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Resumo

O área de aprendizagem computacional tem observado um crescimento exponencial devido

aos rápidos avanços da tecnologia computacional e à crescente procura em diversas áreas. A

cadência de desenvolvimento é extremamente elevada, tornando-se rapidamente um dos mer-

cados mais lucrativos. A aprendizagem profunda, um ramo da aprendizagem computacional,

utiliza redes neuronais para aprender através de dados e tem obtido resultados excelentes.

No entanto, estes resultados têm um preço: vastas quantidades de dados são necessários

para treinar estes modelos. Os dados precisam ser recolhidos e anotados corretamente, uma

tarefa manual tão monótona e extensa que apresenta uma elevada taxa de erro. Isto leva à

escassez de dados, casualmente chamada de gargalo para a aprendizagem computacional. A

aprendizagem profunda é amplamente aplicada à navegação autônoma, com maior foco no

desenvolvimento de carros autônomos. A necessidade de grandes quantidades de dados e a

disponibilidade reduzida de dados anotados resultam na falta de diversidade, onde a maioria

dos dados disponíveis está associado a ambientes urbanos. A falta de dados relacionados com

ambientes rurais e florestais, juntamente com as dificuldades associadas à sua etiquetação,

aumentam a necessidade de gerar dados sintéticos para incorporar no treino de modelos.

Esta tese tem como objetivo preencher esta lacuna e facilitar a criação de dados focados em

cenários florestais. O sistema proposto, construído usando o Unreal Engine 5, é capaz de

gerar procedimentalmente ambientes florestais virtuais navegáveis e realizar a extração de

dados sintéticos relevantes. Devido às capacidades do Unreal Engine 5, o sistema é capaz de

alcançar um alto nível de fotorrealismo e simular com precisão áreas florestais. Através do

uso de câmeras virtuais e da exploração das funcionalidades do Unreal Engine 5, o sistema

é capaz de extrair dados no formato de imagens RGB, mapas de segmentação semântica

e mapas de profundidade. Como um software pronto a publicar, este sistema oferece aos

utilizadores a possibilidade de se movimentarem no ambiente gerado. O sistema oferece três

métodos de geração de dados, duas perspectivas e a capacidade de ativar modos de visualiza-
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ção de dados. Por fim, a avaliação do sistema resultou em mapas de segmentação semântica

e mapas de profundidade com precisão ao nível do pixel. A avaliação de desempenho foi

positiva, com o sistema a ser capaz de produzir uma centena de dados completos em pouco

mais de uma hora.

Palavras-Chave: Dados Sintéticos; Geração Procedimental; Machine Learning; Per-

cepção Robótica em Ambientes Florestais; Unreal Engine 5
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Abstract

The field of machine learning has experienced tremendous growth due to rapid advance-

ments in computer technology and the increasing demand in the most various fields. The

development cadence is extremely high and it is rapidly becoming one of the most profitable

markets. Deep Learning, a branch of machine learning, uses a neural network to learn from

data with excellent results. However, these results came at price of enormous datasets that

are required for the training of these models. The data needs to be collected and correctly

labelled, a manual task so monotonous and extensive that has an elevated error rate. This

leads to shortage of data that is commonly called the bottleneck for Machine Learning. Deep

learning is being widely applied to autonomous navigation, with self-driving cars leading the

charge. The necessity of extensive amounts of data and the reduced availability of labelled

datasets, translates to lack of diversity, where most available datasets are related to urban

environments. The lack of data related to rural and forested environments and the difficul-

ties associated with their labeling propel the need to generate synthetic data to incorporate

in training. This thesis aims to bridge the gap and facilitate the creation of datasets fo-

cused on forest scenarios. The proposed system, built using Unreal Engine 5, is capable of

procedurally generate navigable virtual forest environments and perform the extraction of

accurate synthetic data. Due to Unreal Engine 5 capabilities, the system is able to achieve a

high-level of photorealism and accurately simulate forested areas. Through the use of virtual

cameras and exploiting Unreal Engine 5 functionalities, the system is able to extract data

in the format of RGB images, semantic segmentation maps and depth maps. As a ready

to ship software, this system offers users free mobility in the generated world. The system

offers three methods of data generation, two perspectives and the ability to activate data

view modes. Finally, the assessment of the system resulted pixel-perfect accuracy in both

semantic segmentation maps and depth maps. The performance evaluation was positive,

with the system capable of producing one hundred complete sets of data in just over one
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hour.

Keywords: Synthetic Data; Procedural Generation; Machine Learning; Robotic Per-

ception in Forest Environments; Unreal Engine 5
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“If you were a better programmer, you would program yourself a way

out of this.”
— Gilfoyle, Sillicon Valley
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1 Introduction

Over the past few years, the field of Machine Learning (ML) has been revolutionized

thanks to the technological evolution of computers, which have become more powerful and

faster in terms of computation. ML is an ever-growing study area and can be applied to a

vast number of tasks, ranging from the trivial recommendation system to the difficult fully-

automated surgical procedure. In fact, ML is ingrained in our day-to-day activities, being

used in spam filtering, route planning, online targeted advertising and much more. With so

many applications and its increasing demand, ML is becoming one of the biggest markets

globally. A study conducted by Fortune Business Insights estimates that the market was

valued at 21.17 billion dollars in 2022 and is expected to grow to 209.91 billion dollars by

2029 [1]. Additionally, it was estimated by The Wall Street Journal that the total amount

invested in ML research, in 2021, was 57 billion dollars [2].

ML is an umbrella term for the spectrum of algorithms that are developed using the

computer’s capacity of learning from data. Deep Learning (DL) is a subclass of ML that is

based on the inner-workings of the human brain. Specifically, it takes advantage of layered

structures composed of interconnected neurons that make up the neural network. This

neurons are able to take the data that is given as an input and produce a more weighted

output, allowing a learning process that is more hands-off for the programmer at the expense

of larger datasets and bigger computation times. Although DL is a more taxing process, it

is recognized as a superior technique when compared to the conventional algorithms used in

many fields. Hence, the conventional algorithms are being replaced by more precise, reliable

and efficient DL algorithms. In fact, as ascertained by N. O’Mahony et al. [3], most precursor

algorithms employed in computer vision have become irrelevant due to the implementation

of DL based algorithms.

The development of a DL algorithm requires a substantial amount of data, directly linked

to the problem at hand. This data has to be labelled to transmit the correct information to

guide the learning process of the algorithm. Moreover, task complexity further increases the
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amount of demanded data. To illustrate data necessity, when working with image segmen-

tation it is common practice to use a thousand images per class [4]. Training an algorithm

to detect ten different classes involves a minimum of ten thousand images, where all images

are required to be labeled. The labelling process consists in masking each class present in

the image, with a colored polygon, following the designated color/class code. This task is

highly demanding and has the potential to halt the progress of the investigation by diverting

all attention and resources.

Furthermore, in the majority of applications, obtaining a pre-labelled dataset is not

an option, requiring the collection of raw data. The time-consuming process of labelling

the data, coupled with the challenging task of gathering raw data, can often result in the

premature termination of the research due to time-constraints or even demoralization.

Autonomous navigation is one of the areas in which ML and DL are heavily applied with

constant improvements. Autonomous driving applications serve as a focal point for much of

the work conducted in this field. The existence of many labelled datasets and high demand

of such applications are the catalyst to the observed boost in self-driving cars development.

This leaves perceiving and navigating other environments as an afterthought. However, the

navigation of forested environments is an area that has become increasingly studied, with

aims of developing and deploying fully automated robots to perform a range of key tasks

to preserve and monitor the natural environments, as well as perform search and rescue

operations.

This thesis targets the development of a system that can extract synthetic data from

procedurally generated worlds for the purpose of training DL algorithms for forest applica-

tions. Currently, synthetic data cannot fully replace real-world data, however it can offer a

lot of benefits. Therefore studying and developing this type of data is a crucial first step in

addressing the issue of data scarcity.

This Chapter will first outline the motivation for the work that was created, stating some

of the DL applications intended for forest areas, followed by the identification of pertinent

data types. After that, a detailed explanation of the problem and a summary of the suggested

system are provided, ending with a list of the principal benefits the developed system offers

to the scientific community.
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1.1 Motivation

At the moment, the Forest Guard is the solely responsible for maintaining and monitoring

the forest environment. Even without considering the decrease in available personnel, the

Forest Guard faces a significant disadvantage as they are tasked with monitoring over four

billion hectares of forest [5] solely on foot. The deployment of drones eased the monitoring

process, but the crucial tasks related to the preservation are still performed manually. These

laborious manual tasks and the shortage in personnel increase the risk of wildfires. In 2022,

Portugal had a total burned area of 1100.07 km2, of which 40.1% were forested areas [6],

demonstrating a pressing need for an operational system for patrolling and maintenance of

forested environments.

1.1.1 Deep Learning applied to Forest Environments

The development and training of an advanced robotic system to aid in the preservation

and maintenance of forest requires an incredibly specific dataset. However, when searching

for datasets dedicated to forested environments, it becomes apparent that the available

options are limited, with existing ones often containing insufficient data and redundant

information.

The existing datasets are all derivations of the Red, Green and Blue (RGB) image dataset

developed by A. Giusti e al. [7]. This dataset was put collected as a result of research towards

creating a controller for a quadcopter’s autonomous navigation during rescue operations. The

intention was to make it possible for the drone to travel along forest trails and with the use

of sensors for direction detection, each image in the dataset was labelled with the precise

path the quadcopter should take, performing a form of automated labelling. However, the

model developed using this dataset is only able to predict which way the robot should travel

could not infer information about the objects that are in its immediate vicinity.

Using Giusti’s dataset in conjunction with newly collected data, L. Lind [8] investigated

the use of ML in autonomous ground vehicle navigation in a forest environment. The au-

thor came to the conclusion that, despite the attained autonomy of 75% being far from

reliable, multiple improvements that can be made to the model that would allow reliance on

autonomous forest navigation.

Summing up the information presented, the problem is clearly the absence of data related

to forested environments. The redundancy of the existing datasets and the simplistic labeling
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offered further increase the necessity of new data. Additionally, A. Munappy et al. [9] stated

another difficulty related to ML for forest deployment, the disparities in real-world forests

and the reduced diversity of the available data.

1.1.2 The Link Between Deep Learning and Data

DL algorithms are known for being highly dependent on data [9]. The neural network

structure present in these algorithms grants them a higher degree of independence compared

to traditional ML algorithms. However, this advantage comes at the cost of requiring larger

datasets and longer training times to achieve better results.

Although based on the structure of the human brain, DL models lack the ability to

generalize concepts and find similarities between similar objects. These algorithms heavily

rely on being presented with numerous variations of an object to develop a sufficiently general

model, which leads to larger and more diverse datasets, essential to achieve the necessary

and correct training.

As previously mentioned, the complexity of a problem directly influences the amount

of labeled data required. In the case of autonomous navigation models, the need for com-

prehensive coverage of all possible scenarios and eventualities demands an extensive data

collection. Furthermore, when considering autonomous navigation in non-urban areas, it be-

comes crucial to account for environmental disparities across multiple deployments. These

disparities add another layer of complexity that must be addressed for effective autonomous

navigation.

1.1.3 Dataset Construction

Collecting data in any context is a laborious and time-consuming task, but when it

comes to data collection in a forest scenario, the challenges further escalate. In the forest

environment, data collection demands extensive fieldwork, requiring hours of dedicated ef-

fort. It involves the use of sensors powered by mobile electrical sources and requires the

navigation of non-optimal terrains. The demanding nature of this type of data collection is

well-documented by A. Giusti et al. [7] and L. Lind [8].

Ensuring comprehensive data coverage, including all necessary cases for effective model

generalization is crucial. However, achieving this goal is not always straightforward, leading

to inadequate data coverage and potential issues such as overfitting or subpar performance.

In such cases, data may need to be recollected to address these challenges.
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Furthermore, evaluating the coverage of already collected data poses its own difficulties.

Assessing the extent to which the collected data adequately represents the target domain

is a complex problem to tackle. Additionally, models trained on datasets with imbalanced

class representation can exhibit poor performance, as reported by Q. Hu et al. [10].

The forest environment presents even more challenges in achieving balanced coverage

across all classes in the collected data. Successfully addressing these challenges becomes

particularly demanding in a forest setting. The distribution values of classes such as trees

and rocks vary significantly, inducing dataset imbalance problems that translate in poor

performances.

As was previously stated, the use of DL algorithms is heavily intertwined with larger

datasets. These datasets are required to be labelled with meaningful descriptions of the

data. It is crucial for the performance of a DL model that the training is executed with

precise data annotation.

Constructing a dataset requires a large amount of data that, usually, has to be labelled by

hand. There are some tools that facilitate the process, such as V7 [11] and others enumerated

by SyncedReview [12]. But even with such tools, the labelling process is prone to error since

it is a repetitive endeavour performed by an increasingly exhausted human operator. All

this variables lead to a mislabelled dataset and consequently to non-optimal output. To

prove the frequency of this occurrence, an analysis made by T. Ganter [13] to Google’s Open

Images dataset, a thoroughly researched and improved dataset, resulted in the conclusion

that 36% of the model’s errors where related to mislabelled data.

Tools for dataset labelling are still being researched and developed, with the goal of

improving the effectiveness and precision of annotation. However, the annotation process of

images captured in forest environments, comparatively to urban scenarios, adds an additional

challenge related to the unstructured nature of each scene. The difficulty of this task increases

significantly when performing the annotation of point cloud data.

1.2 Forest Data

Autonomous navigation models use a wide variety of sensors’ data in the training process

and each form of data contributes differently to the algorithm’s learning. Finding the relevant

data types is the first step in creating a reliable synthetic data generator. The many data

types that best characterise forest areas will be address in this Section.
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1.2.1 RGB Images

The best and most common method of data collection for environmental analysis is

through RGB images. Each primary colour in an RGB image is represented by a separate

matrix, with each matrix value denoting a single pixel and containing the colour value of the

corresponding primary colour. Various methods are used to obtain useful information from

RGB image classification. These methods include object detection, semantic segmentation,

instance segmentation and panoptic segmentation.

Object detection involves predicting the positions of objects within the image and anno-

tating them with bounding boxes. This technique allows for the identification and localiza-

tion of objects. Semantic segmentation focuses on masking each object present in the scene

with the appropriate class color. It assigns a specific class label to each pixel, creating a com-

prehensive understanding of the image’s composition. Instance segmentation is an extension

of object detection and semantic segmentation. It differentiates between each instance of an

object class by masking them with distinct colors, while disregarding other classes. Panoptic

segmentation represents the most advanced and intricate method. It unifies the processes of

semantic and instance segmentation, generating unique color masks for every object of every

class.

(a) (b) (c) (d)

Figure 1.1: Methods of labelling: object detection (a), semantic segmentation (b), instance

segmentation (c) and panoptic segmentation (d). Adapted from [14] and [15].

Considering the specific nature of the targeted environments, the need for highly de-

tailed segmentation techniques is not essential. Therefore, the most suitable method for

forest environment labeling is the semantic segmentation. It provides a sufficient level of un-

derstanding and differentiation for the objects present, aligning well with the requirements

of the analysis.
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1.2.2 Depth Maps

Depth map are images represented by only one matrix, where each pixel represents the

distance between the camera and the surface of objects within the scene. Depth maps are

commonly produced using captures preformed with depth cameras or stereo matching, where

two RGB images with slightly different viewpoints of the same scene are use to estimate the

depth.

(a) (b)

Figure 1.2: RGB image (a) and the estimated depth map (b). Adapted from [16].

The combination of depth maps with RGB images allows neural networks to infer depth

information solely from RGB inputs. The integration of depth maps becomes crucial in

training DL models for forest deployment, as it enhances the models’ understanding of the

three-dimensional environment.

1.3 Problem Synthesis

Undoubtedly, data collecting is a difficult endeavour, but it is nothing compared to

the laborious labelling procedure, which is plagued by high mislabel rates. The situation

worsens when large labeled datasets are required and the inclusion of several data types only

aggravates the issue. The unfortunate lack of publicly available datasets and the fact that

they typically only cover one data type severely limits the development of DL applications

tailored for forest environments. Additionally, the wild and unorganised nature of the forest

environment by itself presents special challenges, where data collection and labelling are

made more difficult by a large amount of factors.

There is an urgent need to invest in the creation of datasets specifically made for forest

applications in order to get over these obstacles and enable the development of dependable

7



DL models. Such investments will provide the groundwork for improvements in active DL

researches and open the door for game-changing innovations in technology related to forests.

1.4 SynPhoRest v2.0 - An Overview

Leveraging the documented success of synthetic data inclusion in training of ML models

for autonomous navigation by H.M. Jeon et al. [17] and L. Zherdeva et al. [18], this

thesis proposes a system capable of generating accurate and labelled synthetic data captured

in a virtual, procedurally generated and fully navigable forest environment. The system

developed was fully built using the state-of-the-art game engine Unreal Engine 5 (UE5)

and is ready for public release. As stated, the system is capable of generating synthetic

data in the form of RGB images, semantic segmentation maps and detph maps of each

capture performed. The world generation process presented is able to generate more than

4 billion unique maps and this number can be further increased through personalization of

the available generation parameters. The generated data can be extracted through manual

or automated methods and easily accessible in the launcher directory.

SynPhoRest v2.0 was developed as a new approach to the work performed by R. Nunes

et al. [19] and his development of SynPhoRest v1.0.

1.5 Main Contributions

SynPhoRest v2.0 provides ML and DL research teams a tool to generate large and

accurate synthetic datasets for training and validation of models developed for forest de-

ployment. The generated data focuses on addressing the existing deficit in available data

regarding this type of environment and delivers the semantic segmentation and depth values

associated with each RGB capture. Moreover, the access to personalized world generation

promotes the versatility of the extracted data. The system offers various data capture meth-

ods, including autonomous extraction for hands-off data collection and custom methods that

encourages exploration and the capture of specific data.

In sum, SynPhoRest v2.0 intends to redirect attention to the creation of algorithms and

models by providing research teams with data that is ready for use, removing or at the very

least reducing the need for data collecting.
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1.6 Document Outline

The present document is organized in six Chapters, beginning with the current Chapter

that introduces the work developed and contextualize it, identifying the addressed problem,

the proposed solution and enumerated the benefits of the project.

Chapter 2 focus on analysing documented solutions and systems relevant within the

targeted filed of research, followed by Chapter 3 where the study and selection of available

tools and methods is discussed.

In Chapter 4 a detailed description of the system development is presented and an analysis

of the fully operational system, examining the performance and evaluating qualitatively and

quantitatively the data produced, is provided in Chapter 5.

Finally, Chapter 6 presents some conclusions related to the development and evaluation

of the system, in addition to the identification of possible future research directions.
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2 State of the Art

The work developed for this thesis focuses primarily on the generation and use of syn-

thetic data. This Chapter provides an overview of the documented work created in the field

as well as a brief history of the subject. The analysis will focus on the positive aspects of

each project while also pointing out its limitations and highlighting any potential weaknesses

that need to be improved.

2.1 The History of Synthetic Data

The first documented use of synthetic data goes back to the 1940s, amidst World War

II, as part of the Manhattan Project, where S. Ulam and J. von Neumann [20] developed

the Monte Carlo Simulation. This rudimentary approach used the generation of random

sampling, according to an estimated range of values, to determine the behaviors of complex

systems or processes. This method allowed them to determine an approximation of the

chain reaction of highly enriched uranium, i.e, the behavior of an atomic explosion. In the

1970s, the revolution of computer graphics and the beginning of the field of computer vision,

propelled the generation of synthetic data to new heights, creating the first renderings of

realistic images and scenes. Thanks to these new methods, the next few decades can be

characterized as a jumping pad for the application of synthetic data. In fact, the field of

robotics started using synthetic data in 1980s, enabling training, simulation and testing of

algorithms in controlled environments [21].

In the following decade, D. Rubin [22] proposed the construction and publication of

an anonymous database composed exclusively of artificial data based on the information

collected by the U.S. Census. This database allowed the amplification of the existing smaller

datasets and an increase in security related to personal information.

The coming of the new millennium marked the rebirth and expansion of machine learning,

and the field began to branch in the most various directions. However, novelty came with
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its drawbacks and all branches determined that the most crippling issue was the scarcity

of data. To mitigate this newfound adversity, synthetic data generation became the most

efficient mean of data augmentation. This method enables the use of limited datasets,

boosting the available data in a convenient way and granting improvements in the models’

performances. Thereafter, synthetic data generation became a hot topic and many studies

aimed to not only improve its quality but also the dimension and accessibility of data. In

the decade of 2010, with the increased popularity of generative adversarial networks and

variational autoencoders, both models were used in data generation tools and the results

rivaled real-world data [23].

Currently, synthetic data generation continues to be an active area of research. The field

of machine learning is still expanding, and as new problems and applications emerge, the

necessity of new and diverse data increases.

2.2 Synthetic Data Generation

To take advantage of the benefits of synthetic data, first one needs to find a way to

generate it. Considering the generation of visual data aimed for autonomous navigation

applications, there are multiple documented systems capable of generating datasets from

virtual environments. The amount of data that can be generated is, however, limited because

the majority are developed around pre-made scenarios. Even so, the methods used to capture

and process data are transversal to the field, and the amalgamation of knowledge presented

by all the cases studied provide a useful tool for referencing and comparison.

2.2.1 Semantic Image Segmentation

A visual dataset is composed by RGB images and their equivalent semantic segmentation

maps. Semantic segmentation maps are generated by assigning a specific value to each pixel,

indicating the class or object present in the associated pixel in the RGB image. This task is

usually performed by hand, and in order to achieve a pixel-perfect mapping, an incredible

amount of effort and attention is required. To illustrate the amount of labor inherent to the

construction of a dataset, the CamVid Database, created by G.J. Brostow et al. [24], contains

seven hundred and one photos that have been manually labeled for thirty-two different

classes. The labelling process was performed by a small group of people and required a total

amount of two hundred and thirty hours to complete.
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Similarly, M. Cordts et al. [25] constructed the Cityscapes dataset, specifically designed

to the challenges of semantic segmentation of an urban scene, by incorporating complex real-

world urban environments. The dataset encompasses a collection of stereo video sequences

captured on the streets of 50 different cities. This collection amounts to a total of five

thousand fully annotated frames with pixel-level precision and an additional twenty thousand

frames with coarse labelling. Amidst the various experiments performed to evaluate the

Cityscapes data, one in particular is extremely relevant, the evaluation of labeling capabilities

of various algorithms. The authors of Cityscapes compared, qualitatively, the performance

of three state-of-the-art classification algorithms and obtained mostly positive results that

can be observed in Figure 2.1.

(a) (b) (c) (d) (e)

Figure 2.1: Qualitative examples of labeling capability. RGB images with stereo depth map

overlay (a), Cityscapes annotation (b), DeepLab [26] annotation (c), Adelaide [27] annotation

(d) and Dilated10 [28] annotation (e). From [25].

2.2.2 Data Generation from Fixed Virtual Environments

Synthetic Semantic Segmentation Maps

Inspired by the power of computer vision and the exponential evolution of Three Dimen-

sional (3D) environments, S.R.Richter et al. [29] developed a system capable of generating

images and semantic segmentation maps, captured from a virtual pre-built scenario. To gen-

erate data that rivaled real-world imagery, the authors resorted to a market that is not often

associated with research - the gaming industry, by utilizing and navigating the detail rich
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environments of AAA1 open world video-games. Renowned for its immersive open world,

the game Grand Theft Auto V (GTA V), published in 2013, was chosen to be the source of

the generated data. Being a full fledged AAA game none of the internal code is available, to

acquire the desired data Richter´s team employed a technique called detouring. Detouring

enabled the interception of data transmitted from the game’s logic to the Graphical Process-

ing Unit (GPU), and extracting all graphics Application Programming Interface (API) calls.

This method allowed for the recovery of information related to pixel values, used meshes and

respective textures and shaders, automatically producing a set of RGB image and semantic

segmentation map for each capture, as presented in Figure 2.2.

(a) (b)

Figure 2.2: RGB image (a) and equivalent raw semantic segmentation map (b) obtained

from GTA V virtual environment. From [29].

However, the semantic segmentation map creates a new division for every color change

present. Two additional task need to be performed, the grouping of segments that represent

the same classes and the labelling attribution. The final result can be observed in Figure

2.3. To expedite the labeling process, the label attributed to one object was propagated to

all objects that shared either mesh, texture or shader. This meant that every fully-labelled

image would reduce the labour required for the next one, following the plotted behavior

present in Figure 2.4.

All this implementations allowed S.R. Richter et al. to create a dataset composed of

twenty-five thousand images and their respective semantic segmentation maps with pixel-

level precision. The collection and processing of this dataset amounted to a total of forty-
1AAA (triple-A). Video-games with a high quality and production value, developed by established and

reputable game development studios. These games frequently have high production standards, cutting-edge

graphics, intricate gameplay mechanics, engaging storytelling, and a wide variety of content.This term was

initially used by the industry as a rating system but later evolved into a descriptor for games and their

associated expectations.
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(a) (b)

Figure 2.3: RGB image (a) and equivalent grouped semantic segmentation map (b) obtained

from GTA V virtual environment. From [29].

(a) (b)

Figure 2.4: Effect of label propagation, percentage of pre-annotated area per capture at the

beginning of manual labelling of each capture. Captures arranged by processing order (a)

and captures arranged by pre-annotated area (b). From [29].

nine hours. To validate the benefits of synthetic data, this team compared the results of two

models with the same algorithm but trained with different datasets. One used the complete

CamVid dataset [24], the second used a combination of data generated from GTA V and

data from the CamVid dataset, following a ratio of 2:1. The model trained with the mixed

dataset outscored the CamVid model by 2.8 percentage points, proving the effectiveness of

synthetic data in model performance, while reducing the time of collection and labelling.

Synthetic Point Clouds

Also taking advantage of GTA V powerfull graphics, X. Yue et al. [30] developed a

system capable of generating annotated point clouds. By utilizing the DeepGTAV [31]

plugin, a game mod that transforms the game into a vision-based self-driving car research

environment, the team was able to deploy an in-game self-driving car, controlled by the

game’s artificial intelligence, complete with a virtual LIDAR scanner and aRGB camera.

Both these components were overlapping and positioned on top of the car, in order to extract
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color coordinated point clouds, with each color representing a different class of object.

To verify and evaluate the quality of the extracted data, the authors used the DL model

SqueezeSeg [32] trained with a modified version of the KITTI dataset [33], where the bound-

ing boxes provided by the dataset were converted to labels for the contained points. Four

tests were performed and used the Intersection over Union (IoU) metric for comparison.

LIDAR scanners have an intensity value associated with each point. As reported by the

authors, this value was too difficult to generate in the virtual environment and, as such, it

was discarded. The datasets used for training and the results obtained were as follows:

• KITTI dataset(including intensity) resulted in an IoU of 64.6%

• KITTI dataset(excluding intensity) resulted in an IoU of 57.1%

• Fully synthetic dataset resulted in an IoU of 29.0%

• Combination of KITTI dataset(excluding intensity) and synthetic data resulted in an

IoU of 66.0%

The results demonstrate that the synthetic data collected alone was not a viable option

as a training dataset. However, the combination of both types of data enabled an increased

performance relative to the test performed only with the KITTI dataset. This also confirmed

that the intensity value captured by the LIDAR sensor can be discarded. It’s important to

note that the authors did not specify the ratio of data contained in the combined dataset.

The absence of this information makes it impossible to assess the effectiveness and quality

of the data that this system has extracted. Additionally, an important topic was omitted in

this experiment, the noise generated by the sensor captures. In a physical deployment of a

LIDAR sensor, all data gathered has some type of noise associated. To realistically simulate

this data collection, some sort of noise function needs to be implemented.

Using the same virtual environment and the DeepGTAV plugin [31], B. Hurl et al. [34]

noted that the virtual LIDAR sensor could only perform readings at a small portion of the

original counterpart’s range. Furthermore, the simulated sensor relies on the in-game colli-

sion volumes associated with each object. This volumes, in order to increase performance,

are simplified and reduced to the basic geometric shapes, as seen in Figure 2.5.

The authors opted to discontinue the in-game LIDAR simulation and instead utilized

the GPU’s depth buffer data, used on the rendering of the scenes, which bypassed the

two aforementioned limitations. This information provided a two-and-a-half-dimensional

representation of the scenario, that combined with the in-game parameters and the scenes
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(a) (b)

Figure 2.5: Differences between the final rendered scene (a) and the simplified collision

meshes (b). From [34].

RGB images allowed the creation of a 3D point cloud description of the environment. This

description was then processed using a simulated LIDAR scanning pattern and resulted

in the collection of a labelled point cloud. Finally, the sensor noise was computed using

Gaussian Noise with 6 millimeters of standard deviation and applied to the depth values of

each point.

A pre-trained algorithm designed for pedestrian detection was used to validate this syn-

thetic data generating method. By mixing data from four thousand images from the KITTI

dataset [33], with the forty thousand generated frames and applying different data ratios

to each iteration of training, B. Hurl et al. concluded that the optimal ratio of data was

10:1, which, using the average precision metric and multiple categories of detection difficulty,

resulted in 59.47% in the easy category, 55.57% in the moderate and 49.20% in the hard.

Comparatively, the datasets that contained exclusively images with the same origin were

registered to perform worst, with the KITTI exclusive dataset attaining the performance

values of 57.40%, 51.31% and 44.70% for the categories of easy, moderate and hard detec-

tion level, and the fully PreSIL dataset getting 14.13%, 11.85% and 11.62%, respectively.

The improvements observed prove, once more, that synthetic data is beneficial to the train-

ing of DL algorithms, as a complement to existing datasets and significantly reduces the

time required for data collection.

Taking a different aproach and building a completely original world via Unreal Engine

(UE) version 4.24, A. Dosovitskiy et al. [35] developed the CARLA simulator, an open-

source simulator for autonomous driving research. Despite of being primarily designed as

a safe environment for algorithm testing, this system is also capable of producing data in
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the forms of RGB images, depth maps and semantic segmentation maps. The CARLA

simulator operates with two manually pre-build towns of urban and suburban areas, with

an integrated system of traffic patterns and dynamical scenarios, emphasizing CARLA’s

capability to produce realistic and varied virtual urban environments. The authors of this

paper did not release any system’s specificities and do not extract synthetic data for algorithm

training. Nevertheless, some tests evaluating the simulation capabilities of the system were

performed. Three approaches to autonomous driving were tested with various environment

conditions. The approaches employed in testing were:

• Modular pipeline: decomposition of the driving task among the subsystems of percep-

tion, planning and continuous control.

• Conditional Imitation Learning: a form of imitation learning that uses high-level com-

mands in addition to perceptual input. Trained with fourteen hours of real world

driving data.

• Deep Reinforcement Learning: algorithm trained with a reward based system. The

network was trained in parallel agent threads, totaling 10 million simulation steps.

The approaches were then evaluated for navigational tasks: straight driving, one turn

destination and completion of distance. The first two tasks were performed without dy-

namic obstacles and the third was performed for both scenarios. The results of the various

approaches performing each task are present in Table 2.1.

Traning Conditions New Town New Weather All New

Task MP CIL DRL MP CIL DRL MP CIL DRL MP CIL DRL

Straight 98 95 89 92 97 74 100 98 86 50 80 68

One Turn 82 89 34 61 59 12 95 90 16 50 48 20

Static Navigation 80 86 14 24 40 3 94 84 2 47 44 6

DynamicNavigation 77 83 7 24 38 2 89 82 2 44 42 4

Table 2.1: Percentage of successfully completed episodes in each condition for the three

autonomous driving systems tested. From [35].

The experiments performed by A. Dosovitskiy et al. do not evaluate the quality of the

synthetic data produced by the system, yet the tests verify that the synthetic environment

provides a valid approximation to realistic scenarios.
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2.2.3 Data Generation from Randomized Virtual Environments

A point-wise annotated point cloud dataset called SynthCity was constructed by D.

Griffiths and J. Boehm [36] using 3D models of cities and other densely inhabited urban

regions. By using Blender [37], an open-source 3D modeling software, the authors were

able to manipulate the virtual environment. Employing duplication and randomized values,

the construction of an extended virtual world composed of disconnected urbanized clusters

was achieved. To interconnect these clusters, the placement of roads and other urbanistic

components was performed manually. The completed environment was scanned using the

plugin Blender Sensor Simulation [38] in order to simulate a LIDAR device. To assemble the

dataset, seventy-five thousand frames were rendered. Each iteration of scanning was three

hundred and thirty seconds long and the estimated completion time was approximately 287

days.

(a) (b)

Figure 2.6: Example of the SynthCity dataset displaying RGB values (a) and equivalent

class labels (b). From [36].

To expedite the computation time, the authors resorted to the services provided by Ama-

zon Web Services, dividing the work among 22 computers with 8 virtual Central Processing

Unit (CPU)s and 61GB of RAM apiece, reducing the total processing time to thirteen days.

The extracted data was computed to obtain the absolute world position of each point. In

the interest of having a workable dataset, a series of computations applying rotation and

transform matrices redefined the position of each point, with coordinates relative to the sen-

sor’s position and even including the addition of Gaussian Noise, with a standard deviation

value of 0.005.
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2.2.4 Data Generation from Procedural Virtual Environments

I. Paranjape et al. [39] created the simulation environment CruzWay, a procedural

generation system created with UE4 and using two external tools called TownSim [40] and

IntGen [41]. The system creates scenarios that closely resemble a town-sized road network,

using modular components. Additionally, it integrates dynamic obstacles controlled through

behavior trees that navigate the road network. Being a system destined for simulation and

testing trained algorithms, it does not provide valuable knowledge on itself. Nonetheless,

this system serves as a proof of concept for the integration of procedural generation systems

in the field of autonomous navigation.

(a) (b)

Figure 2.7: Examples of road networks generated using CruzWay. Complete network (a)

and intersection (b). From [39].

Using the modular methodology, G. Ros et al. [42] created the Synthia dataset. Utilizing

a virtual world consisting of modular components and populated with realistic models of

vehicles and pedestrians, the authors were able to generate diverse and realistic synthetic

images with pixel-level annotations. An extensive number of tests were performed and the

results obtained reinforce the benefit of synthetic data on DL applications.

Adopting an alternative approach to synthetic data generation, M. Wrenninge et al.

[43] developed a proprietary system that generates artificial imagery capable of accurately

representing the realism of street scenes. The dataset called Synscapes includes a wide

range of components typical of urban street environments. This dataset was procedurally

generated and includes a variety of scenarios from which a set of twenty-five thousand images

was rendered. Each scenario is unique and generated based on various parameters, including

geometric and material composition, illumination, among others. The dataset is composed

of RGB images, semantic segmantation maps and some meta-data relevant for the field of

computer vision. The generated data was tested for both training and testing of autonomous

navigation algorithms. The results of the validation experiments presented in Figure 2.8 and
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refer to the evaluation of Cityscapes pre-trained algorithm [25] to various synthetic images

from different sources. The Table 2.2 presents the metrics results relative to the previous

experiment.

(a) (b) (c)

Figure 2.8: Input image and corresponding segmentation prediction by DeepLab[26]. Source

of the image Syncapes (a), Richter[29] (b) and Synthia[42] (c). From [43]

Validation Dataset Cityscapes Synscapes Richter Synthia

Mean IoU 78.79 63.64 45.84 23.89

Table 2.2: Validation on synthetic data for reference version of DeepLab[26]. Adapted from

[43].

Applying the procedural methodology to forested environments, C. Newlands et al. [44]

developed a cross-platform system capable of generating and rendering realistic forest sce-

narios. The environment generation follows multiple parameters that define the geometric

structure of the map. The terrain generation utilizes Two Dimensional (2D) fractal sim-

plex noise in order to create a realistic heightmap and is constructed with voxel technology.

A particularity observed in this system is the tree generation. The authors implemented

specialized L-systems, based on the algorithm created by A.Lindenmayer [45], to generate

artificial trees that are distributed throughout the voxel based terrain following an ecosys-

tem simulation logic. The end result is a fully navigable virtual environment designed for

exploration and testing of autonomous navigation algorithms. The system accomplishes

the generation of a completely navigable virtual environment, designed for the research and

testing of autonomous navigation algorithms. It is worth noting that the system was de-

veloped for simulation exclusively, therefore it does not generate synthetic data. However,

it does demonstrate certain procedural generation techniques that may be useful for the
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development of a more complete system. Additionally, the authors intended to develop a

cross-platform system. To achieve this, the system was developed using OpenGL, compro-

mising the environment’s photorealism. The system is open-source and was made publicly

available through the creator’s GitHub repository [46].

(a) (b)

Figure 2.9: Examples of the environment generation. From [44].

Employing the same generation strategy, R. Nunes et al. [19] developed SynPhoRest

v1.0, a system capable of constructing complete synthetic datasets. This system extracts

RGB images and the corresponding semantic segmentation and depth maps, as well as the

point cloud annotation. The virtual environment is infinite and managed using chunk logic.

The scenario itself is generated by defining some parameter constrains and the topography

is determined by the use of Perlin noise. The environment generation includes a trail gen-

eration and a controlled object placement. The authors developed the system using Unity

[47], a proprietary game-engine by Unity Technologies, granting the best approximation to

photorealism available.

The synthetic semantic segmentation data generated by the system was evaluated using

Cityscapes pre-trained algorithm [25]. Despite using an algorithm that was trained on data

from the urban area, the authors reported positive results, concluding the success of the

system. Despite the system’s success, it has not yet been made available to the public.
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(a) (b)

(c) (d)

Figure 2.10: Various data types extracted by the system. RGB image (a), segmentation map

(b), depth map (c) and point cloud (d). From [19].

2.2.5 Generation of Virtual Environments from Real Data

In 2021, the well-known manufacturer of autonomous vehicles, Tesla [48], hosted an event

focusing on artificial intelligence. This marketing event was broadcast live on YouTube and

demonstrated some relevant scientific results.

(a) (b) (c)

Figure 2.11: Real-world RGB image captured by the vehicle (a), autonomous annotated

reconstruction (b) and virtual reconstructed scenario (c). Adapted from [49].

Unexpected and uncommon circumstances are one of the numerous difficulties that au-

tonomous driving must overcome. Due to an absence of training data, developing models to

handle this specific circumstances might be difficult. Trying to solve this issue, Tesla uses
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procedural generation to create virtual settings based on real-world data collected by the

Tesla fleet. Firstly, every vehicle is equipped with eight RGB cameras, that capture the

surrounding environment. These eight perspectives are converted in real time into 3D vector

space, employing the RegNet algorithm [50] to label every object, in parallel with the Trans-

former algorithm [51] that merges all eight images and assigns the correct measurements to

the objects. This process allows the rendering of a labelled environment that is displayed

in the center console. When a Tesla vehicle encounters a condition which it can not han-

dle, it transmits environmental data to Tesla’s network. This allows the recreation of this

particular occurrence and the generation of countless variations, producing an abundance of

data that can be used to train the models and provide updates to the entire Tesla fleet. The

broadcasted event is still available on Tesla’s channel [49].

Figure 2.12: Seven of the eight RGB images captured around the vehicle and the recreation,

in 3D vector space, of the labelled environment. Adapted from [49].
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3 Methods

This Chapter presents the many tools and methods that have been fundamental to the

development of this project and provides arguments for their choice over the alternatives.

3.1 Graphical Softwares

The required photorealism to simulate a genuine forest environment demands the use

of an advanced graphical software. In Section 2.2.2, the majority of methods used video-

game worlds as research subjects and praised their realism and urban-like qualities. The

aforementioned environments were created using game engines, a type of advanced graphics’

software that can produce the appropriate photorealistic setting. After determining the kind

of software to utilize, one must be chosen among the various available options. There are

numerous game engines available but not all are designed to primarily simulate realistic

environments, as are the examples of GameMaker Studio [52] and Godot Engine [53] which

focus in 2D game development. After extensive research, the list of prospective game engines

was reduced to the following three options: Frostbite Engine [54], Unreal Engine 5 [55] and

Unity Engine [47].

Frostbite Engine was discarded for being a proprietary software. The last two engines

are available for free. A representation of the same environment was utilised to compare the

rendering abilities of the engines in order to decide which software was the best choice. Figure

3.1 shows the renderings of each engine. When comparing the two renders, the illumination

stands out as the most notable aspect; UE5 offers a superior global illumination model in

comparison to the diffused light produced by Unity Engine, making it the best option.
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(a) (b)

Figure 3.1: Environment rendered with Unreal Engine 5 (a) and Unity Engine (b). Captured

from [56].

3.2 Unreal Engine 5

UE5, the game engine chosen for the development of SynPhoRest v2.0 system, offers

many features that distinguishes it from other game engines. The development of the system

was fully made on UE version 5.1, but for simplicity, will be referred as UE5. This Section

will focus on the features of the engine and some other more common characteristics that

were essential for the project’s development.

3.2.1 Lumen

As stated in the previous Section, the illumination demonstrated in UE5 renders allows

for the representation of realistic light interaction. This can only be achieved by the use

use of the exclusive technology called Lumen - a real-time global illumination system, first

released with the current version of the engine. Lumen replicates indirect lighting and light

bounces in a scene as a dynamic lighting solution, eliminating the necessity for pre-computed

lightmaps or static lighting.

This feature has a major effect on real-time rendering since it allows the creation of

lighting effects that are more precise and realistic, thereby improving the visual fidelity and

immersion of virtual environments. Lumen adds a new degree of fluidity and realism to

interactive experiences by responding dynamically to changes in the scene, such as moving

light sources, changes in the time of day or modifications to the environment. Further-

more, Lumen’s capability of delivering precise indirect illumination in intricate and dynamic

scenarios, without degrading performance or needing extensive calculations, is an amazing

development in real-time rendering technology.
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(a) (b)

Figure 3.2: Comparison between Lumen (a) and lightmaps (b). Adapted from [57].

3.2.2 Nanite

Also released for the first time with the current version of the engine, Nanite is an

innovative virtualized micropolygon method that reinvents real-time depiction of complex

geometry. Nanite eliminates the need for Level of Detail (LOD) models and enables the

creation of highly detailed assets, sometimes containing millions or even billions of poly-

gons. It dynamically handles vast amounts of geometric detail by streaming and rendering

only the necessary information in real-time. Nanite selectively loads and processes the re-

quired details based on visibility and distance, optimizing performance and memory usage.

This development is essential because it completely alters how programmers can construct

complicated scenarios without sacrificing performance.

Figure 3.3: Model, with Nanite active, at different distances. Adapted from [58].
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3.2.3 Scripting

UE5 enables programmers to select between two scripting methods for logic and func-

tionality creation: Blueprint visual scripting and traditional code scripting. Although both

can be utilized to achieve the same outcomes, they do have some distinct advantages and

disadvantages in addition to having different experiences.

Traditional code scripting refers to the use of programming languages, and in the UE5

context specifically C++, to create game logic and functionality within the environment de-

velopment. This approach requires advanced programming knowledge and complete under-

standing of concepts and syntax, but gives proficient programmers the freedom and control

they need to construct sophisticated algorithms, data structures and other custom systems.

Using code scripting, programmers can enhance performance, fine-tune execution, and in-

clude external libraries or systems. With advanced programming abilities, developers can add

new features and expand the engine’s functionality, improving the game’s overall usability

and behavior. Code scripting is preferred in collaboration environments, however it requires

effective and comprehensive communication between programmers and designers/artists.

Blueprint visual scripting enables developers to create in-game logic and functionality

without the need for traditional coding. It utilizes a node-based interface where pre-built

nodes representing various functions, actions, conditions and variables can be connected

to define the in-game behavior. Blueprint scripting offers a more accessible and intuitive

approach while still requiring previous programming knowledge. The early stages of de-

velopment are facilitated by blueprint programming, which encourages quick iteration and

experimentation. The visual representation obtained by this scripting method greatly ben-

efits collaborative workflow. The most appealing feature of this method may also be its

biggest hindrance: its visual nature may induce performance overhead.

It is worth noting that the scripting methods are not mutually exclusive and can be

used together to compensate the shortcomings of one another. A blueprint node that is not

included in the default UE5 library, can be coded using C++ and integrated in the logic. In

fact, the proposed system integrates both forms in order to achieve the desired results.

3.2.4 Extension Capabilities

UE5 has access to EpicGames Marketplace, a digital platform where developers can

discover, purchase and sell a wide range of assets including 3D models, animations, sound

effects, plugins and even complete projects. This greatly expands the engine capabilities and
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content available. During SynPhoRest v2.0 development, two types of these products were

actively searched and tested: the plugins and the asset libraries.

Plugin integration enables the seamless integration of third-party tools and the expansion

in functionality of the engine by providing specialized features not included in the default

installation. This integration empowers developers to leverage external expertise, accelerate

development timelines and add features without the need to build them from scratch. Asset

libraries offer a vast array of ready-to-use assets, including high-quality 3D models, ani-

mations and sound effects. With the help of these marketplace products, development time

may be distributed more effectively, public resources can be created and smaller development

teams, with less experience and knowledge, can achieve their envisioned goals.

3.3 Procedural Generation

The process of creating content or data algorithmically rather than manually is known

as procedural generation. The method involves creating something dynamically by utilizing

a variety of rules, algorithms or mathematical operations, resulting in varied and often

unique outcomes. Research is constantly focused on this process and has observed incredible

evolution, being documented to be a beneficial tool in many research fields [59].

Procedural generation has significant applications across different domains and industries,

shaping the experiences and content people encounter in their daily lives. Mainly focusing

in visual representations, procedural generation is employed in the majority of visual effects

present in movies or television series. Taking as an example the 2022 movie, Avatar: The

Way of Water, generated all visible vegetation using procedural generation [60]. Other not

so notorious examples are the generation of dynamic and realistic effects, such as fire, smoke,

water, explosions and natural phenomena like clouds and weather patterns [61]. The video-

game industry also utilizes procedural generation, the popular games Minecraft [62] and No

Man’s Sky [63] use procedural generation to create infinite open-world experiences.

Procedural generation can used to create a convincing and realistic topography. K.S.

Emmanuel et al. [64] documented the basic tool for terrain generation, Random Number

Generator (RNG) algorithms. RNG take various forms and the most adequate for this sub-

ject are Noise Generators. A. Lagae et al. [65] performed an evaluation on Noise Generators.

Although, various noises were tested, they were evaluated comparatively to Perlin Noise [66],

indicating that it still is the best approach to noise generation. The Perlin Noise creator,

Ken Perlin, in 2001, documented the flaws of its original creation and developed a deriva-
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tion called Simplex Noise [67]. Simplex Noise, compared to Perlin Noise, is computationally

lighter and easier to implement in hardware. Additionally, it does not have noticeable direc-

tional artifact, has a well defined and continuous gradient and can be scalable to the forth

and fifth dimension.

To construct a terrain mesh that closely resembles natural topography only requires the

generation of 2D simplex noise. This produces a 2D matrix where each value represents

the height at a given point. However, when applied to a mesh, it translates to a smooth

undulation, i.e., a non-realistic terrain. This can be solved by stacking multiple levels of

noise and varying the influence of each layer, adding micro-variations and affecting the final

noise as seen in Figure 3.4. The Figure 3.5 demonstrates the previously mentioned effect of

noise when applied to a mesh and the effect of noise layering.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.4: Simplex noise generated through layering. Number of layers applied: one (a),

two (b), three (c), four (d), five (e), six (f), seven (g) and eight (h). Generated using [68].

(a) (b)

Figure 3.5: Influence of one (a) and ten (b) layers Simplex Noise in a terrain mesh.
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The Simplex Noise algorithm is not available with the default installation of UE5. The

integration of this algorithm was achieved with an open-source plugin called SimplexNoise

[69].

3.4 Extraction of Synthetic Data

Virtual cameras are an idealized version of real, physical cameras. A virtual image, with-

out post-processing methods, will produce the most accurate representation of the captured

object. Real cameras, on the other hand, create images with artifacts like grainy patterns

and noise. These artifacts are caused by a number of factors, including dim illumination,

highly sensitive sensors, prolonged exposure times, heat or physical deterioration of the cam-

era. Additionally, noise is an important tool in DL and has been documented by T.S. Nazaré

et al. to improve algorithm resilience and adaptability [70].

To closely recreate real camera attributes, noise must be added to the system’s extracted

images. UE5 cameras have post-processing settings that allow the recreation of real cameras.

Noise is added by applying film grain, a post-processing feature based on Gaussian noise, to

the RGB images. In Figure 3.6 are presented both types of capture for comparison.

(a) (b)

Figure 3.6: Same scene with (a) and without (b) film grain.
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4 Generation of Synthetic Forest

Environment

Forest environments are intricate landscapes consisting of several components, that ex-

tend across a significant area. In an ideal simulation, the environment would be infinite.

However, due to the constraints of computer graphics and computing power, an infinite,

fully rendered world is impossible to generate. The closest viable alternative consists of a

system that generates an approximation of this infinite world by generating and rendering

only the portion of world that is visible by the camera. To accomplish this, the world needs to

be split into smaller segments. This segmentation will result in finite and contained portions

of the world, called chunks. These chunks represent a part of the world and contain every

element that composes the scene at that specific place. However, partitioning the world into

chunks is not sufficiently granular to perform procedural generation. The elements include

the terrain, paths, vegetation, among others, requiring a fragmentation of each chunk into

smaller, more manageable pieces. This Section will address this fragmentation and the logic

behind each element, as well as their construction and placement in the final scene. Finally,

the interaction between each element will be described and their role in the final system

explained.

4.1 Terrain

As determined previously, a chunk represents a portion of the larger world. Therefore, it

has a constant size throughout its iterations. Similarly, the terrain generated for each chunk

will follow the same size constraint.

From a computer graphics standpoint, and following a 3D representation, the terrain is

simply an arrangement of vertices and triangles evenly distributed along two axes and the

third axis represents the height value at that point. Following the integrated referential in
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UE5, the terrain is generated along the X and Y axes and the height value is assigned to

the Z axis. In order to expedite the construction process, it was defined that the chunks will

be equilateral in the X and Y axis, to allow the construction of a chunk grid composed of

squares. This decision prevented the usage of extra values and offsets during the placement

of each chunk onto the grid. Each chunk acts as an actor in the UE5 context and, as such,

has access to the functions related to the Actor object class.

4.1.1 Mesh Construction

The mesh construction that will represent the terrain begins by generating a 2D grid of

equidistant points. The distance between points is determined by the chunk size, described

above, and the number of points needed to generate the grid. The height value assigned to

each point aims to simulate the natural topography of the forest environment. The Simplex

Noise Algorithm was employed following the study documented in Section 3.3. UE5 does

have an integrated noise generator but it does not produce the required noise. However,

through some adjustments to the code from an open-source plugin created for a previous

version of UE [69], it was possible to integrate the noise generator in the construction process.

With the plugin incorporated, the height value is calculated by a node that generates 2D

simplex noise and returns the value of the noise at the given coordinates. The node produces

an output dependent on the following parameters:

• Point Coordinates: 2D coordinates of the point in analysis, relative to the global

world referential.

• Octaves: Number of layers that will be combined to obtain the noise output. This

variable is required to be a positive integer.

• Lacunarity: factor of frequency increase by octave. This variable can assume any

real value above 1. The most common value is 2.

• Persistance: determines amplitude behavior of each octave, i.e., the weight of each

octave in the final output. This variable can assume any real value between 0 and 1,

but the most common value is 0.5.

• In factor: value of the frequency. Represents the level of detail per unity of space.

In addition to these parameters, the simplex noise function uses a global optional pa-

rameter, called global seed, that establishes the behavior of the function and allows multiple
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outputs for a fixed set of previous parameters. The definition of parameter and the value

assigned to it is explained in 4.4.2. The function outputs the normalized value of the noise

calculated at the point given, with values ranging between -1 and 1. This value is then

multiplied by the terrain elevation factor in order to generate increased height variation.

Since this is a construction process developed for the multiple iterations, the expected

point coordinates by the function need to be relative to the world. To achieve this and

guarantee the continuity between chunks, the point coordinates are calculated by retrieving

the actor location in the world and the predefined chunk size. The coordinates are saved in

an array of three-dimensional vectors called Vertices. Following computation of the points

and respective 3D coordinates, the construction of the triangle logic and texture attribution

take place, by creating an array of point indexes and respective texture coordinates in a

separate array.

All the values calculated are then used to create a mesh Section. First, the arrays are

used as input to the UE5 function that calculates the tangents and normal vectors for the

final mesh. Subsequently, the five arrays are used to generate a Procedural Mesh Section, a

type of object used by UE5 to create meshes defined by vertices generated at runtime.

4.1.2 Object Positioning

During the construction of the terrain’s mesh grid, the coordinates of the center point

are saved and used as an internal seed for the chunk. This allows the creation of a Random

Stream variable, that generates a list of random numbers exclusive to the chunk. This

variable is then used to create multiple arrays of four-dimensional vectors that will hold the

information related to the objects that will be placed in the chunk, namely vegetation. The

random stream is used to differentiate the type of object that will be placed, by generating

percentile values and inserting them into one of three classes according to the associated

density.

With the class of object defined, the random stream generates float values used to specify

the position of each object, following the logic present in Figure 4.1, the scale and the rotation

around the Z axis of said object. This process is applied to all classes. However, if the

class represents the objects associated with ground vegetation, an additional computation

is performed. Before the attribution of values related to positioning, scale and rotation, the

random stream is used to determine how many objects will be associated with the grid point

in analysis.
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Figure 4.1: Diagram of the object placement logic, seen from above. Green circles represent

the admissible area of placement and the red circle represent the random place attributed

to the object.

It is worth noting that only the class of the object is decided in this process. The other

attributes are defined latter, during the placement process.

4.2 Path

The fundamental essence of autonomous driving algorithms lies in their ability to de-

tect the optimal path. Taking the urban environment as an example, these algorithms will

choose the road over a sidewalk. In nature there are no defined roads, however most of these

scenarios include trails or pathways that facilitate the navigation of the environment. To

replicate these paths and include them in a procedurally generated world, and taking into

account the building structure of the latter, it is necessary to implement a path generation

module capable of creating a continuous non-linear path that blends with the existing to-

pography. In order to satisfy these requirements, it was concluded that the path generation

would operate separately from the chunk generation. This decision allowed the construction

of a larger path and avoided discontinuity in chunk borders.

The path generation starts with the creation of a UE5 spline component, by assigning

twenty-five equidistant random points. A spline is a function that is defined by a set of

points and their associated tangents. The coordinates of these points are determined by

the global seed, except the Z coordinate. By fixing the Z coordinate, all points are ensured

to be coplanar. This twenty-five-point spline is then resampled, and the number of points

is multiplied by a factor of fifty. The resampling of the spline is performed in order to

achieve photorealism. Increasing the number of points in the spline grants the construction

of smoother curves that translate into smoother path edges.

The resampled spline is then projected downwards, towards the already placed chunks, to

perform a collision trace. Iteratively, each point’s projection is performed an odd number of
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times to guarantee path symmetry. Initially with a negative offset applied to the right vector

of each point. In each iteration, the offset gradually varies until it reaches the opposite value

used in the first iteration. The result is an array of points, organized in longitudinal order,

characterized by the coordinates of collision of each projection with the chunks. Additionally,

the collision points collected from the projection parallel to the Z axis are used to generate

a new spline. This spline is planar with the terrain and is used as navigation guide for

data extraction. Finally, the collected collision points are used to construct a procedural

mesh component by applying the same method used in Section 4.1.1. Figure 4.2 presents a

simplified version of this process, with a visual representation of each step.

(a) (b) (c)

Figure 4.2: Simplified version of the path building process. Projection of the spline down-

wards (a), collision points obtained through the projections (b) and mesh built with the

collision points (c).

Considering that the length of the spline generated for the creation of the path may

exceed the limits of the already placed chunks, an update feature was implemented to allow

the path to be reconstructed whenever a new chunk is added.

4.3 Materials

The two components mentioned in the previous Sections are constructed using the UE5

available functionalities. These components lack textures or materials because they are

entirely constructed using the developed logic. As integral parts of the generated environ-

ments, a suitable material for each component was built by combining textures available in

EpicGames Marketplace. Figure 4.3 depicts the materials that were produced.
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(a) (b)

Figure 4.3: Materials built for the terrain component (a) and path component (b).

4.4 Environment Assembling

The assembling of the forest environment with the described components is performed

by a special class of blueprint, the Level Blueprint. This blueprint is executed only once at

the start of the level and, therefore, the optimal choice to accommodate the world building

logic.

4.4.1 Chunk Management Module

As stated earlier, the best approximation of an infinite world is the generation and ren-

dering of what is visible to the camera. To accomplish this for a static camera means that

the only computations needed are the generation and rendering of a fixed number of chunks

inside the frustum of the camera. However, with a moving camera, it is necessary to manage

what and where something is rendered and what should be deleted to free up memory and

improve performance. To fulfill these requirements, a chunk manager blueprint was devel-

oped. In the context of UE5, all moving objects are classified as actors, and as such, the

camera actor has access to the functions associated with that class.

The tasked performed by the chunk manager is an iterative position checker and is

repeated every tick, i.e., every frame and is dictated by the four following variables:

• Active Actor Position: The world position of the camera actor.

• Render Distance: The number of chunks visible from the active actor’s position in

all directions.
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• Rendering Radius: Product of the Render Distance and the Chunk Size.

• Last Chunk Visited: A register of the chunk where the active actor was in the

previous tick.

As the active actor moves, its position and corresponding chunk are compared with the

Last Chunk Visited. If the active actor moves to a different chunk, it is performed a search,

in order to identify the chunks outside the rendering radius for deletion. The placement

of the new chunks is performed by verifying if the available positions inside the rendering

radius do not have an already loaded chunk. Figure 4.4 presents a visual description of the

logic applied.

Figure 4.4: Visual representation of the chunk manager logic.

During development, it became clear that as the complexity of the scenario increased,

the performance of the system decreased. The rendering and deletion of the chunks became

unmanageable, taking multiple seconds to perform. Numerous approaches have been tested

to solve this problem, primarily reducing the rendering radius to address this performance

issue, and many parameter combinations have been tried. However, the computations needed

to delete old chunks, generate and populate the new ones were too intensive. Additionally, the

primary component in chunk generation, the Procedural Mesh Component, is documented as

an experimental, computation heavy feature [71]. As an alternative to this limitation, it was

decided to suspend the usage of the chunk manager and instead place a single mega chunk in

the world. This process increased the computation needed for the initial world generation,

however, it removed all the issues during runtime. As a result of these adjustments, from

this point forward, the world generation will be explained by considering only one chunk.
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4.4.2 World Building Logic

This process begins by assigning a value to the global seed. This variable guides the

pseudo-random generation that is performed by all components. The global seed is deter-

mined by taking the start time of the execution and appending the values of each unit to

generate a random integer. This integer is then used as a seed to a random stream variable,

in order to generate a ten-digit number. In turn, this ten-digit number is assigned as the

global seed’s value for the current iteration of the world. This value ensures the worlds re-

producibility for future iterations. With the seed defined, the chunk component is generated

and placed in the world map, followed by the path component.

Object Placement

As unpredictable as a forest environment can be, there are some behaviors that can be de-

termined. In nature, when a trail or pathway is used repetitively, the ground becomes coarse

and hardened, preventing the growth of larger vegetation. To replicate this phenomenon,

object placement must be performed with some constraints. Thus, by using the information

of positioning generated during the terrain construction and the points collected by building

the path, an approximation of the natural object placement can be achieved.

The several four-dimensional arrays generated during the terrain construction contain the

2D coordinates, the scale and the rotation around the Z axis for each object, of each class.

The coordinates are used to verify the placement of the object, by performing a downwards

projection and checking the collision coordinates. The projection is configured to ignore all

collisions except the ones with the path mesh. By not identifying a collision coordinate,

the process of placement resumes, and another projection is performed to determine the

value of the Z coordinate for the object placement. Occasionally, two or more objects may

share placement coordinates and be placed in the same spot, resulting in immersion breaking

visuals. Luckily, UE5 includes a feature that manages this type of situations by placing the

second object at the periphery of the first. The placement verification logic is illustrated in

Figure 4.5.

Finally, using a random stream, controlled by the global seed, a mesh is selected from

a library correspondent to the class of the object, which is then placed in the world. The

collection of assets used for the objects was gathered through EpicGames marketplace [72,

73, 74, 75, 76]. The chosen assets are shown in appendix A.
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(a) (b) (c)

Figure 4.5: Visual representation of placement verification logic. Black circles represent

already placed objects and the orange rectangle represents the path.The green and red

circles represent the to be placed object and the validity of it’s location. Correct placement

(a), adjusted placement (b) and no placement (c).

Illumination

The illumination of a scene can make or break the photorealism and the method of

illumination integrated in UE5 was one of the reasons for its selection in this project. The

illumination model, lumen, operates in real-time. It is a fully dynamic global illumination

method that calculates indirect lighting and accurate light propagation while also enabling

realistic interactions between the light surfaces. Lumen eliminates the need for pre-computed

lightmaps and allows for more flexible and interactive illuminated scenarios. Additionally,

the lumen illumination method, with its dynamical properties, provides an emulation of the

eye and lens adaptation on varied illumination conditions.

The global illumination of the world is composed of a mixture of light and ambient

components, that work as a unit to deliver an accurate and atmospheric illumination. The

present components are as follows:

• Directional Light: component that emulates the primary light source. Main com-

ponent in shadows and lens flares calculations.

• Sky Lighting: uniform secondary light. Primary source for the non-direct illumina-

tion.

• Sky Atmosphere: emissive component that controls the behavior of the light that

reaches the ground.

• Sky Sphere: Visual component that emulates the appearance of the sky.

• Volumetric Clouds: Visual component that generates and controls clouds’ behavior.

39



• Exponential Height Fog: visual component that creates realistic atmospheric fog

effects for light scattering. Allows to visually blend the sky sphere with the horizon

line.

These six components have multiple parameters that allow precise control over the behav-

ior of light and its vast interactions. Aiming to recreate the best approximation to natural

illumination, various combinations of parameters were implemented. Being a subjective

issue, the parameters went through a process of iterative experimentation and refinement

until the final combination was achieved, resulting in the implementation of three types of

illumination.

(a) (b) (c)

Figure 4.6: Environment with the three definitive illumination conditions, day (a), dusk (b)

and night (c).

4.5 Graphical User Interface

As a full-fledged system, SynPhoRest v2.0 has a Graphical User Interface (GUI). A GUI

serves as a critical component in facilitating user interactions and enhancing the overall user

experience. It provides users with a visual platform through which they can interact with

the system, making it a fundamental element in ensuring usability. As an intermediary layer

between the user and the system functionalities, it gives control over the editable settings of

the world generation, as well as information about the controller scheme.

4.5.1 Main Menu

The main menu serves as an entry point and navigational hub for users, providing access

to available functionalities. Composed of just three buttons, it organizes and presents the

available choices in a structured and intuitive manner, enabling users to easily locate and

select the desired primary world generation options. The "Custom Mode" button grants
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access to personalization options and the "Random Mode" button begins the generation of

a default map.

Figure 4.7: SynPhoRest v2.0 main menu.

4.5.2 Custom Mode Menu

The custom mode menu provides the users with a comprehensive range of options and

parameters in order to personalize their experience and adapt the system to meet their

specific needs. Users can utilize the "Seed Input" option to specify a particular seed value,

enabling consistent reconstruction across different executions. The "Output Path" option

allows users to define the desired destination folder or directory for saving the extracted

data. Additionally, the "Time of Day" option provides the flexibility to adjust the lighting

conditions, allowing for dynamic environments or specific atmospheric effects. The "Output

Resolution" setting enables users to select the desired image resolution for every type of

generated data, ensuring optimal quality for their intended purpose. Users can also define

the "Number of Random Captures" value, specifying the quantity of randomly generated

images. The "Vegetation Density" option offers control over tree density and consequently

influencing the placement of other components. Moreover, the "Max. Terrain Elevation"

setting enables users to define the upper limit for the elevation of the generated terrain.

The "Aerial Camera" and "Disable Path" options provide users with the ability to enable

or disable drone perspective and path integration, respectively.
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Figure 4.8: SynPhoRest v2.0 custom mode menu.

4.5.3 Pause Menu

The pause menu offers convenient access to essential information over the system’s

button mapping. The "World Seed" information provides users with seed value of the current

world seed. Additionally, the option "Copy Seed" is available, enabling users to easily save

the seed value in the computer’s clipboard, enabling future reconstructions. This feature

is not integrated in UE5 and a plugin was specifically developed for the effect. Another

crucial aspect of the pause menu is the "Sequence Controls" information, which provides

the user with the button mapping of the various capture sequences. "Auto Pilot" enables

the automated sequence of captures along the path, "Random Capture Sequence" enables

the random placement of the camera on the map. "Custom Capture" executes the capture

of the current perspective. Furthermore, the pause menu includes "View Toggles" listing,

informing the users the button mapping to switch between different visual mode. "Semantic

Segmentation" and "Depth Map" activates or deactivates the view mode of the same name.

Finally, the user has access to three buttons, that redirects the system accordingly to their

names. The navigational button mappings are not displayed because they are typical of

computer video-games.
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Figure 4.9: SynPhoRest v2.0 pause menu.

4.6 Extracted Data

The main reason for creating this system is it’s ability to perform the correct data extrac-

tion related to forested environments. The capture of real-world data is performed on site,

using various cameras and sensors. To translate these tools to the generated virtual envi-

ronment, it requires the simulation of the individual systems. The following Section explain

the methods used for the simulation of each capture methods along with the explanation of

the data generated.

4.6.1 RGB Images

The first type of data extracted is the RGB image and is used as input data to the

training and validation of DL algorithms. RGB images represent the actual appearance of

the scene and are the primary source of data for deployed models. The RGB data captured

by the two available perspectives in the system are presented in Figure 4.10.

To extract this type of data, two 2D scene capture components were attached to the

in-game cameras associated with the player character, one to each prospective. This relation

assists the translation of the in-game camera movement to the the respective 2D scene

capture component, assuring the capture of the user’s desired scene. As explained in Section

3.4, the addition of noise is performed through post-process camera settings.
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(a) (b)

Figure 4.10: RGB images captured from the ground perspective (a) and the aerial perspective

(b).

4.6.2 Semantic Segmentation Maps

The semantic segmentation maps offer information about the different objects present

in the image. These maps provide pixel-perfect annotation and classification related to each

object captured. The generated data distinguishes the objects by assigning a class, and it’s

corresponding color, to the area that the object occupies in the image. The system is able

to detect and classify the following classes:

• Background: Sky or far objects that do not influence the scene.

Class color: test

• Ground: Terrain or soil.

Class color: test

• Path: Recommended traversable area or trail .

Class color: test

• Tree Trunks

Class color: test

• Tree Canopy

Class color: test

• Dead Tree

Class color: test

• Stump: Remains of rotten or cut down trees.

Class color: test
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• Ground Vegetation

Class color: test

• Shrub: All vegetation that has a solid trunk but is not classified as tree, such as

sapplings.

Class color: test

• Obstacle: Solid object that hinders or impedes traversal, such as rocks or logs.

Class color: test

The semantic segmentation image is captured with the previous described 2D scene

capture components. To attain a correct and precise classification of each object, the scene

illumination is removed and the materials of each object are replaced with a solid material

specifically created for the effect. The materials are build using an unlit model, in order to

remove any light interaction. These materials are devoid of any texture, enabling a correct

and smooth masking. Due to the absence of light, these materials have emissive properties

and project to the camera their respective colors. When the capture is completed, the

illumination and original materials are restored. The semantic segmentation data captured

by the two available perspectives can be observed in Figure 4.11, corresponding to the RGB

images presented in Figure 4.10.

(a) (b)

Figure 4.11: Semantic segmentation map captured from the ground perspective (a) and the

aerial perspective (b).

4.6.3 Depth Maps

Depth maps provide information related to the distance or depth of objects the capture

viewpoint. Unlike the RGB images, which capture the scene’s color information, depth

maps represent distance values to each point of the scene. Following common practice, the
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depth maps present a color grading metric, where lighter regions indicate objects that are

closer, while darker regions represent objects that are farther away. Depth maps provide

the additional spatial information related to the scene geometry, not achievable with the

previous data types.

To generate this type of information, the system employs the use of a post-process volume

with an post-process material constructed for the purpose. This material captures the scene

depth from the center point of the camera to a maximum distance of a hundred meters

and uses the interpolation of the colors white and black with an interpolation factor defined

by Equation 4.1, where If represents the interpolation factor and d represents the distance

in centimeters. The behavior of this function provides a more precise depth evaluation to

objects closer to the camera and offers better definition and distinction between objects.

If (d) = 1− v(d) ∧ v(d) =


0 , e−10d ≤ 0

e−10d , 0 < e−10d ≤ 1

1 , e−10d ≥ 1

∀ d ∈ [0, 10000] (4.1)

The depth map is captured with same 2D scene capture components used in the other

two type of data. The effect of the depth map is applied to the scene by activating the

post-process volume setting of infinite extent. When the capture is completed, the infinite

extension setting of the post-process volume is deactivated. In Figure 4.12 can be observed

the depth map captured by the available perspectives, related to Figures 4.10 and 4.11.

(a) (b)

Figure 4.12: Depth map captured from the ground perspective (a) and the aerial perspective

(b).
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4.6.4 Capture Methods

As seen in Section 4.5.3, the system offers three capture options, called sequences, of

which two are fully automated. The sequence "Auto Pilot" is only available when the

generation includes the path component and enables the capture of multiple images along

the path. This sequence performs three captures at each path point path with rotations

of −45o, 0o and 45o. The path has 230 possible locations, resulting in 690 captures, i.e.,

2070 files per map. The sequence by the name "Random Capture", by default, performs one

hundred random placements of the camera throughout the map and performs a capture at

each point. The number of random captures can be edited in the custom generation menu.

The last sequence, the "Custom Capture", give the user full control and allows the capture of

the perspective than is currently visible. To assure that the data stays consistent in all three

captures, the player controls are disabled during collection. All captures are saved, in PNG

format (.png), in a folder, named with the world seed, and each generated image is identified

with the type of data and the number of the capture following the naming convention present

in Figure 4.13.

Figure 4.13: Naming convention of each type of capture performed.
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5 Results and Discussion

The current Chapter encompasses the evaluation of the developed system as a ML

tool for the generation of synthetic datasets. The quality of the generated data is assessed

through visual inspection and compared with data from different sources. In light of this, a

discussion framed by a qualitative and quantitative analysis, as well as visual outcomes for

all forms of created data, will be provided, along with the difficulties raised by this type of

analysis.

5.1 Performance Analysis

The system developed meets the requirements of executing in real-time and enables users

with navigational abilities, as well as begin a full-fledged software ready for public release.

However, these reasons are not sufficient to confirm the effectiveness of the system, and

further evaluations, especially of the performance of the system and the results obtained,

are needed. All tests were performed using the same computer used for development. The

characteristics of this computer are as follows:

• Processor: Intel® Core™ i9-13980HX 2.20Ghz

• GPU: Nvidia® GeForce RTX™ 4060 2.37Ghz 8Gb

• RAM: 32Gb

• OS: Windows 11 version 22H2

5.1.1 Generation Evaluation

Assessing the system’s generation performance means analyzing the time required to

completely render a fully generated environment. The system generation capabilities were

evaluated using different parameters of world generation. Each experimentation measures
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the time required for the complete world generation, starting at the beginning of generation

and ending at the fully rendered scene. All parameters had their default value except the

one in analysis.

The first parameter assessed related to the generation was the vegetation density. The

influence of this parameter over the generation time is present in Table 5.1.

Vegetation Density 1% 5%(default) 10% 20% 25%

Time (s) 18.102 16.428 15.237 16.901 15.006

Table 5.1: Values of vegetation density and respective generation times in seconds.

The results show that the required generation time, contrary to the expected, reduce with

the increase in density. This is as a result of the logic used for the object placement, which is

mentioned in Section 4.1.2. Increasing tree density reduces the density of ground vegetation

and consequently the number of objects placed, accelerating the generation process.

The second generation parameter evaluated was the maximum terrain height, which

controls the terrain elevation, and the generation time related to the various values tested

are present in Table 5.2. The observed generation times do not present significant variation

and indicate that the height value does not interfere with the generation process.

Max. Terrain Height (cm) 5 50 100 150(default) 250 350

Time (s) 16.225 16.637 16.558 16.428 16.477 16.387

Table 5.2: Values of maximum terrain height and respective generation times in seconds.

Evaluating the last two parameters related to the generation process, the illumination

conditions and the path, resulted in the generation times present in Tables 5.3 and 5.4,

respectively.

Time of Day Day(default) Dusk Night

Time (s) 16.429 16.874 16.703

Table 5.3: Illumination conditions and respective generation times in seconds.

As observed, the illumination conditions do not affect the generation time of the scenario.

On the other hand, the inclusion of the path expedites the generation process. As mentioned

in Section 4.4.2, generating an environment with path invalidates the positioning of numerous

objects and reduces the number of objects placed at generation.
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Path Included Yes(default) No

Time (s) 16.429 18.874

Table 5.4: Generation with and without path inclusion and respective generation times in

seconds.

The results show that the system’s main drawback is the density of the ground vegetation,

i.e., the quantity of objects positioned. In fact, the generation time was decreased to 6.338

seconds as a result of the complete exclusion of ground vegetation placement.

5.1.2 Capture Evaluation

Evaluating the system’s capture performance requires the measurement of the time re-

quired to fully capture the data for one frame, which includes a RGB image, a semantic

segmentation map and a depth map. The system ability to capture data was evaluated

using parameters related to the extraction of data and to the world generation. Each exper-

imentation measures the time required for the complete collection of a set of data, starting

at the loss of camera control and ending at the enabling of movement. All parameters had

their default value except the one in analysis.

The first condition studied was related to the world generation. Various values of vege-

tation density were tested and their influence on capture time were registered. The values

of each iteration can be observed in Table 5.5.

Vegetation Density 1% 5%(default) 10% 20% 25%

Time (s) 36.103 35.537 35.528 35.296 34.805

Table 5.5: Values of vegetation density and respective data collection times in seconds.

The presence of fluctuation in capture time was expected, based on the findings related

to Table 5.1. The reduction of the number of the objects placed in the scene speed up the

capture process. However, the vegetation density parameter does not affect this process the

way it does to the generation.

The second and last parameter that impacts the capture process is the output resolution.

The four resolution options were tested and registered the following capture times.

As seen in Table 5.6, the resolution chosen has little impact in the capture time due to

the fact that UE5 has export functionalities that are executed in parallel.
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Capture Resolution 720x480 1280x720 1920x1080(default) 2560x1440

Time(s) 34.783 36.127 35.823 36.836

Table 5.6: Output resolution options and respective data collection times in seconds.

For the purpose of documentation, various amounts of frames were captured and the time

required per set was registered. The captures were made with the default configurations.

The elapsed times are present in Table 5.7.

Number of Captures 1 5 10 50 100

Time (s) 35.622 181.121 374.249 1890.315 3810.781

Approximate Time ≃ 35s ≃ 3min1s ≃ 6min14s ≃ 31min30s ≃ 63min50s

Table 5.7: Number of captures and respective data collection times.

The testing of the "Auto Pilot" sequence was only performed for a small fraction of the

generated path, however is estimated that the full path is executed in approximately in seven

hours, resulting in 2070 files of data.

An additional experiment was conducted to evaluate the capture time required for ex-

tracting only one type of data at a time. The measurement was repeated multiple times and

the average times recorded for each type of data can be seen in Table 5.8.

Type of Data RGB Image Semantic Segmentation Map Depth Map

Average Time (ms) 459.5 387.333 418.8

Table 5.8: Average capture time to extract one frame of a specific data type.

This test assesses the real-time capabilities of the system and confirms its ability to

generate a consistent output of two frames per second, given that it only generates one type

of data. This output, for instance, can be utilized for simulation purposes. These results

lead to another extra evaluation, the measurement of the time that the system requires to

perform the switch between data types. The obtained result are present in Table 5.9.

Through observation, the switch between RGB data and Semantic Segmentation data is

the limiting factor of the the time that is required to perform a complete frame extraction.

Due to the importance of the system’s navigational aspect, the collection of data is performed

sequentially for each frame. However, a fully autonomous version of the SynPhoRest system,

let’s call it SynPhoRest v2.0: Hands-Off Edition, where there is no navigational implemen-
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Type of Data Switch RGB to SS SS to RGB RGB to Depth Depth to RGB

Average Time (s) 8.820 8.913 0.545 0.528

Table 5.9: Average switch time from one data type to another.

tation could benefit of a reorganization in the capture process. Performing all captures of

one data type at a time and then performing the switch in data type could, theoretically,

decrease the time required to perform the full path extraction, i.e., 690 sets of data or 2070

files, in just under fifteen minutes. A preliminary test was conducted to evaluate a crude

implementation of this reformulation. The experiment was executed for 60 captures of each

data type and resulted in an elapsed time of seven minutes and thirty four second. Due

to the rough nature of this implementation, every third frame was not correctly generated,

concluding that this reformulation requires further development.

5.2 Extracted Data Analysis

The system meets the requirements related to synthetic data generation, producing RGB

images and their respective semantic segmentation and depth maps. The evaluation process

related to the quality of the synthetic data is a little challenging as a consequence of the

format of the captures. Images can only be evaluated through visual inspection and therefore

can not be classified so accurately. In spite of that, it can be concluded through observation

that the environments generated achieve a considerable level of photorealism. The collection

of selected assets and their disposition closely mimic the natural world and, together with

the illumination choices, reinforce the feeling of a real forest. Various example sets of the

extracted data are included in appendix A.

The extracted semantic segmentation maps, as described in Section 4.6.2, achieve pixel

precision granted by the material switching method used. Confirming the accuracy achieved,

using the popular image editor software Adobe Photoshop [77], version 13.1.2, the RGB

image and the semantic segmentation map were layered, with the second having it’s opacity

reduced. The results of this experiment can be seen in Figures 5.2, 5.3, 5.4 and 5.5.

The generated depth maps exhibit a remarkable level of precision attributable to the

feature described in Section 4.6.3. The virtual nature of the environment enables an exact

measurement of the distance to each pixel, and in conjunction with the integrated scene depth

readings provided by UE5, allow the construction of a precise representation of the scene’s
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depth. Generally, depth maps are created using two passive cameras with slightly different

viewpoints of a scene using stereo matching. As a result, it is possible to compute pixel-level

disparities and estimate scene depth using the processing of related features between the

images, yielding only approximations. The depth maps provided by the developed system

are comparatively superior and offer a true reading of the scene’s depth. Figure 5.1 presents

the comparison between a common stereo depth map, a depth map generated with the

algorithm proposed by A. Aslam et al. [78] and the depth map extracted by SynPhoRest

v2.0. Moreover, the system generates depth maps with resolutions that exceed the resolution

of the depth cameras currently on the market, offering larger amounts of data and with better

precision.

(a) (b) (c)

Figure 5.1: Comparison between common stereo depth maps (a), "Aslam" algorithm (b)

and the depth maps generated by SynPhoRest v2.0 (c). Adapted from [78].

Performing a quantitative analysis, the system is able to produce six hundred and ninety

fully automated sets of data, totaling in two thousand and seventy files. Additionally, the

possibility of random and custom capture add to the total amount of files per environment.

Each world generation has a corresponding ten-digit integer seed, as indicated in Section

4.4.2, which equates to the possibility of producing over four billion unique environments,

even without accounting for the many adjustable generational parameters. Considering this

information, theoretically, the system has the ability to produce more than two trillion unique

frames.

Overall, the SynPhoRest v2.0 system performs as expected, generating random envi-

ronments procedurally and extracting correct and precise data in all three forms. As a

ready-to-ship software, SynPhoRest is a tool that tackles the existing gap in the field of

non-urban navigation DL algorithms. Having accurate labelling capabilities and true depth

maps, SynPhoRest is a great step forward for ML research and has the potential to rein-

force existing datasets, boosting models performances. With the growing desire to relinquish
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manual hand-labeling methods in favor of automated techniques, SynPhoRest provides the

perfect training data for algorithms developed for labeling real-world data. Nonetheless,

synthetic data differs from real data and without proper experimentation, it is impossible

to determine the efficiency of the generated data. Moreover, as seen in Chapter 2, datasets

exclusively build with artificial data tend to offer negative results and synthetic data is

only used as an augmentation tool. Additionally, a fully synthetic dataset generated with

SynPhoRest can be used for training purposes, in researches related to the construction of

automatic labeling tools.

Figure 5.2: Example of semantic segmentation maps precision verification. Layering of the

RGB and semantic segmentation map images, with opacity at 100% and 25%, respectively.
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Figure 5.3: Example of semantic segmentation maps precision verification. Layering of the

RGB and semantic segmentation map images, with opacity at 100% and 25%, respectively.

Figure 5.4: Example of semantic segmentation maps precision verification. Layering of the

RGB and semantic segmentation map images, with opacity at 100% and 25%, respectively.
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Figure 5.5: Example of semantic segmentation maps precision verification. Layering of the

RGB and semantic segmentation map images, with opacity at 100% and 25%, respectively.
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6 Conclusion

The purposed solution of this master thesis aimed to develop a comprehensive system

built entirely in UE5 for generating synthetic data from a procedurally generated virtual

environment. The system successfully achieved its objectives by providing a range of relevant

data types, that can be utilized for various ML and DL applications.

The development process emphasised the creation of a versatile tool for data collection.

The system incorporates three data extraction methods and various generation parameters,

ensuring flexibility and adaptability to different research and application scenarios. Re-

searchers and developers can leverage this system to create customized datasets that meet

specific requirements, enabling them to explore and train machine learning models with

diverse virtual forest data.

By utilizing UE5’s advanced graphics rendering capabilities, the system effectively cap-

tures the intricate details of a virtual forest environment. The generated synthetic data

closely resembles real-world forest imagery, enabling more accurate and reliable training of

classification or autonomous navigation algorithms. This approach provides a cost-effective

alternative to acquiring large-scale annotated datasets. Moreover, the system’s procedural

generation techniques allow for the creation varied virtual forest environments, enhancing

the generalization capabilities of machine learning models and enabling better performances.

In conclusion, the developed system represents a valuable contribution to the field of

ML and DL applications concerning forest environments. Research teams can utilize this

system to generate high-quality synthetic data for training, testing and validating their algo-

rithms. The work developed lays the foundation for future advancements in the generation

of synthetic data and its application to machine learning tasks in diverse environments. It is

anticipated that this work will inspire further research and development in the field, leading

to improved algorithms, better training methodologies and more accurate computer vision

systems.
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6.1 Future Work

While SynPhoRest v2.0 has achieved its primary objectives in developing a system for

generating synthetic data from a virtual forest environment, there are several opportunities

for further development that can enhance its capabilities. Firstly, a collaboration project with

multidisciplinary team can vastly increase the authenticity of the generated environment.

The inclusion of a botanist and a geologist would enable the identification of the correct

vegetation and terrain composition. Furthermore, the addition of a 3D artist would allow

for an accurate recreation of the forest components and increase the diversity of the selected

assets used in the development of this system.

Related to performance, as observed in Section 5.1.2, the system could be reorganized and

optimized to improve extraction times. Additional development of the chunk manager mod-

ule could overcome the difficulties faced and expand the number of captures per generation

exponentially.

Data is always a necessity and the inclusion of more sensors leads to more data. New

sensors would enable the construction of more complete datasets. The example of LIDAR

sensors come to mind. This type of extraction could be performed with two virtual cameras

in a fronto-parallel configuration and the addition of several acquisition patterns would allow

the inclusion of point cloud data on the generated datasets. Another possible feature is the

generation of a second depth map. Compared to common depth maps, the depth maps

generated by SynPhoRest offer an exact representation of the environment. The recreation

of a less accurate depth map could be achieved using two fronto-parallel cameras and the

technique of stereo matching, producing data more similar to real data depth maps.

For the purpose of simulation and using the real-time data presented in Section 5.1.2,

an API could be developed to bridge SynPhoRest with a Robot Operating System (ROS)

implementation for algorithm testing. This API would perform the communication between

both systems, sending RGB images to the algorithm and translate ROS commands to virtual

navigational controls.

During development of the system, some testing to the procedural generation was per-

formed. These test allowed the detection of a generational error, present in Figure 6.1. The

issue was documented and the problem was addressed. However, this event incited an idea

for a possible generation implementation. By applying a water material to the plane that ap-

peared through the terrain and using an appropriate second noise generator, the topography

could be manipulated to create riverbeds and increase forest authenticity.
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Figure 6.1: Generation error detected during testing.

6.2 Personal Considerations

On a personal note, the year-long development of SynPhoRest v2.0 was really important

to my personal growth. It gave me the chance to hone skills I’d developed during my

academic journey and reaffirmed the idea that the knowledge collected in the academy lays

the groundwork for all future endeavours. This experience has been very rewarding and

allowed for an interesting introduction to the field of computer graphics.
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Appendix A

SynPhoRest v2.0

This appendix provides additional information and examples related to the extracted

data, generation parameters and libraries of assets related to the work developed for this

thesis. It offers a glimpse into the data samples, various generation parameter values and

the range of assets employed. These examples serve to enhance understanding and provide

visual and contextual references for the project’s methodology and resources.



Figure A.1: Set of data extracted from ground perspective, with "Auto Pilot" mode, at

−45o.



Figure A.2: Set of data extracted from ground perspective, with "Auto Pilot" mode, at 0o.



Figure A.3: Set of data extracted from ground perspective, with "Auto Pilot" mode, at 45o.



Figure A.4: Set of data extracted from aerial perspective, with "Auto Pilot" mode, at −45o.



Figure A.5: Set of data extracted from aerial perspective, with "Auto Pilot" mode, at 0o.



Figure A.6: Set of data extracted from aerial perspective, with "Auto Pilot" mode, at 45o.



Figure A.7: Set of data extracted from ground perspective, with "Random Capture" mode,

with day illumination.



Figure A.8: Set of data extracted from ground perspective, with "Random Capture" mode,

with day illumination.



Figure A.9: Set of data extracted from ground perspective, with "Random Capture" mode,

with dusk illumination.



Figure A.10: Set of data extracted from ground perspective, with "Random Capture" mode,

with dusk illumination.



Figure A.11: Set of data extracted from ground perspective, with "Random Capture" mode,

with night illumination.



Figure A.12: Set of data extracted from ground perspective, with "Random Capture" mode,

with night illumination.



Figure A.13: Set of data extracted from aerial perspective, with "Random Capture" mode,

with day illumination.



Figure A.14: Set of data extracted from aerial perspective, with "Random Capture" mode,

with day illumination.



Figure A.15: Set of data extracted from aerial perspective, with "Random Capture" mode,

with dusk illumination.



Figure A.16: Set of data extracted from aerial perspective, with "Random Capture" mode,

with dusk illumination.



Figure A.17: Set of data extracted from aerial perspective, with "Random Capture" mode,

with night illumination.



Figure A.18: Set of data extracted from aerial perspective, with "Random Capture" mode,

with night illumination.



Figure A.19: Set of data extracted from ground perspective, with "Random Capture" mode,

where the path is not centered.



(a) (b)

(c) (d)

(e) (f)

Figure A.20: Examples of the effect of various height values in the generation. 5 (a), 50 (b),

100 (c), 150 (d), 250 (e) and 350 (f) centimeters.



(a) (b)

(c) (d)

(e) (f)

Figure A.21: Examples of the effect of various density values in the generation. 1 (a), 5 (b),

10 (c), 15 (d), 20 (e) and 25 (f) percent.



Figure A.22: Collection of assets used in object placement.


	Acknowledgements
	Resumo
	Abstract
	List of Acronyms
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.1.1 Deep Learning applied to Forest Environments
	1.1.2 The Link Between Deep Learning and Data
	1.1.3 Dataset Construction

	1.2 Forest Data
	1.2.1 RGB Images
	1.2.2 Depth Maps

	1.3 Problem Synthesis
	1.4 SynPhoRest v2.0 - An Overview
	1.5 Main Contributions
	1.6 Document Outline

	2 State of the Art
	2.1 The History of Synthetic Data
	2.2 Synthetic Data Generation
	2.2.1 Semantic Image Segmentation
	2.2.2 Data Generation from Fixed Virtual Environments
	2.2.3 Data Generation from Randomized Virtual Environments
	2.2.4 Data Generation from Procedural Virtual Environments
	2.2.5 Generation of Virtual Environments from Real Data


	3 Methods
	3.1 Graphical Softwares
	3.2 Unreal Engine 5
	3.2.1 Lumen
	3.2.2 Nanite
	3.2.3 Scripting
	3.2.4 Extension Capabilities

	3.3 Procedural Generation
	3.4 Extraction of Synthetic Data

	4 Generation of Synthetic ForestEnvironment
	4.1 Terrain
	4.1.1 Mesh Construction
	4.1.2 Object Positioning

	4.2 Path
	4.3 Materials
	4.4 Environment Assembling
	4.4.1 Chunk Management Module
	4.4.2 World Building Logic

	4.5 Graphical User Interface
	4.5.1 Main Menu
	4.5.2 Custom Mode Menu
	4.5.3 Pause Menu

	4.6 Extracted Data
	4.6.1 RGB Images
	4.6.2 Semantic Segmentation Maps
	4.6.3 Depth Maps
	4.6.4 Capture Methods


	5 Results and Discussion
	5.1 Performance Analysis
	5.1.1 Generation Evaluation
	5.1.2 Capture Evaluation

	5.2 Extracted Data Analysis

	6 Conclusion
	6.1 Future Work
	6.2 Personal Considerations

	7 Bibliography
	A SynPhoRest v2.0

