ∈ Z,

and we obtain the required result with Ã = A1, B̃ = B1 + isA1, H̃ = H1.

Theorem 3. Let u be a regular hermitian functional. If F satisfies a first
order differential equation with polynomial coefficients

zA(z)F ′(z) = (−iB(z) − zA′(z))F (z) + C(z), |z| < 1 (24)

then there exist polynomials Ã, B̃, H̃ such that u satisfies D (Ãu) = B̃u+H̃L,
with L the Lebesgue functional.

Proof : If F satisfies (24), following the same steps as in the second part of
the proof of theorem 2 (see (20)), we obtain the equation

〈D (Au) − Bu,
eiθ + z

eiθ − z
〉 = i(C(z) − PA,B(z)), |z| < 1 (25)

Applying conjugates and the transformation z → 1/z, follows

〈D (Au) − Bu,
e−iθ + 1/z

e−iθ − 1/z
〉 = −i(C(1/z) − PA,B(1/z)) .
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Since
e−iθ + 1/z

e−iθ − 1/z
= −

eiθ + z

eiθ − z
, last equation is equivalent to

〈D (Au) −Bu,
eiθ + z

eiθ − z
〉 = i(C(1/z) − PA,B(1/z)), |z| > 1 (26)

Now, since there exists an analytic continuation outside the unit disk, in (25),
and inside the unit disk, in (26), we get, for 1 − ǫ2 < |z| < 1 + ǫ1, ǫ1, ǫ2 > 0,

〈D ((A+A)u)−(B+B)u,
eiθ + z

eiθ − z
〉 = i(C(z)−PA,B(z))+i(C(1/z)−PA,B(1/z)).

By computing the moments of the hermitian functional D ((A+A)u)− (B+
B)u, from last equation follows D ((A+A)u)− (B+B)u = (H +H)L, with
H(ξ) = i(C(ξ) − PA,B(ξ))/2. From previous lemma, we obtain the required
result.

4. First order structure relations for orthogonal polyno-

mials on the unit circle

In this section we establish the equivalence between the first order differ-
ential equation

zAF ′ + BF + C = 0,

for the Carathéodory function associated with a hermitian functional u, and
first order structure relations for the corresponding orthogonal polynomials,
the associated polynomials of the second kind and for the functions of the
second kind. This will be done using the same ideas of [6].

Theorem 4. Let u be a regular and hermitian functional, {φn} the sequence
of monic orthogonal polynomials with respect to u, {Ωn} the associated poly-
nomials of the second kind and {Qn} the functions of the second kind. If
there exist polynomials A,B,C such that F satisfies

zA(z)F ′(z) + B(z)F (z) + C(z) = 0, |z| < 1
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then there exist polynomials Gn and Hn with degrees not depending on n,
such that the following relations holds, for all n ∈ N,

zA(z)φ′n(z) = (Gn(z) +
B

2
(z))φn(z) +Hn(z)φ

∗
n(z) (27)

zA(z)Ω′
n(z) = (Gn(z) −

B

2
(z))Ωn(z) −Hn(z)Ω

∗
n(z) + C(z)φn(z) (28)

zA(z)Q′
n(z) = (Gn(z) −

B

2
(z))Qn(z) −Hn(z)Q

∗
n(z) (29)

Conversely, if equations (27), (28) and (29) hold, for all n ∈ N, then F
satisfies a first order linear differential equation with polynomial coefficients

zAF ′ + BF + C = 0.

Proof : Before going into the proof we remark that if φn(0) = 0, ∀n ∈ N,
then φn(z) = Ωn(z) = zn, Qn(z) = 2zn, φ∗n(z) = Ω∗

n(z) = 1, Q∗
n(z) =

0, F (z) = 1, and the result holds with A = 1, B = 0, C = 0, and the
differential relations (27), (28) and (29) with Gn = n,Hn = 0, ∀n ∈ N. So, in
what follows we will assume that we are not in the case φn(0) = 0, ∀n ∈ N.

Using (6) in zAF ′ + BF + C = 0 we get

zA

{

Ωnφ
′
n − Ω′

nφn

φ2
n

}

+ zA

(

Qn

φn

)′

− B
Ωn

φn

+ B
Qn

φn

+ C = 0.

Therefore the following equation holds,

zA (Ωnφ
′
n − Ω′

nφn) − BΩnφn + Cφ2
n = Θn(z) (30)

with

Θn(z) =

{

−zA(z)

(

Qn(z)

φn(z)

)′

−B(z)
Qn(z)

φn(z)

}

φ2
n(z) (31)

From the asymptotic expansion of Qn in |z| < 1 (see (10)), and since the
left side of (30) is a polynomial, we get Θn = znΘn,1, for some polynomial
Θn,1. Moreover, using the asymptotic expansion of Qn in |z| > 1 (see (11)),
we conclude that Θn,1 has bounded degree,

deg(Θn,1) = max{deg(A) − 1, deg(B) − 1}, ∀n ∈ N.

Thus, (30) becomes

−φn {zAΩ′
n + BΩn − Cφn} + Ωn(zAφ

′
n) = znΘn,1(z).
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Using (8) follows

−φn {zAΩ′
n +BΩn − Cφn} + Ωn(zAφ

′
n) = Θn,2(z) (φ∗nΩn + φnΩ

∗
n) ,

with Θn,2(z) = Θn,1(z)/(2hn), and we obtain

φn

{

zAΩ′
n +

B

2
Ωn − Cφn + Θn,2Ω

∗
n

}

= Ωn

{

zAφ′n −
B

2
φn − Θn,2φ

∗
n

}

(32)

We distinguish the following cases (see corollary 2):
a) φn and Ωn have no common roots, ∀n ∈ N, i.e., φn(0) 6= 0, ∀n ∈ N;
b) There exists a finite number of indexes k ∈ N such that φk and Ωk have
common roots, i.e., φk(0) = Ωk(0) = 0 for a finite number of k’s;
c) There exists n0 > 1 such that φn(0) = 0, ∀n ≥ n0.

Case a): If φn and Ωn do not have common roots, then we conclude that
there exists a polynomial ln, ∀n ∈ N, such that

{

zAφ′n −
B
2
φn − Θn,2φ

∗
n = lnφn

zAΩ′
n + B

2 Ωn − Cφn + Θn,2Ω
∗
n = lnΩn

(33)

and we obtain (27) and (28) with Gn = ln and Hn = Θn,2. Moreover, as
deg(Hn) is bounded, then deg(Gn) is bounded,

deg(Gn) = max{deg(A), deg(B)}, ∀n ∈ N.

Case b): We first suppose φ1(0) 6= 0, . . . , φk−1(0) 6= 0, and k is the first
index such that φk(0) = 0. Then, φn and Ωn have no common roots, for
n = 1, . . . , k−1. From case a), equations (33) hold for n = 1, . . . , k−1. Now
we write equations (33) for k − 1 and multiply by z, to obtain

{

zAzφ′k−1 −
B
2
zφk−1 − zΘk−1,2φ

∗
k−1 = lk−1zφk−1

zAzΩ′
k−1 + B

2 zΩk−1 − Czφk−1 + zΘk−1,2Ω
∗
k−1 = lk−1zΩk−1

By substituting

φk(z) = zφk−1(z), φ
∗
k(z) = φ∗k−1(z), zφ

′
k−1(z) = φ′k(z) − φk−1(z)

and

Ωk(z) = zΩk−1(z), Ω∗
k(z) = Ω∗

k−1(z), zΩ
′
k−1(z) = Ω′

k(z) − Ωk−1(z)

in previous equations follows
{

zAφ′k −
B
2 φk − zΘk−1,2φ

∗
k = (lk−1 +A)φk

zAΩ′
k + B

2 Ωk1 − Cφk + zΘk−1,2Ω
∗
k = (lk−1 + A)Ωk
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and we obtain (27) and (28) for n = k with Gk = lk−1 +A and Hk = zΘk−1,2.
Further, if φk+1(0) = · · · = φk+k0

(0) = 0, and φk+k0+1(0) 6= 0 for some k0 ∈ N,
using the same procedure as before, the differential relations (27) and (28)
are obtained for n = k + 1, . . . , k + k0, with

Gn = lk−1 + (n− k + 1)A, Hn = zn−k+1Θk−1,2.

Case c): If φn(0) = 0, ∀n ≥ n0, then φn and Ωn are polynomials of the
Bernstein-Szegő type,

φn(z) = zn−n0+1φn0−1(z), Ωn(z) = zn−n0+1Ωn0−1(z).

Applying the same procedure as before we conclude that equations (27) and
(28) hold for n ∈ N, and, ∀n ≥ n0, the polynomials Gn and Hn are given by

Gn = ln0−1 + (n− n0 + 1)A, Hn = zn−n0+1Θn0−1,2.

On the other hand, if we replace Θn by 2hnz
nΘn,2 in (31) we get

{

−zA

(

Qn

φn

)′

− B

(

Qn

φn

)}

φ2
n = Θn,2(z)2hnz

n.

Using (9) we get
{

−zA

(

Qn

φn

)′

−B

(

Qn

φn

)}

φ2
n = Θn,2(z)(φ

∗
nQn + φnQ

∗
n).

Therefore, ∀n ∈ N,
{

zAQ′
n +

B

2
Qn + Θn,2Q

∗
n

}

φn =

{

zAφ′n −
B

2
φn − Θn,2φ

∗
n

}

Qn.

If we distinguish the two cases (see corollary 2):
a) φn and Qn have no common roots, ∀n ∈ N, i.e., φn(0) 6= 0, ∀n ∈ N;
b) φn and Qn have the common root z = 0;
then, applying the same procedure as before, we conclude that, in both cases,
there exists a polynomial Ln such that

{

zAφ′n − B
2 φn − Θn,2φ

∗
n = Lnφn

zAQ′
n + B

2Qn + Θn,2Q
∗
n = LnQn.

Since Ln = ln, we obtain (29) with Gn = ln and Hn = Θn,2.
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To prove the converse result we use (6) and (7) in equation (28), thus
obtaining

zA (Q′
n − φ′nF − φnF

′) = (Gn −
B

2
) (Qn − φnF ) −Hn (Q∗

n + φ∗nF ) + Cφn,

i.e.,

zAQ′
n + (

B

2
−Gn)Qn +HnQ

∗
n

=

{

zAφ′n −Gnφn +
B

2
φn −Hnφ

∗
n

}

F + {zAF ′ + C}φn.

From (27) and (29) we obtain {zAF ′ +BF + C}φn = 0, and zAF ′ +BF +
C = 0 follows.

Remark . Moreover, from (7) and using the same reasoning as before, we
deduce the equations for φ∗n and Q∗

n, ∀n ∈ N,

zA(φ∗n)
′ = (Sn + B/2)φ∗n − Tnφn (34)

zA(Q∗
n)

′ = TnQn + (Sn − B/2)Q∗
n (35)

where Sn, Tn are bounded degree polynomials.

From the differential equations (27), (29), (34) and (35), we obtain a dif-
ferential systems for semi-classical orthogonal polynomials on the unit circle
(analogue to the equations deduced in [7], for the real case).

Theorem 5. Let {φn} be a sequence of monic orthogonal polynomials with
respect to a semi-classical functional u, such that D (Au) = Bu. If u is pos-
itive definite and w is the absolutely continuous part of the corresponding
measure, then the following equations hold,

zA

[

φn Qn/w
φ∗n −Q∗

n/w

]′

=

[

Gn − B̃/2 Hn

−Tn Sn − B̃/2

] [

φn Qn/w
φ∗n −Q∗

n/w

]

, ∀n ∈ N

where B̃(z) = −iB(z) − zA′, and Gn, Hn, Sn, Tn are bounded degree polyno-
mials.

Proof : If u satisfies D (Au) = Bu then the corresponding F satisfies zAF ′ =
B̃F + C, with B̃ = −iB − zA′, and C a polynomial (see corollary 3 of
theorem 2).
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From theorem 4 and the subsequent remark we have the following equa-
tions,

zA

[

Q′
n/w

−(Q∗
n)

′/w

]

= (Bn +
B̃

2
I)

[

Qn/w
−Q∗

n/w

]

(36)

and

zA

[

φn

φ∗n

]′

= (Bn −
B̃

2
I)

[

φn

φ∗n

]

(37)

with Bn =

[

Gn Hn

−Tn Sn

]

and I the identity matrix of order two.

On the other hand, since w′(z)/w(z) = B̃(z)/(zA(z)), (see [18]) we obtain

zA

[

Qn/w
−Q∗

n/w

]′

= zA

[

Q′
n/w

−(Q∗
n)

′/w

]

− B̃

[

Qn/w
−Q∗

n/w

]

(38)

Substituting (36) in (38) we get

zA

[

Qn/w
−Q∗

n/w

]′

= (Bn −
B̃

2
I)

[

Qn/w
−Q∗

n/w

]

(39)

Finally, from (37) and (39) we obtain the required differential system.
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orthogonaux semi-classiques. In ”Orthogonal polynomials and their applications”, C. Brezinski,
L. Gori and A. Ronveux Eds. J.C.Baltzer AG. Basel IMACS Annals on Computing and Applied
Mathematics, 9 (1991), pp. 95-130.
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