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Abstract: The Petasis borono-Mannich reaction, commonly described as the Petasis reaction, was one
of the latest famous multicomponent reactions described in the literature. Currently celebrating its
30th anniversary since it was first reported by Petasis and Akritopoulou in 1993, this reaction has
emerged as a powerful tool for the synthesis of biologically relevant molecules (such as substituted
amines or amino acids), among others. This three-component catalyst-free reaction (the classic
model), involving the coupling of an aldehyde, an amine, and a boronic acid, enables the synthesis of
polysubstituted amine-containing molecules. Several accounts regarding the catalyst-free version
using different carbonyl, amine, and boron-type components have been reported thus far. In contrast,
the asymmetric version is still in its infancy since it was first reported in 2007. In this work, we aim to
review the asymmetric versions of the Petasis reaction reported over the last 15 years, considering
the chiral pool approach (asymmetric induction by one reaction component) and the use of catalysts
(organocatalysts, transition-metal catalysts, and others) to access enantiomeric and diastereomeric
pure amino-derivatives. Insights regarding the catalyzed Petasis reaction and consequent sustainable
synthesis will be highlighted.

Keywords: Petasis borono-Mannich reaction; asymmetric; enantioselective; diastereoselective;
organocatalyst; multicomponent reaction

1. Introduction

Multicomponent reactions (MCRs) can be defined as reactions in which three or
more components are combined, simultaneously, in one reaction vessel, leading to a
final product that contains most of the atoms present in the starting reagents. Some of
the inherent advantages of the use of MCRs are easy access to structural diversity and
the ability to attain small molecule libraries in a time-efficient manner. These features
make MCRs a suitable approach for drug discovery and development. Proof of that
can be found in the literature regarding the synthesis of several bioactive molecules and
active pharmaceutical ingredients (APIs) using MCRs [1–4]. Furthermore, the reduction of
reaction steps, work-up procedures, and overall high yields make MCRs highly compliant
with green chemistry principles [5]. The Petasis MCR, also known as Petasis borono-
Mannich MCR, has showcased its applicability for drug discovery and development since
it was first reported by Nicos A. Petasis and I. Akritopoulou in 1993 [6]. In their work,
the synthesis of the topical antifungal agent naftifine was successfully achieved using this
approach. Since then, several other APIs have been synthesized using the Petasis MCR,
including fingolimod [7], zanamivir [8], and acalabrutinib [9] (Figure 1).
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Figure 1. Examples of APIs synthesized using the Petasis MCR. 

Mechanistically, the Petasis MCR undergoes several reversible steps in equilibrium, 

ending in an irreversible step which leads to the reaction to completion. Although the full 

reaction mechanism remains undisclosed, during the past three decades since this reac-

tion was first reported, several efforts based on experimental and theoretical data indicate 

that an iminium ion is formed by reacting the aldehyde and the amine component (to 

illustrate, a salicylaldehyde derivative and a secondary amine were selected as examples 

in Scheme 1). Then, the phenol functional group activates the boronic acid, generating a 

tetrahedral boronate salt intermediate (the “ate complex”), which is capable of transfer-

ring the boron substituent to the iminium moiety, affording the Petasis adduct [10–12]. 
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One of the main advantages of the Petasis MCR, even when compared to several 

other MCRs, is its suitability to undergo catalytic asymmetric transformations, which is of 

great interest for drug discovery and API synthesis [13,14]. Enantioselectivity can be in-

duced through the use of reagents from the chiral pool or asymmetric catalysts. In this 

review, we aim to exhibit the recent efforts reported for the asymmetric Petasis MCR and 

how useful this reaction is to unlock new chiral compounds. 
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Figure 1. Examples of APIs synthesized using the Petasis MCR.

Mechanistically, the Petasis MCR undergoes several reversible steps in equilibrium,
ending in an irreversible step which leads to the reaction to completion. Although the full
reaction mechanism remains undisclosed, during the past three decades since this reaction
was first reported, several efforts based on experimental and theoretical data indicate
that an iminium ion is formed by reacting the aldehyde and the amine component (to
illustrate, a salicylaldehyde derivative and a secondary amine were selected as examples
in Scheme 1). Then, the phenol functional group activates the boronic acid, generating a
tetrahedral boronate salt intermediate (the “ate complex”), which is capable of transferring
the boron substituent to the iminium moiety, affording the Petasis adduct [10–12].
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Scheme 1. Petasis MCR mechanism.

One of the main advantages of the Petasis MCR, even when compared to several other
MCRs, is its suitability to undergo catalytic asymmetric transformations, which is of great
interest for drug discovery and API synthesis [13,14]. Enantioselectivity can be induced
through the use of reagents from the chiral pool or asymmetric catalysts. In this review, we
aim to exhibit the recent efforts reported for the asymmetric Petasis MCR and how useful
this reaction is to unlock new chiral compounds.

2. Asymmetric Induction by Reaction Components (Chiral Pool)

Using reagents from the chiral pool is a prominent approach to synthesizing enan-
tiomerically pure bioactive molecules with diverse levels of structural complexity. These
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reagents are often affordable, are commercially available, and enable synthetic protocols
which require milder reaction conditions than those needed to operate with several asym-
metric catalysts [15,16].

2.1. Carbonyl Component

The influence of the carbonyl component in the Petasis MCR is one of the most widely
explored. Usually, the presence of a hydroxyl or carboxylic acid group in the proximity of
the reacting carbonyl group is a requirement for the activation of the organoboronic acid as
an “ate complex” (see Scheme 1). Among the studied possibilities, α-substituted chiral alde-
hydes constitute a solid approach for obtaining enantioenriched Petasis adducts. Thaima
and Pyne explored the use of (S)-5-benzyl-2,2-dimethyl-1,3-dioxolan-4-ol 1, which in situ
generates the corresponding α-hydroxyaldehyde, to achieve the anti-β-allenyl alcohol
products (S,R)-2, via the reaction with secondary amines and pinacol allenylboronate. This
reaction proceeded under catalyst-free and mild conditions (room temperature), without
detectable racemization, showcasing the efficiency of the Petasis MCR (Scheme 2A) [17]. In
the quest for the total synthesis of the precursor 4 of legionaminic acid, a bacterial monosac-
charide present in the surface of pathogens such as Legionella pneumophila, Seeberger
and co-workers also used a chiral α-hydroxyaldehyde 3 as the substrate for a Petasis MCR
under mild reaction conditions, which proved to be a key step to attain this natural product
(Scheme 2B) [18].

Other α-substituted chiral aldehydes that are suitable to undergo Petasis MCR are the
N-protected α-amino aldehydes 5. This approach was used by Norsikian and co-workers
to attain a library of enantioenriched 1,2-trans-diamines (R,S)-6 (15 derivatives) in various
yields (up to 72%) and enantiomeric excess (the best values were achieved when a nosyl
group was used as protecting group (PG), whereas Ac and Boc protected amines lead to
poorer enantioselectivities) (Scheme 2C) [19]. A few years later, the same group increased
the diversity of the substrates, achieving similar results [20].

Recently, the generation of the enantiomeric pure α-fluoro-aldehydes 7 using (S)-
α,α-bis[3,5-bis-(trifluoromethyl)phenyl]-2-pyrrolidinemethanol trimethylsilyl ether as an
organocatalyst or the (R) counterpart and N-fluorobenzene-sulfonimide (NFSI) as a
fluorinating agent enabled the synthesis of a library of β-substituted-β-fluoroamines
8 (19 examples), in overall moderate to good yields, via the Petasis MCR. The resulting
products were suitable to be converted into valuable heterocyclics and, therefore, this
approach can depict an interesting approach for synthesizing fluoro-substituted drug
candidates, since the inclusion of the fluorine atom often leads to desirable pharmacokinetic
profiles (Scheme 2D) [21].

Carbohydrate chemistry is one of the fields where the Petasis MCR has contributed
to obtaining high-value molecules from easily accessible building blocks, often prepared
using green methodologies from biomass. Pyne and co-workers devoted their attention to
the synthesis of alkaloids, such as calystegine B4, DMDP (2R,5R-di(hydroxymethyl)-3R,4R-
dihydroxypyrrolidine), and DAB (1,4-dideoxy-1,4-imino-D-arabinitol). Similar to many
natural products, these alkaloids possess stereocenters and, therefore, their use as building
blocks, which induce enantioselectivity, is a straightforward approach. For the synthesis of
calystegine B4, (−)-D-lyxose 9 was used as the starting point. This sugar was allowed to
react with benzylamine and (E)-2-phenylvinylboronic acid to afford aminotetrol 10 in an
overall very good yield (82%), while keeping the chiral centers intact. The robustness of
this first synthetic pathway step paved the way for the synthesis of this bioactive alkaloid
(Scheme 3A) [22]. For the synthesis of DMDP and DAB, L-xylose 11 was the sugar used
as the starting material. The designed synthetic route displayed several steps, including
the Petasis MCR, which enabled the introduction of the nitrogen atom to the chemical
framework, forming the 1,2-anti-amino alcohol intermediate 12, crucial for the chemical
structure of these alkaloids. This synthetic step presented a good yield (76%), without
modifying the chirality of the stereocenters (Scheme 3B) [23].



Catalysts 2023, 13, 1022 4 of 26Catalysts 2023, 13, 1022 4 of 28 
 

 

 

Scheme 2. Recent approaches for the Petasis MCR using α-substituted chiral aldehydes as the car-

bonyl component; (A) Synthesis of anti-β-allenyl alcohol products; (B) Synthesis of a precursor of 

legionaminic acid; (C) Synthesis of of 1,2-trans-diamines; (D) Synthesis of β-substituted-β-fluoroam-

ines. 

Other α-substituted chiral aldehydes that are suitable to undergo Petasis MCR are 

the N-protected α-amino aldehydes 5. This approach was used by Norsikian and co-work-

ers to attain a library of enantioenriched 1,2-trans-diamines (R,S)-6 (15 derivatives) in var-

ious yields (up to 72%) and enantiomeric excess (the best values were achieved when a 

nosyl group was used as protecting group (PG), whereas Ac and Boc protected amines 

lead to poorer enantioselectivities) (Scheme 2C) [19]. A few years later, the same group 

increased the diversity of the substrates, achieving similar results [20]. 

Scheme 2. Recent approaches for the Petasis MCR using α-substituted chiral aldehydes as the
carbonyl component; (A) Synthesis of anti-β-allenyl alcohol products; (B) Synthesis of a precursor of
legionaminic acid; (C) Synthesis of of 1,2-trans-diamines; (D) Synthesis of β-substituted-β-fluoroamines.
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Scheme 3. Petasis MCR as a key-step for the synthesis of natural alkaloids from sugars. (A) Synthesis
of an aminotetrol, precursor of calystegine B4; (B) Synthesis of an 1,2-anti-amino alcohol, a DAB and
DMDP precursor. TFE: trifluoroethanol.

Conduramines, structurally aminocyclohexenetriols derived from conduritols, are
relevant building blocks for several bioactive and natural products, working as synthetic
intermediates of compounds such as alkaloids, aminosugars, and sphingosines [24]. Once
again, carbohydrates, namely D-galactose 13, D-mannose 14, and D-ribose 15, proved to
be suitable starting materials to achieve the stereoselective synthesis of conduramines.
The first two, used by Ghosal and Shaw, enabled the synthesis of (+)-conduramine E and
(−)-conduramine E, respectively, in a multistep synthetic approach, where the Petasis
MCR played a key role to attain these valuable compounds (Scheme 4A,B) [25]. Norsikian
and co-workers reported the use of D-ribose 15 in the synthesis of conduramines 17, via
an unprecedented intramolecular Petasis MCR, as they prepared a dual functionalized
intermediate 16, bearing the α-hydroxyaldehyde and the vinylic boronic acid compounds
(Scheme 4C) [26].

The sugar derivative erythorbic acid 18 (also known as D-araboascorbic acid) was
employed by Mandai and co-workers and converted into the corresponding chiral lactol
derivative 19, which undergoes Petasis MCR. This strategy enabled the synthesis of a small
library of Petasis adducts 20 (8 examples) bearing three adjacent chiral stereocenters in
good to very good yields (65–93%) (Scheme 5). These compounds could be easily converted
into more functionalized products, showcasing the versatility of the Petasis MCR to achieve
structural diversity [27].

The Petasis MCR is also a suitable tool to be employed with other important reactions,
increasing and diversifying the molecular structure. The group of Cannillo reported
a remarkable example of the application of a synthetic methodology using a domino
Petasis/Diels-Alder reaction, enabling the preparation of hexahydroisoindole scaffolds 22.
The enantioselectivity of the synthetic process was triggered by the presence of enantiopure
α-hydroxyaldehydes 21, including different aldoses (Scheme 6). The amine and the boronic
acid components required the presence of an alkene and a conjugated diene, respectively, to
enable the Diels-Alder step. The resulting library of 22 was obtained with good to excellent
yields (54–94%) [28].
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HFIP: hexafluoroisopropanol.

2.2. Amine Component

As previously described in this work, the Petasis MCR is a valuable tool to obtain
synthetic intermediates of natural products bearing multiple stereocenters. Pyne and
co-workers applied the Petasis MCR to obtain a key synthetic intermediate 25 of 9β-
hydroxyvertine, a bioactive alkaloid. To achieve this goal, they prepared a chiral primary
amine 23 and combined it with a chiral α-hydroxyaldehyde 24 and β-styrenylboronic
acid via the Petasis MCR (Scheme 7). This approach led to the formation of a mixture of
diastereomers 25 [29]. A similar strategy was used by the same research group to perform
a key step in the total synthesis of the natural product hyancinthacine C5, via the Petasis
MCR preparation of an anti-1,2-diamino alcohol [30].
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Scheme 7. Combining a chiral primary amine 23 and a chiral aldehyde 24 to achieve a key synthetic
intermediate 25 of the alkaloid 9β-hydroxyvertine.

The easy access to commercially available chiral amines, and in particular chiral
1,2-amino alcohols 26 and their application in the Petasis MCR with glyoxylic acid, enables
the synthesis of the valuable heterocycle oxazinone 27. This strategy has been used by the
independent groups of Grajewska and Churches (Scheme 8A) and despite the high yields
observed (up to 99%), poor diastereoselectivities in the catalyst-free process were achieved
(up to 3:1) [31,32].

The diastereoselectivity was considerably improved when 1,2-amino alcohols 26
were employed in the Petasis MCRs involving other aldehydes other than glyoxylic acid.
This strategy has been employed by Huang and co-workers in multiple accounts that
used gem-difluoroallylboronates 28 to afford gem-difluotohomoallylamine derivatives
(R,S,S)-29 (12 examples) with great yields (up to 98%) and diastereoselectivities (>99:1)
(Scheme 8B) [33]. In more recent accounts, they expanded the scope of boronates used in
the Petasis MCR and verified that the reaction could be performed at room temperature
with great diastereoselectivity and good yields when using DMSO as a solvent in the
presence of methanol (5 equivalents) [34,35].

Another versatile amine component for the development of the asymmetric Peta-
sis MCR is tert-butylsulfinamide 30. Combining this reagent with several boronic acids
and glyoxylic acid enables the generation of enantioenriched β,γ-unsaturated α-amino
acids (R,R)-31 (Scheme 9). While Churches and co-workers reported this strategy for
substituted styrenylboronic acids in excellent yields (90–99%) and diastereoselectivity
(up to >20:1 dr) [36], shortly after, Li and Xu showed that, when expanding the scope of
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the boronic acid to other vinylboronic acids (13 examples), the presence of a Lewis acid,
such as InBr3, enabled higher yields [37].
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Scheme 9. tert-Butylsulfinamide 30 as the amine component on the Petasis MCR.

The synthesis of α-amino acids using the Petasis MCR is also a relevant strategy, as
several post-Petasis reactions unlock access to relevant scaffolds in organic and medici-
nal chemistry. The group of Bułyszko reported the synthesis of tetrahydroisoquinoline
derivatives (S)-33 via the diastereoselective reaction involving a chiral aminoacetaldehyde
acetal 32, a glyoxylic acid, and a boronic acid (Scheme 10). The resulting amino acids were
obtained in excellent yields (83%-quantitative) and overall good stereoselectivity (up to
79:21) and could easily undergo hydrogenolysis to afford the N-deprotected amino acid
followed by a Pomeranz–Fritsch–Bobbitt cyclization/hydrogenolysis step, affording the
final bicyclic N-heterocycle (+)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline-1-carboxylic
acid 34 [38].
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Scheme 10. Synthesis of (+)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline-1-carboxylic acid 34 using
the Petasis MCR as a key step.

2.3. Boronic Acid Component

The induction of enantioselectivity driven by the boronic acid component is the
least explored field in what concerns the asymmetric Petasis MCR. This can be explained
due to the mechanistic issues, as the stereocenter is generated at the carbon where the
iminium intermediate is formed (see Scheme 1), as well as to the lack of commercially
available chiral boronic acids. Over the recent years, only one example can be found
in the literature, reported by Crassous and co-workers. They prepared an enantiopure
carbo[6]helicenyl boronate (M)-35, which reacted with morpholine and glyoxylic acid to
afford the corresponding Petasis adduct (M,R)-36, with moderate stereocontrol (7:3 dr)
(Scheme 11). In this case, the observed asymmetric induction was controlled by the helicity
of the boronic pinacol ester component [39].
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3. Organocatalysts versus Transition-Metal Catalysts

Organocatalysis had demonstrated its competence in the last two decades as a power-
ful environmentally and economically friendly synthetic tool for reaction processes and
valuable reaction products [40,41]. The uses of chiral organocatalysts have had a remarkable
track record in inducing enantioselectivity in the reaction product’s outcome [42]. Compara-
tively to the use of the old (“but still gold”) chiral transition-metal catalysts, organocatalysts
features several advantages from a synthetic and bench handling point of view, such as
low toxicity, tolerance to air and moisture, and easy disposal of the chiral building blocks.
Although they have been appreciably used as chiral ligands in transition-metal catalysis,
several types of organocatalysts have been established over the last few years as efficient
organocatalysts and applied successfully in several enantioselective reactions. Chiral diol-,
thiourea-, and hybrid thiourea-diol chiral organocatalysts are examples reported in the liter-
ature so far and, curiously, applied resourcefully in the asymmetric Petasis MCR, providing
great results in terms of enantioselectivity and yields.
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As far as we are aware and regarding the literature search, the use of transition-
metal catalysts in the asymmetric Petasis MCR is narrowly explored. Very few reports
were found considering the use of transition-metal catalysts to promote asymmetry in the
reaction between aldehydes (or glyoxylic acid), amines, and boronic derivatives resulting in
stereodefined amine products. We highlight the use of palladium catalysts, coordinated or
not with chiral ligands, and a curious deviation of the Petasis MCR, where copper catalysts
and phosphoramidite-type chiral ligands provided access to chiral N-heterobenzyl or
benzhydryl amines.

3.1. Organocatalysts
3.1.1. Chiral Diol-Based Organocatalysts

Between all the chiral organocatalysts explored in the asymmetric Petasis MCRs, the
diol-based catalysts, such as derivatives of BINOL and VANOL are among the most reli-
able ones for this reaction approach, due to their ability to coordinate with the reaction
components, particularly with the iminium intermediate and the boron component (see
Scheme 1), facilitating the asymmetric transformation. The group of Schaus reported a
pioneering work regarding the use of chiral diol-type organocatalysts to induce asymmetry
in the Petasis MCRs [43–47]. Their investigation started by testing several chiral biphe-
nol catalysts in the Petasis MCR using simple alkenyl boronates, secondary amines, and
ethyl glyoxylate as components. Several BINOL, VANOL, and VAPOL type catalysts were
screened, with the commercially available (S)-VAPOL as the best catalyst, giving access
to the chiral α-amino ester derivatives (R)-37 in good yields and high enantioselectivities
(Scheme 12A) [43]. The reaction showed a good functional group tolerance for amine
derivatives (even diamines proved to be good components for this Petasis MCR) and
electron-rich and -deficient styrenyl boronates. Remarkably, the catalyst (S)-VAPOL can
be recovered from the reaction medium and reused without loss of activity and enantios-
electivity. In addition, the Petasis adduct 37 can be converted into the related free amine
and carboxylic acid in two steps in excellent yields, maintaining the configuration on the
chiral center. Earlier mechanistic insights using NMR and ESI-MS analysis highlighted the
importance of the glyoxylate ester unit and indicated a single ligand exchange between the
catalyst and the boronate. These preliminary studies anticipate the expansion of the Petasis
MCR to a diastereoselective variation, successfully reported by the same group a few
years after, catalyzed by chiral biphenols using (S)-dioxolanol derivatives 1 as the carbonyl
component to access enantiopure anti- and syn-β-amino alcohols 38 (Scheme 12B) [44]. The
reaction showed high functional group tolerance and isolation of the pure syn-β-amino
alcohols (S,R)-38 in up to 96% yield. The uncatalyzed reaction using the same reaction
components afforded exclusively the anti-diastereomer. L and D-amino acid derivatives,
as amine components, were also tested in this reaction approach to verify the outcome of
the amino acid configuration on the product diastereoselectivity. In general, the L-amine
derivative provides the syn-product (S,S,R)-39 and the D-amine provides the anti-product
(R,S,R)-39 (Scheme 12C), in moderate to high yields. In addition, a glycolaldehyde dimer
was used successfully in this Petasis MCR.

Jiang and Schaus anticipated a methodology, which is highly enantioselective regard-
less of the imine intermediate, that uses allylboronates as nucleophiles in the Petasis MCR,
activating them with chiral diols and biphenols [46]. This one-pot two-step (imine forma-
tion followed by allyboration) Petasis allylation reaction is efficient for several aldehydes
(aliphatic, heteroaromatic and ethyl glyoxylate) and amines with different electronic and
steric properties, giving easy access to chiral homoallylic amine products 40 in excellent
yields (up to 99% yield) and enantioselectivities (up to 99:1 er) (Scheme 13). Ideal condi-
tions defined the use of (R)-Ph2-BINOL as the best catalyst along with the bench-stable
allyldioxaborolane, under microwave heating. Similar reaction conditions were applied to
the crotylation reaction of the generated imines, using (E)- and (Z)-crotyl boronate, proving
access to both syn- and anti-diastereomers 40 with two chiral centers (Scheme 13). The
reactions were consistent with the Zimmerman–Traxler transition state model, resulting in
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high diastereoselectivities. The use of (E)-crotyl boronate resulted in the formation of the
anti-diastereomer (R,S)-40 in high diastereo- and enantioselectivity (>20:1 dr and 98:2 er),
whereas the use of (Z)-crotyl boronate afforded the syn-diastereomer (R,R)-40 in a lower
yield and diastereoselectivity for the para-methoxy aniline derivative (35 % yield and 9:1 dr)
(Scheme 13).
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Thomson and co-workers developed a new one-pot synthesis of allenes based on
the Petasis MCR, through the coupling of a hydroxy aldehyde or ketone, sulfonyl hydra-
zones, and alkynyl trifluoroborate salts [48]. The reaction proceeds with the generation of
propargylic hydrazide intermediates by the addition of alkynyl trifluoroborates to sulfonyl-
hydrazones. The breakup of the hydrazide intermediates eliminates the spontaneously
produced sulfinic acid, producing unstable propargylic diazene intermediates that de-
compose by a retro-ene reaction to form the corresponding allene products. This reaction
approach was pointed out to be a traceless Petasis MCR, affording an allene product instead
of the usual amine product. Due to the importance of allenes [49] as versatile building
blocks in chemical transformations and their wide distribution in nature, the group of
Schaus has looked into the enantioselective version of the traceless Petasis MCR using
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chiral diols as catalysts with high levels of asymmetric induction [45]. Two enantioselective
procedures were reported to access the chiral allenes 42 and 43 from achiral precursors us-
ing the sulfonylhydrazone derivatives 41 via alkynyl boronate addition to glycolaldehyde
imine and allylation of alkynyl boronates (Scheme 14). In the first reaction approach, the
hydroxy group of the carbonyl component was found to be crucial due to its coordination
with the alkynyl boronate components. Glycolaldehyde, α-hydroxyacetone, and (S)-α-
hydroxy aldehyde derivatives (for a diastereoselective version) were found to be efficient
in this traceless Petasis MCR, using the (S)-(CF3)4-BINOL organocatalyst and a mixture
of toluene and mesitylene as solvents to improve the reaction selectivity. In the second
reaction approach, allyl boronates were added to alkynyl imines to generate the 1,3-alkenyl
allenes 43 (Scheme 14). A good reaction scope regarding the use of electron-rich and
-deficient aldehyde substrates was accomplished by applying a chiral (R)-phenyl-BINOL
derivative as the organocatalyst.
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Studies considering the use of sulfonylhydrazines 41 and allyl boronates in the trace-
less Petasis MCR were developed by the group of Schaus, extending the scope of the
reaction to the use of enals as the aldehyde component, catalyzed by chiral biphenols.
The resulting acyclic 1,4-diene products 44, having either alkyl- or aryl-substituted ben-
zylic stereocenters, were obtained in good to excellent yields and high enantiomeric ratios
(Scheme 15) [47]. The reaction occurred via a sigmatropic rearrangement of a transient enan-
tioenriched allylic diazene intermediate and the best reaction conditions were appropriate
to a variety of enals, even a silyl methyl derivative. In addition, (E)- and (Z)-crotylboronate
were tested with similar reaction conditions, generating the 1,4-diene products 44 having
two methyl-substituted stereocenters in either a syn- or anti-correlation, that highlighted
the reaction’s diastereoselectivity. Moderate to good yields and high levels of stereocontrol
were achieved (Scheme 15).
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Yuan and co-workers reported an enantioselective version of the Petasis MCR using
salicylaldehydes, amines, and organoboronic acids as reaction components and (R)-BINOL
as the organocatalyst [50]. Optimization of the reaction conditions disclosed the use of (R)-
BINOL as the best catalyst and mesitylene as the solvent at 0 ◦C. The reaction demonstrated
very good scope regarding salicylaldehyde derivatives, secondary amines, and vinyl and
aromatic organoboronic acids (Scheme 16). A broad range of alkylaminophenol products
45 were obtained in good yields (up to 87%) and moderate to good enantioselectivities (up
to 86% ee). A reaction mechanism pathway was proposed by the authors to explain the
(R)-configuration of the desired product (R)-45, using (R)-BINOL as a catalyst (Scheme 16).
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The carbinolamine intermediate was formed by the nucleophilic addition of the secondary
amine to the salicylaldehyde derivative. Dehydration of the carbinolamine intermediate
affords the key iminium intermediate, which is attacked by the complex formed previously
by the organoboronic acid and the BINOL catalyst. This attack is favorable from the re-face
giving the (R)-alkylaminophenol product 45.
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organoboronic acids catalyzed by (R)-BINOL. A possible reaction pathway.

The research group of Shi reported interesting work considering the binaphthol-
catalyzed asymmetric Petasis MCR of salicylaldehydes, secondary amines, and aryl- and
vinylboronates [51,52]. In an exhaustive study regarding the reaction parameters, such
as boronate scope, solvent, and binaphthol organocatalyst, for the corresponding loading
and influence of molecular sieves in the reaction outcome, among others, it was reported
that the optimal conditions corresponded to (S)-Me-BINOL, toluene as solvent, and room
temperature (Scheme 17A) [51]. The presence of 4Å molecular sieves as a water removal
agent enhanced the rate of the reaction and also afforded products (R)-45 with up to 99%
ee. Comparable effects were observed with 3Å molecular sieves and MgCl2 (as Na2SO4
demonstrated no effect on yield and enantioselectivity). Cyclic and acyclic secondary
amines provided the corresponding products in good yields and enantioselectivities, except
for HNCy2. Relative to the uncatalyzed reaction, the authors conclude that the binaphthol-
catalyzed pathway was generally 500 times faster for generating products with 99% ee.
NMR [51] and DFT calculations [52] afforded insights into the origin of the accelerated rate
of the reaction and the mechanism outcome. (R)-BINOL and vinyl boronates were used to
explain the reaction mechanism (Scheme 17B). It was determined that BINOL accelerates
the rate-determining step by forming an energetically favorable cyclic hemiaminal complex
with the hemiaminal intermediate, which undergoes the formation of a cyclic iminium
complex by losing a water molecule. A hydrogen bond between the iminium cation and
the oxygen from the BINOL articulates the stereochemistry of the vinyl group’s migration,
directing it to the re-face of the iminium species. Due to ring strain, BINOL is rapidly
released via ligand exchange to regenerate the catalyst and the chiral amine product (R)-
45 is formed (Scheme 17B). This mechanism is extended for the use of vinyl and aryl
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boronates in the Petasis MCR, since the (R)-BINOL provides selectivity for the re-face
addition products for both components. Benzaldehyde is unreactive under the same
reaction conditions, demonstrating the importance of the ortho-hydroxy group in this
reaction pathway.
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Scheme 17. BINOL-catalyzed Petasis MCR of vinyl and aryl boronates (A) and the reaction mecha-
nism (B).

Using a similar (R)-BINOL derived catalysts, Mao and co-workers reported an enan-
tioselective version of the Petasis MCR using aliphatic and aromatic amines, ethyl gly-
oxylate, and alkenyl and heteroaryl trifluoroborate salts (long-term stability). The cor-
responding heterocyclic-derived α-amino esters 46 were obtained in moderate to good
yields (up to 82% yield) and enantioselectivities (up to 82% ee), in mild reaction conditions
(Scheme 18) [53]. By thin-layer chromatography reaction monitoring, traces of the imine
intermediate were found, indicating that it was not completely consumed during the re-
action, even for long reaction times. Several additives were tested to overcome this issue
and activate the trifluoroboronate salts. Together with molecular sieves, LiBr proved to
be the best choice to achieve good yields and promising enantioselectivity. Electron-rich
trifluoroborate salts (such as thiophene, pyrrole and indole) afforded the best yields and
enantioselectivities. When N-boc substituted indoles and pyrrole were used as the boron
component, the corresponding products were accomplished with low enantioselectivities.
Aromatic and aliphatic amines were also tested successfully in this reaction approach,
although the reaction only works using ethyl glyoxylate as the carbonyl component.
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Scheme 18. BINOL-type-catalysed enantioselective synthesis of heterocyclic-derived α-amino esters
46 through Petasis MCR with trifluoroborate salts.

In the last years, our group has been active in the synthesis of privileged heterocyclic
scaffolds with druglike properties for applications in medicinal chemistry [54–58]. Based on
the creation of new sustainable processes with high atom- and step-economy, we establish
the efficacy of the BINOL-catalyzed Petasis MCR in the design of key highly substituted-
oxindole [59] 49 and tryptanthrin [60] 50 derivatives in high yields and enantioselectivities
(Scheme 19). Using salicylaldehyde derivatives, secondary amines, and arylboronate substi-
tuted key scaffolds (oxindole 47 or tryptanthrin 48), it was possible to access great structural
diversity in good yields, enantioselectivities, and diastereoselectivities. The (R)-BINOL-
catalyzed Petasis enantioselective reaction works well in a gram-scale, giving access to
5-α-substituted-oxindole benzylamine derivatives (R)-49 up to 99% yield and up to 99%
ee, which were easily converted into the resultant isatin-type scaffold with biological inter-
est [59] We postulate, based on the literature precedents, that a nucleophilic attack on the
re-face by the iminium intermediate is likely to occur, affording the desired products with
an (R)-configuration in case of the 5-α-(3,3-disubstituted oxindole)-benzylamine deriva-
tives [59] (R)-49 and (S)-configuration in case of the tryptanthrin derivatives [61] (S)-50.
Moderate fungicidal bioactivity was revealed by the library of tryptanthrin derivatives
(S)-50.

Yan and co-workers reported very recently a synthetic methodology to access axially
chiral asymmetric biaryltriols with broad functional group tolerance under mild reaction
conditions and several useful applications [62]. Beyond proving their value as selective flu-
orescent sensors toward the Ru3+ ion, they were also used successfully as chiral ligands for
the asymmetric preparation of chiral sec-alcohols and as organocatalysts in the Petasis MCR.
Salicylaldehyde derivatives, secondary amines, and dibutyl vinylboronates were used in
the Petasis MCR approach, catalyzed by an unsymmetric biaryltriol organocatalyst in mild
reaction conditions (Scheme 20). Excellent yields (92–95%) and high enantioselectivities
(up to 83% ee) were achieved for the Petasis adducts (S)-45.
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3.1.2. Chiral Thiourea-Based Organocatalysts

Chiral urea/thiourea have been recognized as efficient organocatalysts in a plethora of
asymmetric transformations, particularly in asymmetric cost-effective and environmentally
benign MCRs [63]. Their unique double hydrogen bonding capacity and resulting ability for
the dual activation of both the electrophile and nucleophile simultaneously in the chemical
reaction, triggering remarkable enantioselectivity, has made these bifunctional organocata-
lysts very popular in organic synthesis in the last years [64–66]. Ground-breaking work
reflecting the application of these organocatalysts in the asymmetric Petasis MCR was
developed by the group of Takemoto [67–70]. They describe the first catalytic version of
the Petasis MCR using quinolines as the amine component and a newly designed thiourea
organocatalyst ([ThUr Cat], Scheme 21) [67]. The reaction exhibits a good scope regarding
quinoline and boronic acid derivatives, being electron-rich boronic acids more reactive.
Together with the thiourea-catalyst, a combination of water and NaHCO3 was used as an
additive to obtain higher stereoselectivity. The regeneration of the catalyst was assumed
to be promoted by a proton source and the removal of the resulting boronic acid by the
base [66]. A 1,2-amino alcohol functionality on the thiourea organocatalyst was crucial
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for the outcomes of this Petasis MCR. It was proposed by the authors that the 1,2-amino
alcohol functionality activates the boronic acid and the thiourea unit providing sufficient ac-
tivation of the N-phenoxycarbonyl quinolinium salt by double H-bonding (see Scheme 21).
Excellent enantioselectivities (up to 97% ee) for the 1,2-Petasis adducts (R)-51 were accom-
plished with a thiourea-amine organocatalyst having a chelating functionality. It should be
highlighted that only 10 mol% of the organocatalyst was used for loading.

Catalysts 2023, 13, 1022 19 of 28 
 

 

the chemical reaction, triggering remarkable enantioselectivity, has made these bifunc-

tional organocatalysts very popular in organic synthesis in the last years [64–66]. Ground-

breaking work reflecting the application of these organocatalysts in the asymmetric Peta-

sis MCR was developed by the group of Takemoto [67–70]. They describe the first catalytic 

version of the Petasis MCR using quinolines as the amine component and a newly de-

signed thiourea organocatalyst ([ThUr Cat], Scheme 21) [67]. The reaction exhibits a good 

scope regarding quinoline and boronic acid derivatives, being electron-rich boronic acids 

more reactive. Together with the thiourea-catalyst, a combination of water and NaHCO3 

was used as an additive to obtain higher stereoselectivity. The regeneration of the catalyst 

was assumed to be promoted by a proton source and the removal of the resulting boronic 

acid by the base [66]. A 1,2-amino alcohol functionality on the thiourea organocatalyst was 

crucial for the outcomes of this Petasis MCR. It was proposed by the authors that the 1,2-

amino alcohol functionality activates the boronic acid and the thiourea unit providing suf-

ficient activation of the N-phenoxycarbonyl quinolinium salt by double H-bonding (see 

Scheme 21). Excellent enantioselectivities (up to 97% ee) for the 1,2-Petasis adducts (R)-51 

were accomplished with a thiourea-amine organocatalyst having a chelating functional-

ity. It should be highlighted that only 10 mol% of the organocatalyst was used for loading. 

 

Scheme 21. Thiourea-catalysed enantioselective Petasis MCR of quinolines and the proposed acti-

vation mode. 

The generation of these chiral thiourea-type organocatalysts motivated the authors 

to explore further their use in the Petasis MCR. The synthesis of optically active N-aryl 

amino acid derivatives (S)-53 was reported using a bifunctional hydroxy thiourea organo-

catalyst [ThUrO Cat] in the two-step Petasis MCR between N-aryl-α-imino acids 52 and 

vinyl boronates (Scheme 22) [68]. The introduction of another Lewis basic site into the 

carbon linker of the organocatalyst facilitates the effective formation of a complex between 

the organoboronic acid and the catalyst. The ether moiety in the thiourea catalyst proved 

to be more efficient in this reaction outcome. The reaction runs in two steps, the first being 

the formation of the not isolated imine derivative 52 (Scheme 22). The reaction presents a 

good scope regarding boron components and aniline derivatives. Electron-rich vinyl boro-

nates afforded good results with excellent enantioselectivities. Aniline derivatives con-

taining hydroxymethyl or amino groups were also suitable. This two-step Petasis MCR 

Scheme 21. Thiourea-catalysed enantioselective Petasis MCR of quinolines and the proposed activa-
tion mode.

The generation of these chiral thiourea-type organocatalysts motivated the authors to
explore further their use in the Petasis MCR. The synthesis of optically active N-aryl amino
acid derivatives (S)-53 was reported using a bifunctional hydroxy thiourea organocatalyst
[ThUrO Cat] in the two-step Petasis MCR between N-aryl-α-imino acids 52 and vinyl
boronates (Scheme 22) [68]. The introduction of another Lewis basic site into the carbon
linker of the organocatalyst facilitates the effective formation of a complex between the
organoboronic acid and the catalyst. The ether moiety in the thiourea catalyst proved to be
more efficient in this reaction outcome. The reaction runs in two steps, the first being the
formation of the not isolated imine derivative 52 (Scheme 22). The reaction presents a good
scope regarding boron components and aniline derivatives. Electron-rich vinyl boronates
afforded good results with excellent enantioselectivities. Aniline derivatives containing
hydroxymethyl or amino groups were also suitable. This two-step Petasis MCR can be
applied also to the synthesis of peptide oligomers and the adducts that were interconverted
into heterocyclic structures of pharmaceutical interest.
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Scheme 22. Thiourea-organocatalyzed enantioselective synthesis of N-aryl amino acid derivatives
(S)-53 through the two-step Petasis MCR.

3.1.3. Miscellaneous

Due to the tremendous success achieved by diol- and thiourea-type organocatalysts
in the Petasis MCR, the group of Yuan decided to design a new hybrid thiourea-BINOL
organocatalyst [ThUr-BINOL] and test its efficiency in the Petasis MCR among salicylalde-
hydes, amines, and organoboronic acids [71]. The reaction protocol can be extended to
a wide variety of substrate components, generating a library of alkylaminophenols (R)-
45 in moderate to high yields (48–92%) and excellent enantioselectivities (up to 95% ee)
(Scheme 23). Electron-donating and withdrawing substituents in the aldehyde components
showed good activities and enantioselectivities in this reaction outcome. In addition, a
sterically constrained aldehyde was used, but with low yield and enantioselectivity for
the reaction adduct. Cyclic amines were the most efficient components for this reaction
protocol, and a variety of aryl- and vinylboronic acids were used successfully. A gram-scale
version of the reaction was effective in demonstrating the potential of this method. A
possible activation mode was reported by the authors, in which the thiourea binds with
the phenol anion of the iminium intermediate. Simultaneously, a cyclic BINOL-derived
boronate ester fragment is formed by the exchange of the diol group with the hydroxy
groups of the boronic acid. The substituent (R4, Scheme 23) of the boronic ester favor-
ably attacks the iminium ion from the re-face, affording the desired adduct 45 with the
(R)-configuration (Scheme 23). The reaction fails for benzaldehyde derivatives (without an
ortho-hydroxy group), primary amines, acyclic secondary amines, and alkyl boronic acids.
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3.2. Transition-Metal Catalysts

In 2007 and to the best of our knowledge, the group of Szabó was the first to report
interesting studies regarding the use of pincer-complex-palladium catalysts in the Petasis
MCR [72]. Essentially, they explored the application of highly functionalized allyl boronates
in several carbon–carbon bond formation reactions addressing the typical issues usually
distinguished in the use of this type of reagents, such as the formation of isomeric mixtures,
poor group tolerance, stability of the reagents, etc. The Petasis MCR, traditionally a three-
component approach, was converted by this group into a four-component derivative,
involving the in situ generation of the allyl boronate component from freshly prepared
pincer-complex-palladium catalysts (Scheme 24). Using commercially available diboronic
acids as the boronate source, the first step of this transformation comprises an efficient
borylation procedure, where the allyl boronate species was formed in smooth reaction
conditions. The amine derivatives and glyoxylic acid were added after 4 to 16 h, depending
on the allyl alcohol substrate used. The α-amino acid derivatives (R)-54 (11 examples) were
formed as single regio- and stereo-isomers from commercially and economically favored
allyl alcohol substrates. Mechanistic aspects demonstrated by the authors suggested that
the four-component Petasis MCR takes place by at least three different processes: the
borylation of the allyl alcohol, the imine formation between the amine derivative and
glyoxylic acid, and allylation between the imine intermediate and the allyl boronate species.
The amine component (and the glyoxylic acid) cannot be added at the beginning of the
Petasis MCR due to possible coordination of the nitrogen atom to the palladium catalyst
leading to its deactivation and, thus, preventing the formation of the allyl boronate. The
α-amino acid derivatives (R)-54 are useful drug intermediates (homologues of natural
amino acids) and precious building blocks in API synthesis.
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Petasis MCR from functionalized allyl boronates generated by pincer-palladium complex catalysts.

Almost ten years after, Manolikakes and co-workers reported interesting work regard-
ing the palladium-catalyzed enantioselective Petasis MCR [73,74]. They found earlier that
a dual catalyst system comprising a Lewis acid (Yb(OTf)3) and a transition-metal catalyst
(Pd(TFA)2 and 2,2′-bipyridine) was a promising choice to obtain access to α-substituted
amides from readily available amides, aryl aldehydes, and aryl boronic acids (Petasis
3-component approach) in great scope and moderate to good yields [75]. Years after, they
successfully developed the enantioselective version of this reaction, due to the importance
of chiral α-arylamines in biologically active natural products and APIs. After extensive
screening, a highly enantioselective Petasis MCR was developed using Pd(TFA)2 as a
catalyst, in combination with an easily accessible chiral bis(oxazoline)-ligand, from sul-
fonamides, aldehydes, and arylboronic acids (Scheme 25A) [73]. The incredible scope
was achieved with this catalytic system using several sulfonamides, aldehydes (aryl and
alkyl substituted), and arylboronic acids. Despite generally excellent enantioselectivities
(up to 99:1 er) for almost all the tested components and moderate to excellent yields, the
reaction time is very high (64 h) at 40 ◦C. Remarkably, this method displays high tolerance
toward air and moisture, contrary to the conventional use of transition-metal catalysts.
The asymmetric Petasis MCR was performed in screw-type vials under an air atmosphere
without prior purification of reaction components or solvent. The authors also found out
that deprotection of tosyl group from the final α-substituted amides (R)-55 was easily
achieved with Na/naphthalene, in moderate yield, affording the free amine product with
complete retention of configuration.

Similar to chiral amines, α-arylglycines are key units also found in relevant natural
products and drugs and an important class of unnatural or nonproteinogenic α-amino
acids. Manolikakes and co-workers efficiently extended their protocol to access chiral α-
substituted amides (R)-55 (Scheme 25A) to achieve α-arylglycines (R)-56 with an excellent
level of enantioselectivity (Scheme 25B). Using the same reaction conditions, the difference
relies on using glyoxylic acid derivatives (instead of aldehydes) as a component [74].
Despite a good scope regarding sulfonamides and boronic acid derivatives, only three
glyoxylic acids were tested with good yield and excellent enantioselectivity regarding the
corresponding α-arylglycines (R)-56. Despite long reaction times, the method has once
more proved its effectiveness and robustness for the general derivatives tested (up to 86%
yield and up to >99:1 er). Removing common sulfonyl groups (such as tosyl or nosyl) from
the N-sulfonyl-protected α-arylglycines (R)-56 can be quite challenging since when using
basic conditions or reduction methodologies the α-stereocenter could racemize [76]. The
authors pointed out the successful use of the 2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-
5 sulfonyl (Pbf) group in the sulfonamide component, to enable consequent cleavage with
an acid (TFA for instance) affording the free amine with complete retention of configuration.
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amides (R)-55 (A) and α-arylglycines (R)-56 (B).

Recently, the same group reported an interesting variation of the palladium-catalyzed
Petasis MCR regarding the synthesis of α-arylglycines where the boronic acid compo-
nent was replaced by benzoic acid derivatives [77]. Despite being a more sustainable
version of the classical Petasis MCR, no reports were found in the literature regarding an
enantioselective version, so the work is beyond the scope of this review and will not be
discussed here.

Zhou and co-workers recently reported an interesting approach to the synthesis of
chiral benzylic and benzhydryl amines (S)-58 using the copper complexes of monodentate
phosphoramidite-type ligands (PPM) in the asymmetric arylation of N-azaarylaldimines
57 with worktop stable arylboroxines [78]. Despite not being considered a Petasis MCR
approach in its classical form, we decided to include it in this review since the established
method can be applied to the use of aldehyde derivatives, 3-picolyl-2-amine derivatives,
and boroxine derivatives in a two-step synthetic approach, without isolation of the cor-
responding N-heteroaryl aldimines 57 (Scheme 26). Using only 1 mol% of the cheapest
copper catalyst, together with the spiro-1,1′-diindanyl phosphoramidite ligand (PPM lig-
and, Scheme 26), it was possible to obtain a library of benzyl and benzhydryl amines (S)-58
in excellent enantioselectivities (up to 97% ee) and very good yields (up to 92% yield).
Heteroaryl amines derived from pyrazine, pyrimidine, quinoline, pyrazole, 2-indazole,
and 2-benzoisoxazole can be used successfully in this reaction approach showing great
reaction scope. Despite high temperatures and long reaction times, the use of copper as a
transition-metal catalyst and stable boroxine derivatives as the boron component are the
main advantages of this chemical transformation.
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4. Conclusions and Future Perspectives

Three decades have passed since the discovery of the Petasis MCR by Nicos A. Petasis
and I. Akritopoulou. Although widely explored in its classical and non-classical versions,
this three-component reaction involving organic amines, aldehydes and organoboronic
reagents still displays serious limitations, such as specific substrate components, among
others. The use of aldehydes containing boron-directed groups, electron-rich alkenyl boron
or aryl boronic acids, and specific nucleophilic amines showcased some examples. Despite
considerable efforts and great scope regarding the Petasis MCR, in the asymmetric version,
these problems still endure, and we found that the literature is still focused on the use of a
few classes of catalysts and chiral components. Most of the successful examples reported
so far have been Petasis MCRs involving chiral carbonyl substrates and chiral amines.
Only two general organocatalyst classes were explored with success in this asymmetric
transformation, and the use of transition-metal catalysts still needs to be explored in
the future.

The importance of the enantioselective synthesis of chiral amines makes the asym-
metric Petasis MCR a direct and effective method for drug discovery and development
and other applications of interest in medicinal chemistry, organic chemistry, and chemical
biology. Post-Petasis reaction approaches and subsequential functional group modifications
are powerful tools nowadays and a great deal of development in these fields is expected in
the years to come.

The stereocontrol of the Petasis MCR is still very challenging, and the full potential
of this reaction remains unfulfilled. As far as we know, no reports regarding the use of
heterogeneous catalysis were found in the literature. This might constitute the next great
challenge in asymmetric Petasis MCRs, as it could enhance this reaction’s applicability and
eco-friendliness.
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have read and agreed to the published version of the manuscript.
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