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Abstract: Silica aerogel is a material composed of SiO2 that has exceptional physical properties
when utilized for tissue engineering applications. Poly-ε-caprolactone (PCL) is a biodegradable
polyester that has been widely used for biomedical applications, namely as sutures, drug carriers,
and implantable scaffolds. Herein, a hybrid composite of silica aerogel, prepared with two differ-
ent silica precursors, tetraethoxysilane (TEOS) or methyltrimethoxysilane (MTMS), and PCL was
synthesized to fulfil bone regeneration requirements. The developed porous hybrid biocomposite
scaffolds were extensively characterized, regarding their physical, morphological, and mechanical
features. The results showed that their properties were relevant, leading to composites with different
properties. The water absorption capacity and mass loss were evaluated as well as the influence of the
different hybrid scaffolds on osteoblasts’ viability and morphology. Both hybrid scaffolds showed a
hydrophobic character (with water contact angles higher than 90◦), low swelling (maximum of 14%),
and low mass loss (1–7%). hOB cells exposed to the different silica aerogel-PCL scaffolds remained
highly viable, even for long periods of incubation (7 days). Considering the obtained results, the
produced hybrid scaffolds may be good candidates for future application in bone tissue engineering.

Keywords: hybrid composites; poly-ε-caprolactone (PCL); silica aerogel; tissue engineering

1. Introduction

Aerogels are advanced nanostructured materials discovered in the 1930s [1] and well-
known by their three-dimensional nanoporous structure [2–5]. Due to their characteristic
high specific surface area with low density, aerogels are attractive to a variety of fields,
including the biomedical and pharmaceutical ones [6–8]. These materials are usually
prepared by sol–gel processes [3,9,10], which promote, at low temperatures, the synthesis
of their network by chemical reactions in solution [4,11]. The resulting solid material
is ultralightweight, porous and, in some cases, transparent, comprising 99.2% of empty
space [3].

Aerogels are classified into organic, inorganic, and hybrid aerogels according to the
type of precursor used during their synthesis [3,12]. However, according to their surface
chemical properties, they are categorized into hydrophobic or hydrophilic aerogels [13].

Recently, aerogel materials have attracted a great attention for biomedical applica-
tions. In this regard, aerogels have been explored in different applications, such as tissue
engineering, drug/protein delivery, bone grafting, biosensing, and blood sorption [8,14,15].

Due to their high water uptake, interconnected porous structure, and excellent perme-
ability, aerogels are promising candidates to be applied for scaffolds production [16–18].
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In addition, aerogels have also been combined with different polymers for the fabrica-
tion of porous 3D scaffolds [19] aimed for tissue engineering applications [20–23]. Current
research on biopolymer-based aerogels is motivated by the exploration of safer, less toxic,
and more sustainable precursors with better properties for the preparation of delivery
systems [15]. The hybrid polymeric composites have been widely explored due to their
ability to combine the advantages of a polymeric matrix with those of inorganic compo-
nents and exhibit better properties than the pure counterparts [16]. Other works have been
performed with the intent to achieve improvements in supporting cell migration and tissue
regeneration, modifying the pore size and radius of curvature of the tissue engineering
scaffold [24]. Therefore, aerogel-polymer hybrid scaffolds combine the advantages of both
technologies, outperforming their pure counterparts.

Poly-ε-caprolactone (PCL) is a biodegradable polymer and member of the aliphatic
polyester family [25]. This polymer possesses several important features such as benign
biocompatibility, low cost, biodegradability, and easy fabrication [26,27]. The combination
of PCL with other biopolymers enhances the properties of the resultant scaffolds [28–31].
PCL is a good candidate for tissue engineering in terms of cells’ attachment, matrix produc-
tion, and proliferation [32–34]. Previous studies have demonstrated positive effects of PCL
composites on osteoblasts when used as a bone graft substitute [34–36]. PCL has also been
studied for reconstruction of many other tissues, including nerves and cartilage [37].

Silica aerogel has already been combined with PCL as tissue engineering scaffold,
however few reports are available [17,38]. For instance, Ge et al. [38] prepared silica
aerogel/PCL membranes using silica aerogel powders and PCL. Their results demonstrated
that the basic silica aerogel neutralizes the scaffolds and promotes cell survival and growth.
Goimil et al. [17] reported the effects of the incorporation of aerogels, using supercritical
technologies (a green but expensive process), in the properties of synthetic PCL-based
scaffolds. Moreover, the characterization of these silica aerogel/PCL properties in animal
models for bone and cartilage tissue repair/engineering, and the cellular and molecular
mechanisms involved in the regulation of cell survival and proliferation under the presence
of the biomaterial components, are limits of these works.

In this research work, hybrid scaffolds were produced, and their properties evaluated.
The goal was to develop a biocompatible scaffold with suitable mechanical properties,
without the need of the addition of phosphates or other inorganic compounds. These
hybrid scaffolds were obtained from silica-aerogel and PCL which could be applied in
tissue engineering, particularly as bone grafting materials. To accomplish this, PCL was
hybridized with two different silica precursors, one hydrophilic and another hydrophobic,
tetraethoxysilane (TEOS) and methyltrimethoxysilane (MTMS), respectively. These porous
hybrid scaffolds were fabricated by adding aerogel, obtained by the sol–gel process, to
PCL. The hybrid scaffolds were then extensively studied in terms of thermal and physico-
chemical properties and water absorption capacity. The influence of the different hybrid
scaffolds on osteoblasts’ viability and morphology was also assessed.

2. Results and Discussion

The main goal of this work was to produce a biomaterial composed of PCL and
aerogel suitable for tissue engineering applications. To check the suitability of the produced
biomaterials for the aimed biomedical application, different characterization techniques
were used.

2.1. Chemical Characterization

The ATR-FTIR spectra of the different components of the TEOS-based aerogel, MTMS-
based aerogel, PCL, and composites M0.5_PCL1 and T0.5_PCL1 are presented in Figure 1.
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Figure 1. FTIR/ATR spectra of (a) TEOS and MTMS aerogel, and (b) PCL and M0.5_PCL1 and
T0.5_PCL1 samples.

In the spectrum corresponding to TEOS-based aerogel (Figure 1a), the bands that demon-
strate the formation of the silica structure are the Si–O symmetrical elongation vibration
observed at 800 cm−1 and the Si–O–Si asymmetric elongation vibration (≈1080–1200 cm−1

range). This last Si–O–Si bond in the silica aerogel was observed at 1070 cm−1, which con-
firmed the formation of TEOS-based aerogels [39].

The formation of MTMS-based aerogels is validated by the presence of bands at
1030–1110 cm−1 which are attributed to the Si–O–Si asymmetrical stretch vibration, the
bands at 1272 cm−1 and 1409 cm−1 which are attributed to stretch vibration, and the C–
H absorption peak, which is consistent with previous research results [40]. The Si–OH
stretch vibration band at 919 cm−1 indicates the presence of more residual silanol groups.
Vibrations at the 1350–1500 cm−1 and 2800–3000 cm−1 range correspond to C–H bonds.

By analyzing the PCL spectrum (Figure 1b), bands at 2943 and 2865 cm−1 correspond
to the CH2 asymmetric stretching and CH2 symmetric stretching, respectively. The carbonyl
stretching (C=O) appears at 1727 cm−1 and the stretching C–O and C–C in the crystalline
phase at 1292 cm−1. The bands at 1237 and 1167 cm−1 are in line with the asymmetric
C–O–C stretching and symmetric C–O–C stretching, respectively [41].

The FTIR spectra of composites M0.5_PCL1 and T0.5_PCL1 showed bands similar to
the ones presented in the pure PCL spectrum. The main differences are observed in the
peaks at wavelengths of 1080, 1200, and 800 cm−1 corresponding to the asymmetric and
symmetric Si–O stretching vibrations of the aerogels. Si–O–Si bond bending vibrations
and Si–OH bond vibrations were attributed to peaks at 1090 cm−1 and 560 cm−1, respec-
tively [42]. The presence of both PCL and silica peaks suggests that the composites present
both materials in their structure (further analyzed in the next sub-section).

2.2. Surface Morphology

The determination of the specific surface areas of the composites was based on the
nitrogen adsorption isotherms and the obtained values are shown in Table 1. The samples
show lower specific surface area values than those for other aerogels composites [43]. The
lower specific surface area can be related to the presence of non-porous PCL, creating large
interstices in the material.
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Table 1. BET specific surface area (m2g−1) of the hybrid scaffolds and PCL.

Composites BET Specific Surface Area (m2g−1)

M0.5_PCL1 27.84 ± 0.64
M0.25_PCL1 28.78 ± 0.88
T0.5_PCL1 4.04 ± 0.18
T0.25_PCL1 2.88 ± 0.20

PCL 16.28 ± 0.52

TEOS-based aerogel composites showed a lower surface area, which implies a more
compact composite. The MTMS-based aerogel composite presents the higher specific
surface area explained by the presence of CH3 groups in the structure.

To better understand the morphology of the composites, surface and cross-section
scanning electron microscopy (SEM) analysis were performed and the obtained images are
displayed in Figure 2.
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Through the analysis of the SEM surface images, it is possible to observe that the
MTMS composites (Figure 2b,d) present a rough and irregular surface with some shapes
that might induce a porous morphology in the entire surface, which corroborates the higher
porosity obtained by BET analysis, along with smoother zones that are related to the silica-
aerogel particles (shown in EDS results). In turn, TEOS composites (Figure 2f,h) show an
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evident irregular, less porous surface. T0.25_PCL composites (Figure 2h) present a rougher
surface when compared to T0.5_PCL1 composite surfaces and a less evident porosity.

Analyzing the cross-sections, it is possible to observe that M0.5_PCL1 composite
(Figure 2a) suffered a brittle fracture, due to the immersion in liquid nitrogen employed
to break the samples. This is similar to the M0.25_PCL1 composite (Figure 2c), where the
smooth and square surface structures correspond to silica along with the presence of some
porosity. T0.5_PCL1 composite (Figure 2f), on the other hand, suffered a ductile fracture
(irregular appearance; it suffered plastic deformation before the fracture). Here, it is easier
to distinguish the silica from the polymer and that the surfaces angular shapes are silica.
T0.25_PCL1 composite (Figure 2g) shows a less ductile fracture than the previous sample.
For all samples, it is possible to observe that there is some porosity, that the silica is well
incorporated with the polymer, and that it is homogeneously distributed.

EDS analysis was carried out to confirm if the smooth, irregular, and square surfaces
observed in the cross-sectioned samples were the silica particles mixed with PCL. Figure 3
shows that the smooth sections were indeed from the aerogel and that the samples with
a ratio of 0.5:1 (silica aerogel: PCL) actually have a higher silica content (37.9%) than the
samples with 0.25:1 (silica aerogel: PCL, 28.5%). In general, it can be said that the silica-
aerogel particles are well-distributed throughout the bulk of the scaffold, with polymeric
transition zones whose composition seems to be only polymeric.

2.3. Surface Hydrophobicity

Surface hydrophilicity/hydrophobicity was evaluated by water contact angle determi-
nation on the surface of the different obtained composites. This is an important parameter
since it gives information regarding the interaction of the composites with the surrounding
environment, such as cells, other materials, or moisture. Table 2 shows the values obtained
for the static water contact angle, which varied between 90◦ and 100◦.
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Table 2. Static water contact angle of different composites (n = 4).

Composites Water Contact Angle (◦)

M0.5_PCL1 98.5 ± 1.0
M0.25_PCL1 98.2 ± 1.5
T0.5_PCL1 90.3 ± 1.1
T0.25_PCL1 91.8 ± 0.9

The results obtained confirmed the hydrophobic character of the composites, present-
ing a contact angle value higher than 90◦ for all samples. This is due to the composition of
samples: PCL is a hydrophobic polymer, with a water contact angle around 140◦ [44], and
aerogels have in their composition the presence of non-polar methyl groups (Si–CH3) [45].
However, since TEOS aerogels are known to be less hydrophobic when compared to MTMS-
based aerogel due to the presence of some hydroxyl groups in their structure (as shown
by the ATR-FTIR analysis), the composites with TEOS aerogels show slightly lower water
contact angle.

2.4. Bulk Density

The bulk density of the prepared composite samples was determined and is pre-
sented in Table 3. As reported in the literature, silica aerogels are known for their very
low density (0.003–0.15 kg/m3) [3]. On the other hand, PCL presents itself with a high
density (~1145 kg/m3). Moreover, according to the literature, the natural bone density is
1700–20,000 kg/m3 [46–48]. According to the results presented in Table 2, composites with
a silica/PCL ratio of 0.5:1 showed lower density values than those of 0.25:1; this behavior is
expected due to an increase in silica when compared with the former composite. Moreover,
it is possible to observe that the composites with MTMS and PCL have higher density than
those of TEOS with PCL, probably due to the presence of some hydroxyl groups, which
improve wettability (already shown by water contact angles measurements) and by the
more porous surface shown in SEM images.
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Table 3. Bulk density for different composites (n = 4).

Samples Density (kg/m3)

M0.25_PCL1 505.968 ± 0.647
M0.5_PCL1 361.257 ± 0.893
T0.25_PCL1 365.903 ± 0.928
T0.5_PCL1 171.371 ± 1.754

2.5. Thermal Properties

Thermogravimetry analysis (TGA) was performed to evaluate the thermal stability of
the materials used. Regarding the thermal stability of these materials—aerogel, PCL, and
aerogel-PCL composites—they remain stable up to approximately 350 ◦C.

PCL TGA shown in Figure 4 displays a slight mass loss around 100 ◦C, resulting from
the loss of residual water present in the sample. PCL showed a good thermal stability,
starting to degrade only at 360 ◦C, and presented only one step of degradation. As al-
ready reported [49], PCL decomposes in nitrogen atmosphere at approximately 350 ◦C
to 5-hexenioc acid and carbon dioxide, and at temperatures > 430 ◦C, ε-caprolactone
is evolved.
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TEOS-aerogel based TGA, Figure 4a, shows a weight loss near 60 ◦C. This is the result
of the evaporation of entrapped H2O and alcoholic groups from less hydrophobic silica
aerogels as a result of the condensation reactions of Si–OH and Si(OC2H5) groups [43].

MTMS-based aerogel TGA, Figure 4b, indicates that the process of weight change
could be initially caused by the loss of ethanol solvent and other volatile organic materials.
The sharp mass decline observed at 375–550 ◦C was caused by the release of methyl (-CH3)
groups from the MTMS aerogel structure because the oxidation reaction formed CO2 and
the oxidation of Si-C group became Si-O, which further formed a siloxane group [50].

The different composites, T0.5_PCL1, T0.25_PCL1, M0.5_PCL1, and M0.25_PCL1, had
their behavior influenced by both PCL and aerogel (TEOS or MTMS). The TGA curves
show mass losses ranging from 70% to 90% for these composites.

2.6. Mechanical Properties

The main purpose of this composite material is to be used as a scaffold in bone
regeneration. Polymeric scaffolds have significant advantages over metals and ceramics
in terms of biodegradability. However, the compressive strength of the implant is usually
lower than the native bone tissue. The mechanical properties of cortical and cancellous



Int. J. Mol. Sci. 2023, 24, 10128 8 of 18

bone are difficult to measure and tend to vary depending on bone orientation. The elastic
modulus of cortical bone is approximately in the range of 3–30 GPa [51,52], and the elastic
modulus of cancellous bone is estimated to be 0.02–6 GPa [53,54].

The mechanical behavior of the different samples was obtained by tensile tests under
the same conditions, using a 30 kN cell, and the obtained results are shown in Figure 5. The
effect of the amounts of silica aerogel on the mechanical properties of PCL was investigated.
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M0.5_PCL1, M0.25_PCL1, T0.5_PCL1, T0.25_PCL1, and PCL, using a cell with a maximum load of
3 kN.

Figure 5 shows that PCL is the less rigid material, showing the lowest Young’s modulus
(YM = 12.77 ± 0.63 MPa) given its elastomeric behavior. The addition of the silica aerogel
leads to an increase in Young’s modulus, because of the material’s higher stiffness. The
addition of silica is important to introduce pore structures in the composite. These porous
structures are required in scaffolds for a good vascularization and bone regeneration
subsequent to implantation [55].

PCL is a hemihedral crystal, with low Young’s modulus due to the fact that its macro-
molecular chains has about 45% crystallinity [56]. The introduction of silica aerogel leads
to an increase in the Young’s modulus, increasing the stiffness of the composite. The C-C
and C-O bonds present in the structure of PCL are less rigid than Si-O-Si siloxane bonds.

Young’s modulus values obtained are lower than those mention previously for cor-
tical bone (3–30 GPa [51,52]) but are within the range of the values for cancellous bone
0.02–6 GPa [53,54]. It is also important to mention that Young’s modulus increases when
switching from MTMS-based aerogel to TEOS-based aerogel, as shown in Table 4. The CH3
bonds present in the MTMS aerogel led to a lower Young’s modulus due to the flexibility
of this group [43] and also the free volume effects. This agrees with the results in Table 1,
where MTMS-based aerogel composites have higher specific surface area, and therefore
are less rigid than TEOS-based aerogel composites. Regarding the maximum stress, the
presence of TEOS-based aerogel causes an increase relativity to the PCL samples. This
increase could be related to the more facility alignment of the PCL chains and the resulting
bigger intermolecular interactions between the PCL chains that occur during regeneration
and water evaporation.
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Table 4. Measured mechanical properties of the assessed samples (n = 4).

Composites Young’s Modulus (MPa) Maximum Stress (MPa)

M0.5_PCL1 15.84 ± 1.03 39.68 ± 4.73
M0.25_PCL1 19.20 ± 3.35 48.70 ± 3.41
T0.5_PCL1 28.01 ± 1.84 71.60 ± 0.40

T0.25_PCL1 37.07 ± 2.32 108.86 ± 0.51
PCL 12.77 ± 0.63 58.10 ± 1.99

2.7. Swelling and Degradation

The swelling capacity and the average total mass loss of each tested scaffold are repre-
sented in Figure 6a,b, respectively. Generally, the hybrid scaffolds showed low swelling
(maximum of 14%) and low mass loss; this behavior is expected considering their hydropho-
bic character and the low degradability of both aerogel and PCL components. Despite the
scaffolds’ porosity, shown by SEM, their low affinity to water limits its intake and therefore
the swelling, as well as the degradation of the samples. Since TEOS-based aerogel scaffolds
are slightly less hydrophobic than MTMS-based aerogel scaffolds, the latter showed lower
degradation and swelling. Moreover, samples presented a similar swelling profile, charac-
terized by an increased water uptake in the first hours leading to a plateau. In this regard,
the T0.50_PCL1 scaffold presented the highest swelling, which may be correlated with its
low hydrophobicity and density, leading to a higher mass loss, while a lower proportion
of silica, namely T0.25_PCL1 and M0.25_PCL1, led to lower swelling capacity and lower
mass loss.
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2.8. Cytocompatibility

The cytocompatibility of the produced silica aerogel-PCL scaffolds towards hOB cells
was assessed through the resazurin assay (Figure 7). The obtained results suggest that the
hOB cells exposed to the different silica aerogel-PCL scaffolds remained highly viable, even
for long incubation periods of 7 days (Figure 7).
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Nevertheless, the optical microscopy images highlighted a differential behavior in-
duced by the tested materials. In agreement with the cell viability data, the hOB cells in
close proximity with the M0.25_PCL1 and T0.25_PCL1 displayed a similar density and
morphology to the control along the 7 days of incubation (Figure 8). However, for the
M0.5_PCL1 and T0.5_PCL1, this similarity to the control was only observed for the incuba-
tion periods of 1 and 3 days (Figure 8). In fact, hOB cells in close proximity with M0.5_PCL1
appeared to present a slightly lower density after 7 days of incubation, while cells exposed
to T0.5_PCL1 for this same period displayed changes on both density and morphology
(Figure 8). Altogether, these results highlight that M0.25_PCL1 and T0.25_PCL1 present
enhanced biological properties when compared to the other two formulations (M0.5_PCL1
and T0.5_PCL1).

Ge et al. [37] also produced hybrid scaffolds of silica aerogels and PCL that appeared to
be cytocompatible towards 3T3 cells during 4 days of incubation. However, extending the
incubation time for 7 days revealed a cytotoxic behavior. Herein, the produced M0.25_PCL1
and T0.25_PCL1 scaffolds revealed a good cytocompatiblity at all the tested time points (1,
3, and 7 days of incubation), suggesting an enhanced biological performance and that the
obtained hybrid scaffolds may be good candidates for bone tissue engineering applications.
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3. Materials and Methods
3.1. Materials

For composites production, tetraethoxysilane (TEOS, purity ≥ 98%, Acros organ-
ics, (Porto Salvo, Portugal), Si(OC2H5)4); methyltrimethoxysilane (MTMS, purity ≥ 98%,
Sigma-Aldrich (Sintra, Portugal), Si(OCH3)3CH3); peracetic acid (38–40%, Merck, (Lisboa,
Portugal), CH3CO3H); ethanol (purity ≥ 99%, Valente e Ribeiro, (Alcanena, Portugal),
C2H5OH); ammonium hydroxide (25% NH3 in H2O, Fisher Chemical, (Porto Salvo, Por-
tugal), NH4OH); poly-ε-caprolactone (PCL, Mn 80,000, Sigma-Aldrich Chemicals, (Sintra,
Portugal)); and tetrahydrofuran (THF, Sigma-Aldrich, (Sintra, Portugal)) were used. Dul-
becco’s Modified Eagle’s Medium F12 (DMEM-F12) and resazurin were acquired from
Sigma-Aldrich (Sintra, Portugal). Cell culture plates and T-flasks were purchased from
Thermo Fisher Scientific (Porto, Portugal). Fetal Bovine Serum (FBS) was purchased from
Biochrom AG (Berlin, Germany). Normal human osteoblast (hOB; 406-05f) cryopreserved
cells were bought from Cell Applications, Inc. (San Diego, CA, USA).

3.2. Synthesis of the Aerogels

The silica aerogel synthesis was prepared by the sol–gel method following a two-
step acid-base catalyzed process previously reported [57,58] and schematically shown in
Scheme 1. Shortly, in the first step, the precursors (TEOS or MTMS) were mixed with
ethanol (solvent to Si molar ratio: S = 15 for TEOS and S = 25 for MTMS). Oxalic acid was
added to catalyze the hydrolysis and the mixture was stirred for 30 min. The silica gel was
obtained by a low-temperature sol–gel process. The nanostructured solid network of silica
is formed as a result of hydrolysis and condensation reactions of the silica precursors, in
which siloxane bridges (Si–O–Si) are formed. The hydrolysis step involved the conversion
of the alkoxide to silanol. After 24 h of hydrolysis, a basic solution, NH4OH 2.5 M, was
added to the former solution and kept under strong agitation for 1 min. The samples were
kept in the oven at 27 ◦C for 5 days, for aging.
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Scheme 1. Schematic representation of sol–gel synthesis procedure.

Finally, the gels were dried at ambient pressure using an oven at 150 ◦C, for 3 h. After
drying, the aerogel was ground, then sieved in order to obtain 75 µm sized grains.

3.3. Synthesis of the TEOS/PCL and MTMS/PCL Composites

Initially, 1 g of PCL was dissolved in 10 mL of tetrahydrofuran (THF), under magnetic
stirring for 90 min, followed by mixing with silica aerogel (<0.75 mm). The mixture was then
casted into Petri dishes at room temperature. After evaporation of the solvent overnight
at room temperature, the silica aerogel/PCL membranes were placed under vacuum for
5 h at room temperature to remove any traces of THF. Scheme 2 shows a representation of
the procedure.
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3.4. Characterization of the Composites

The properties of aerogel, PCL, and final composites were assessed by different char-
acterization techniques.

The chemical structure was evaluated by attenuated total reflection (ATR) Fourier-transform
infrared spectroscopy (FTIR) (FT/IR 4200, Jasco, Tokyo, Japan), collecting the spectra between a
wavenumber of 4000 and 500 cm−1, with 128 scans and 4 cm−1 of resolution.

Specific surface area (SBET) was assessed through nitrogen adsorption–desorption and
the Brunauer–Emmet–Teller (BET) model (ASAP 2000, Micrometrics, Norcross, GA, USA).

Scanning electron microscopy (SEM) images were obtained using a Compact/VPCompact
FESEM (Zeiss Merlin, Leipzig, Germany) microscope, after coating the samples with a thin
gold layer by Physical Vapor Deposition, during 20 s. Two types of surfaces (surface and
cross section from nitrogen rupture) were obtained scanned by SEM. The chemically of mi-
crostructure was characterized using energy-dispersive X-ray spectroscopy (EDS) (XMaxN,
Oxford, UK).

The materials’ surface hydrophobicity was determined through contact angle mea-
surements, using an OCA 20 system (Dataphysics, Filderstadt, Germany), with milliQ
ultrapure water, at room temperature, by the sessile drop method.
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The bulk density (ρb) was determined from the weight and volume of regular pieces
of the samples.

Thermal properties were assessed by thermal gravimetric analysis (TGA). The thermal
stability of different prepared materials was obtained by using a DSC/TGA equipment
(TGA-Q500, TA Instruments, New Castle, DE, USA), from 20 ◦C to 800 ◦C, at a 10 ◦C·min−1

heating rate under nitrogen flow.
Static mechanical tests were also performed using an Inspekt mini-series equipment,

from (Hegewald and Peschke, Nossen, Germany) at room temperature (20 ◦C). Uniaxial
tension of the samples was performed with a load cell of 30 kN. The mechanical properties
of the rectangular-shaped specimens (50 × 25 mm) were measured, and the crosshead
speed was 0.1 mm/min. The tensile strength (σ, Mpa) and the elongation at break (ε) were
calculated according to Equations (1) and (2), respectively:

σ =
F
A

(1)

ε =
∆l
lo

× 100 (2)

where F is the maximum force at break, A is the cross-sectional area of the sample, l0 is
the initial distance between the texturometer grips (5 cm), and ∆l is the distance different
between l0 and the distance of the grips at the time of sample break. The modulus of
elasticity (Young’s modulus, E’) was defined as the slope of linear section of the Max σ
versus ε curve, being expressed in MPa.

In order to determine the swelling capacity, three quarters of each prepared adhesive
was dried under vacuum conditions until constant weight (Wd) and then placed in a
desiccator with a saturated solution of pentahydrated copper sulphate. All the samples
were weighted at predetermined times until a maximum weight was achieved (Ws) in a
Sartorius Electronic Balance (BCE223I-1SJP, Entris II, read limit: 1 mg, maximum capacity:
220 g, Goettingen, Germany) and water sorption (%) was calculated by using Equation (3).

Swelling (%) =

(
Ws − Wd

Wd

)
×100 (3)

Degradation was evaluated for three samples of each material, which were dried until
constant weight and then weighted (Wd,0); afterwards, they were immersed of phosphate
buffer solution 0.01 M (pH = 7.4), and then incubated at 37 ◦C for five weeks. The samples
were removed from PBS, washed with distilled water, and dried under vacuum, until
constant weight (Wd,t) in a Sartorius Electronic Balance (BCE223I-1SJP, Entris II, read
limit: 1 mg, maximum capacity: 220 g, Goettingen, Germany). The relative mass loss was
evaluated according to Equation (4):

Mass loss (%) =
Wd,0 − Wd,t

Wd,0
×100 (4)

where Wd,0 and Wd,t are the samples mass before the immersion in PBS and after the
immersion at time t, respectively.

The cytocompatibility of the produced materials towards hOB cells was evaluated
through the resazurin assay [59,60]. The hOB cells were cultured in DMEM-F12 supple-
mented with 10% (v/v) of FBS and 1% (v/v) of penicillin/streptomycin in an incubator with
humidified atmosphere (37 ◦C, 5% CO2). For the cytocompatibility assay, the hOB cells
were seeded at specific densities in 96-well plates, according to the total incubation time
with the materials, to avoid cells’ death by confluence. In this regard, 20 × 103, 10 × 103,
and 8 × 103 cells/well were initially seeded for the groups intended to be incubated with
the silica aerogel-PCL scaffolds for 1, 3, and 7 days, respectively.
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After 24 h of hOB cells’ seeding, these were incubated with M0.25_PCL1, M0.5_PCL1,
T0.25_PCL1, and T0.5_PCL1 (previously cut into small pieces with sizes bellow 10% of
the well area) along with fresh culture medium for 1, 3, and 7 days. After the incubation
periods, the silica aerogel-PCL scaffolds were removed, and the hOB cells were put in
contact with fresh culture medium containing resazurin (10% (v/v)) for 4 h in the dark
(37 ◦C, 5% CO2). Then, the hOB cells’ viability was assessed by analyzing the fluorescence
of resorufin (λex/λem = 560/590 nm; Spectramax Gemini EM spectrofluorometer). hOB cells
solely incubated with culture medium were used as the negative control (K−) while those
exposed to ethanol (70% (v/v)) were the positive control (K+). Throughout this assay, the
hOB cells’ growth/morphology was also monitored by using an Olympus CX41 inverted
light microscope (Tokyo, Japan) equipped with an Olympus SP-500 UZ digital camera.

4. Conclusions

In this work, scaffolds assembled with PCL and two silica-based aerogels, one hy-
drophilic (TEOS-aerogel based) and other hydrophobic (MTMS-aerogel based), have been
successfully prepared, characterized, and compared. MTMS-aerogel composite presented
higher density, specific surface area, and hydrophobicity than TEOS-aerogel composites,
due to the presence of -CH3 groups, and by the more porous surface shown in SEM images.
SEM images and EDS analysis also indicated that the silica was well incorporated with the
polymer. The Young’s modulus of the obtained hybrid scaffolds increased with decreasing
the amount of aerogel and MTMS-aerogel composites were less rigid than TEOS-aerogel
composites. The scaffolds also showed low swelling (maximum of 14%) and low mass loss.
However, TEOS-based scaffolds, which were slightly less hydrophobic, showed higher
mass loss and higher swelling than MTMS-based scaffold. In the in vitro studies, the
scaffolds presented a good cytocompatibility up to 7 days.

Overall, the developed hybrid scaffolds may be promising structures for tissue engi-
neering applications. In the future, in vitro tests, such as the evaluation of antimicrobial
and in vivo tests, can be considered to further characterize these hybrid scaffolds.
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