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Abstract: Genetic variants are recognized to affect athletic performance, partially by modulat-
ing competition-facilitating behavior. In this study, the role of three genetic variants previously
linked to athlete status was investigated among elite volleyball players. A total of 228 players
(26.7 ± 8.1 years old) participating in the Portuguese championship and with multiple medalists
in national and international competitions were evaluated in terms of anthropometrics, training
regime, sports experience, and a history of sports lesions. SNP genotyping was conducted by means
of TaqMan® Allelic Discrimination Methodology. Volleyball players showed significantly different
anthropometric indicators and training habits according to sex (p < 0.05). The A allele of the genetic
variant Fatty Acid Amide Hydrolase (FAAH) rs324420 (C385A) was shown to be significantly associated
with superior athletic achievements under a dominant genetic model (AA/AC vs. CC, odds ratio
(OR) = 1.70; 95% Cl, 0.93–3.13; p = 0.026; p < 0.001 after Bootstrap), which was corroborated by a
multivariable analysis (AA/AC vs. CC adjusted OR = 2.00; 95% Cl, 1.04–3.82; p = 0.037). Age and
hand length were also found to be independently associated with high-level performance (p < 0.05).
Our results confirm the role of FAAH in athletic performance. More investigation into this polymor-
phism’s potential impact on stress coping, pain, and inflammation regulation in sport, particularly in
the scope of lesions prevention and treatment, is required.
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1. Introduction

High-level performance athletes (i.e., elite athletes) present an extraordinary interindi-
vidual variability of physical but also mental traits that greatly influence their sports
accomplishments and their career longevity [1–3]. In addition to training regimes [4] and
optimal nutrition [5], individual genetic variation is thought to be another preponderant
factor in elite athletic performance [1,2].

Over the years, several genes, including, for instance, Angiotensin-I-Converting Enzyme
(ACE) and Actinin α 3 (ACTN3), have been associated with athlete phenotypes and many
physiological functions related to muscle-skeletal, respiratory, cardiovascular, nervous, and
other systems implicated in sports practice [1,2,6]. However, genetic studies on compe-
tition behavior, stress management, and a potential relationship with sports lesions are
scarce [2,3,6–8]. Recently, our research team has investigated the implications of the single-
nucleotide polymorphism (SNP) Fatty Acid Amide Hydrolase (FAAH) rs324420 (C385A),
among other genetic variants, in elite athletic performance [3]. Our results suggested that
the SNP A allele (385A allele) was independently linked to enhanced performance of the
world’s best rink-hockey players (dominant genetic model, AA/AC vs. CC; adjusted odds
ratio (aOR) = 2.88; 95% Cl, 1.06–7.80; p = 0.038). The gene FAAH has been previously associ-
ated with pain tolerance, stress, and inflammation, which are features with implications for
sports practice [9]. The role of the C385A variant in athletic performance is, however, not
consensual, with evidence suggesting a detrimental effect of the 385A allele, as it seems to
be more prevalent among inactive individuals than in elite athletes from different sports
modalities [7,8]. As the cumulative evidence concerning the C385A variant is inconsistent,
validation studies considering other sports modalities in addition to rink-hockey are a must
to dissect the role of this SNP in athletic performance.

Volleyball is a high-intensity, intermittent sport modality with repetitive episodes of
short durations of effort at diverse speed levels and incomplete recovery periods. Both
aerobic and anaerobic metabolisms, as well as cardiovascular and musculoskeletal systems,
are crucial for the performance of volleyball players [10]. The game is not time-limited. The
team that wins the match is the team that first wins three sets or, in the case of a 2-2 tie, the
team that wins the fifth set (deciding set) with at least 15 points and a minimum lead of
2 points (Fédération Internationale de Volleyball, FIVB—Volleyball International Federation).
Regarding the substitution of players, an athlete may leave and re-enter the game, but only
once in a set, occupying only his/her previous position in the line-up [11]. Volleyball is
mostly described by its biomechanical component in the vertical plane due to the need
for the ball to cross the vertical net to the opponent’s court. Although it is a non-invasion
game, the frequency of sports injuries is high due to the inherently high training load
and mechanical stress during the repetitive technical movements [10]. As such, mental
abilities in the context of high-level performance are needed to manage stress and anxiety,
be resilient, and avoid impulsivity to make optimal decisions during training sessions and
competition [3,7,12]. This is particularly important in stressful moments of the athletes’
sports careers, namely, when they must demonstrate mental discipline and resilience (for
instance, in the deciding fifth set of the volleyball match) or cope with sports lesions that
may limit their mental and physical readiness to play [13]. In this context, the present study
focuses on evaluating the impact of athlete status-related genetic markers with roles in
brain function in a cohort of high-level performance volleyball players competing in the
Portuguese national championship.

2. Materials and Methods
2.1. Enroled Players’ Description and Data Collection

A cohort of 228 volleyball players of high-level performance (i.e., involved in any
national- or high-level team under the responsibility of a National Sports Federation) [3]
competing in the Portuguese Volleyball Championship during three consecutives sports
seasons (2019/2020, 2020/2021, and 2021/2022) were enrolled in this study. These players
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are currently the nation’s elite volleyball athletes, with many being multiple medalists in
national and international competitions.

For participants’ selection, the inclusion criteria were the following: (1) be an athlete
at least 18 years old at the national minimum level, (2) be an experienced national athlete
(i.e., considered a world’s elite athlete competing in Portugal), and (3) be a competitor
that has reached a higher level (i.e., World, European, and Continental Championships or
international competitions such as the Olympic Games) [3].

At the time of recruitment, the athletes’ sport experience was 16.3 ± 8.4 years; their
training frequency was 6.5 ± 1.5 days per week and 3.3 ± 1.0 h per day, for a total of
22.0 ± 10.5 h per week. The characterization of the enrolled athletes is shown in Table 1.

Table 1. Demographic, sports, and training characteristics of high-level performance volleyball
players by sex (n = 228; 66 females and 162 males).

Variables Total (n = 228) Females (n = 66) Males (n = 162) p-Value

Age (years) * 26.7 ± 8.1 24.9 ± 6.1 27.5 ± 8.7 0.026

Body mass (kg) * 81.4 ± 12.2 69.4 ± 7.5 86.3 ± 10.2 <0.001

Height (m) * 1.86 ± 0.10 1.77 ±0.07 1.90 ± 0.09 <0.001

BMI (kg/m2) * 23.4 ± 2.1 22.2 ± 1.6 23.9 ± 2.0 <0.001

Waist circumference (cm) * 80.3 ± 6.0 75.4 ± 5.2 82.2 ± 5.1 <0.001

Hip circumference (cm) * 91.5 ± 10.0 83.4 ± 9.6 94.8 ± 7.5 <0.001

WHR * 0.88 ± 0.05 0.85 ± 0.04 0.91 ± 0.05 <0.001

Hand length (cm) * 25.0 ± 1.4 24.2 ± 1.5 25.3 ± 1.2 <0.001

Shoe size * 44.0 ± 3.1 40.2 ± 1.7 45.6 ± 2.1 <0.001

Age at first sports lesion (years) * 12.1 ± 9.1 11.8 ± 9.5 12.2 ± 9.0 0.803

Month of the first sports lesion * 5.8 ± 4.2 6.5 ± 4.1 5.5 ± 4.2 0.202

Beginning at high-level
performance (years) * 16.9 ± 2.0 16.2 ± 1.4 17.2 ± 2.0 <0.001

Training experience (years) * 16.3 ± 8.4 14.8 ±6.6 17.0 ± 9.0 0.936

Training frequency *
Days/week 6.5 ± 1.5 6.8 ± 1.6 6.4 ± 1.5 <0.001
Hours/day 3.3 ± 1.0 3.2 ± 1.0 3.3 ± 1.0 0.004

Hours/week 22.0 ± 10.5 23.0 ± 12.9 21.6 ± 9.3 <0.001

Participations in regional and
national teams * 27.4 ± 39.2 25.5 ± 37.9 28.2 ± 39.8 0.778

Sport lesion
No 85 (37.1) 26 (39.4) 59 (36.2)

0.381Yes 144 (62.9) 40 (60.6) 104 (63.8)

Nationality
Portuguese 172 (75.1) 50 (75.8) 122 (74.8)

0.356Others 57 (24.9) 16 (24.2) 41 (25.2)

Ethnicity
Caucasian 208 (90.8) 63 (95.5) 145 (89.0)

0.094Others 21 (9.2) 3 (4.5) 18 (11.0)
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Table 1. Cont.

Variables Total (n = 228) Females (n = 66) Males (n = 162) p-Value

Other occupation/profession
Athletes 69 (30.1) 20 (30.3) 49 (30.1)

0.471

Student 99 (43.2) 30 (45.5) 69 (42.3)
Teacher 22 (9.6) 4 (6.1) 18 (11.0)
Physical therapist 8 (3.5) 3 (4.5) 5 (3.1)
Sport coordinator 1 (0.4) – 1 (0.6)
Coach 3 (1.3) – 3 (1.8)
Podiatrist 3 (1.3) 2 (3.0) 1 (0.6)
Architect 1 (0.4) 1 (1.5) –
Engineer 7 (3.1) 3 (4.5) 4 (2.5)
Market trader 8 (3.5) 1 (1.5) 7 (4.3)
Other 8 (3.5) 2 (3.0) 6 (3.7)

Bold values were regarded as significant (p < 0.05). * Variables described as mean ± standard deviation. BMI:
body mass index; WHR: waist circumference/hip circumference ratio.

Each participant in the study signed an informed consent prior to their recruitment
and this study was approved by the Ethical Committee of the University Fernando Pessoa
at Porto (CEUFP05062017).

Data on anthropometrics, training conditions, and sports experience, as well as the
history of sports lesions, were assessed by the same trained researcher via questionnaires
that were personally distributed to the players prior to training sessions. Determination
of height, body mass index (BMI), waist circumference (WC), hip circumference (HC),
waist/hip ratio (WHR), hand length, and shoe size were described elsewhere [14]. In terms
of training regime, training hours per day and training units per week were assessed to
determine the number of training hours per week. Athletes’ national and international
achievements, as well as their participation in national and regional teams were also
assessed. The history of sports lesions was investigated, including the anatomical part
affected, the year of occurrence, and the time of recovery from the first severe injury [3,5].

2.1.1. Biological Sample Processing

Buccal cell samples from each athlete were collected from both right and left using
sterile swabs (FL Medical, Hamburg, Germany) [15]. Genomic deoxyribonucleic acid (DNA)
was extracted from these samples using QIAamp DNA Blood Mini Kit, Qiagen. Purity
(A260/A280) and concentration of the DNA samples were evaluated using NanoDrop Lite
spectrophotometer (Thermo Scientific®, Waltham, MA, USA). Only samples with DNA
concentration of at least 4 ng/µL and with A260/A280 between 1.70 and 2.00 were used
for SNP genotyping.

2.1.2. SNP Selection and Genotyping

In a previous literature review conducted by our research group on genetic factors
linked to athletic performance traits (power, endurance, and/or sports lesions) across
different sports modalities [2], genetic variants were selected if (1) they were previously
reported to influence athletic performance in a Caucasian population; (2) they had roles
in brain activity; and (3) their minor allele frequency (MAF) in Iberian population was
higher than 10% with the purpose of ensuring genotype representation. Furthermore, the
selection was also based on the functional consequence of the genetic variants and the
availability of TaqMan® assays (Applied Biosystems). Applying these criteria, three genetic
polymorphisms were selected (Table 2). SNP genotyping was conducted in a Real-Time
Polymerase Chain Reaction (RT-PCR) system (Applied Biosystems) via TaqMan® Allelic
Discrimination methodology. All RT-PCR reactions were performed in 6 µL volumes
with 2.5 µL of TaqManTM Genotyping Master Mix (2×), 2.375 µL of nuclease-free water,
0.125 µL of 40× TaqMan® SNP Genotyping Assay (Table 2), and 1 µL of genomic DNA.
Amplification conditions included the following: 95 ◦C for 10 min, 45 cycles of 95 ◦C
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for 15 s, and 60 ◦C for 1 min [16]. Two negative controls were included in all PCR runs,
and replicates were performed on at least 20% of randomly selected samples (accuracy
superior to 99%). Results were assessed independently by two researchers who had no
prior knowledge of the athletes’ characteristics.

Table 2. Description of the evaluated genetic polymorphisms and the TaqMan® assays used.

SNP Functional
Consequence Biological Functions TaqMan® SNP

Genotyping Assays ID

ADRB2 rs1042713 Missense Catecholaminergic system C___2084764_20

FAAH rs324420 Missense Neural functions, including nerve plasticity C___1897306_10

NOS3 rs1799983 Missense Neurotransmission, antimicrobial, and
antitumoral activities C___3219460_20

SNP functional consequence was characterized based on the Ensembl database [17], and the encoded proteins’
biological functions were provided according to the GeneCards database [18] and UniProt database [19].

2.2. Statistical Analysis

Statistical analyses were performed using SPSS software version 26.0 (SPSS, Inc.,
Chicago, IL, USA). Continuous variables were described as mean ± standard deviation
(SD), while categorical data were presented as frequencies. The categories of the vari-
ables age (≥26 versus (vs.) <26 years (years)), hand length (≥23 vs. <23 cm), WHR
(≥0.85 vs. <0.85) and recovery time from the first severe sports lesion (≥10 vs. <10 months)
were defined based on the median value. Associations between the genetic variants and the
athlete features were analyzed by the student’s t-test for continuous variables (assuming
normal distribution based on the cohort size), whereas the chi-square test (χ2) or Fisher’s
exact test was used for categorical ones. The athletes’ accomplishments or success were
determined by the total number of national and international player titles. Tertiles were
used to classify athletic performance. In the highest tertile (those with more than 11 titles),
athletes were regarded as super athletes (n = 62), while the two remaining tertiles were
combined in one category regarded as others (n = 166) for further analyses. Univariate
analyses were performed using a binomial regression model to identify SNPs that were
predictive of superior athletic achievements. Recessive and dominant genetic models were
considered for each genetic polymorphism in the univariate analyses. Only those with sta-
tistical significance were presented. Statistical power calculations concerning the univariate
binomial regression analyses were performed using the software GPower version 3.1.9.7
(Heinrich Heine University, Düsseldorf, Germany) [20]. Relevant genetic polymorphisms
and other relevant variables were further included in a multivariate analysis. Bootstrapping
analyses were also conducted using Monte Carlo simulation (1000 replications). All tests,
including the statistical power analysis, were two-tailed, and statistical significance was
defined as p < 0.05.

3. Results
3.1. High-Level Performance Volleyball Players

Female volleyball players were younger (p = 0.026) and, as expected, demonstrated
significantly lower anthropometric indicators (body mass, height, BMI, waist, hip circum-
ferences, WHR, hand length, and shoe size) than male athletes (p < 0.01, Table 1). Female
players also trained for significantly more days and hours per week and began earlier
(16.2 ± 1.4 years old) at the high-level performance level than males (17.2 ± 2.0 years old,
p < 0.01, Table 1), who were more experienced (17.0 ± 9.0 years vs. 14.8 ± 6.6 years) and had
a higher number of participations in regional and national teams (28.2 ± 39.8 participations
vs. 25.5 ± 37.9 participations), although significant differences were not found (p < 0.05).
In addition, more than half of the volleyball players reported a high prevalence of sports
lesions (63.8% males and 60.6% females), and the first severe sports lesion occurred at early
ages (females, 11.8 ± 9.5 years old and males, 12.2 ± 9.0 years old), mostly in the second
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trimester of the year (5.5 ± 4.2 months in males and 6.5 ± 4.1 months in females, Table 1).
Additionally, more than a quarter of the participants were professional volleyball players.

3.2. SNP Genotype Frequencies

The genotypes’ distribution of each genetic variant by sex among the players is
presented in Table 3.

Table 3. Genotype distribution of the evaluated genetic variants among high-level performance
volleyball players (n = 219; 60 females and 159 males).

Genotype Frequencies Females (n = 66) Males (n = 162) Total (n = 219) * p-Value

ADRB2 rs1042713
AA 13 (21.7) 30 (18.9) 43 (19.6)

0.127AG 19 (31.7) 74 (46.5) 93 (42.5)
GG 28 (46.7) 55 (34.6) 83 (37.9)

FAAH rs324420
AA 3 (5.0) 8 (5.0) 11 (5.0)

0.996AC 20 (33.3) 54 (34.0) 74 (33.8)
CC 37 (61.7) 97 (61.0) 134 (61.2)

NOS3 rs1799983
TT 10 (16.7) 24 (15.1) 34 (15.5)

0.196GT 30 (50.0) 61 (38.4) 91 (41.6)
GG 20 (33.3) 74 (46.5) 94 (42.9)

* Polymorphism genotyping was not possible in 9 participants (6 females and 3 male athletes, respectively)
resulting in a failed genotyping of 4%.

3.3. Univariable and Multivariable Analyses

In the univariable analyses (n = 219, 59 super athletes and 160 others), FAAH rs324420
under a dominant genetic model (AA/AC (n = 85) vs. CC (n = 134)) was the only ge-
netic variant significantly associated with sports achievements among high-level per-
formance volleyball players (AA/AC vs. CC; OR = 1.70; 95% Cl, 1.13–3.13; p = 0.026)
(p < 0.001 after Bootstrapping analyses were conducted using a Monte Carlo simulation for
1000 replications). It must be noted, however, that the study was only sufficiently powered
(power ≥ 0.80) to detect odds ratio (OR) values of at least 1.70, considering the entire cohort
with available information for SNP genotypes (n = 219).

The effect of FAAH rs324420 was confirmed by a multivariate analysis (n = 219)
adjusted for age, sex, BMI, hand length, and history of severe sports lesions (AA/AC vs.
CC; aOR = 2.00; 95% Cl, 1.04–3.82; p = 0.037; Table 4). In the multivariable analysis, FAAH
rs324420, age, and hand length were independent predictors of high athletic achievements
among elite volleyball players. In accordance with previous findings, the 385A allele
appears to be beneficial since the AA or AC genotype carriers were two times more prone
to be super athletes than players carrying the CC genotype. Additionally, as expected,
in the study, older players (≥ 26 vs. < 26 years; aOR = 2.96; 95% Cl, 1.55–5.66; p = 0.001;
Table 4) and the ones with bigger hands (≥ 23 vs. < 23 cm; aOR = 5.51; 95% Cl, 1.14–26.59;
p = 0.034; Table 4) were found to be more prone to greater achievements.

Table 4. Multivariate analysis on the elite volleyball players’ achievements (n = 219, 59 super athletes
and 160 others) using binomial regression.

Factors aOR 95% CI p-Value

FAAH rs324420
2.00 1.04–3.82 0.037(AA/AC vs. CC1)

Age
2.96 1.55–5.66 0.001(≥ 26 vs. < 26 years 1)
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Table 4. Cont.

Factors aOR 95% CI p-Value

Sex
0.82 0.37–1.82 0.620(Male vs. female1)

BMI
1.16 0.51–2.64 0.725(≥ 25 vs. < 25 kg/m2 1)

Hand length
5.51 1.14–26.59 0.034(≥ 23 vs. < 23 cm 1)

History of sport lesions
1.34 0.68–2.63 0.400(Yes vs. no 1)

Bold values were regarded as significant (p < 0.05). 1 Reference group. BMI, body mass index; CI, confidence
interval; aOR, adjusted odds ratio.

4. Discussion

The influence of genes implicated in the activity of the brain regions associated with
psychological traits is poorly explored among elite athletes [3,7]. In addition, the diversity
of sports disciplines has made it difficult to detect the potential effect of genetic variants on
athletic performance.

To the best of our knowledge, this is the first study investigating the role of genetic
factors in the high-level performance of volleyball athletes in a homogeneous and unique
cohort of elite subjects. Previous studies were mostly performed on diverse sporting
disciplines with a reduced number of volleyball athletes, mostly males, and the potential
interaction between the athlete’s phenotype and biological systems was not consistently
observed [3]. Briefly, a cross-sectional study with 131 elite Turkish athletes, including
33 volleyball players (20.8 ± 4.6 years old, 1.97 ± 2.3 m, 91 kg and 23.3 ± 3.1 kg/m2)
found a co-beneficial effect of the ACTN3 R577X (rs1815739) X allele (RX vs. RR, OR = 5.01,
95% CI, 2.45–10.2; p < 0.0011; XX vs. RR, OR = 5.06; 95% CI, 2.04–12.59; p < 0.0013;
RR vs. RX + XX, OR = 0.19; 95% CI, 0.1–0.38; p < 0.0011). Although the volleyball players
were considered elite athletes by Dogan and co-workers [21], their training regime and
sex were not clearly disclosed. In addition, a study concerning the association between
ACTN3 rs1815739 and the ACE I/D gene variation with changes in blood pressure of
107 Serbian Caucasian male players (athletes in mixed sports: volleyball, water polo, and
handball (n = 54); endurance athletes from middle-distance swimmers, football players. and
rowers (n = 36); sprint/power from swimmers < 200 m, and short-distance runners (n = 17)
found that the lowest maximal systolic blood pressure was presented by carriers of ACTN3
rs1815739 CC genotype. In opposition, the highest percentage of systolic blood pressure
decline after the maximal incremental stress test was shown by those carrying the ACE DD
genotype [22]. Although the ACE insertion (I allele) has been related to increased endurance
performance in elite athletes [23], this Serbian study did not confirm this effect in various
sports, including volleyball [20]. More recently, a study conducted by Orysiak and co-
workers [24] with Polish Caucasian female (15.8 ± 2.0 years old and 6.6 ± 2.1 years of sport
experience; n = 132) and male (16.7 ± 2.1 years old and 7.7 ± 2.9 years of sport experience;
n = 266) athletes from different sports modalities (volleyball, canoeing, swimming, and
ice hockey) found that the distribution of genotypes of ACTN3 and ACE genetic factors
was not significantly different between athletes’ groups of both sexes. Additionally, the
polymorphisms’ genotypes (in combination or alone) were not associated with the sum of
mechanical power, muscle strength, and height of jump for athletes of both sexes [24,25].
Similarly, Ruiz and co-workers [26] did not observe any association between the ACTN3
rs1815739 and the likelihood of being an elite volleyball player using either a recessive
model (RR and RX vs. XX) or a dominant model (RR vs. RX and XX).

The scarce genetic research involving volleyball players has not solidified the role of
neurotransmission and nerve plasticity in athletic performance. Although not confirmed,
the dopamine neurotransmitter has been suggested to play a key role in high-level per-
formance due to the athlete’s ability to develop emotional and psychological control [27].
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However, this has not been confirmed. In a study with fifty elite athletes (involving six
volleyball players) and one hundred unrelated healthy controls, genes involved in muscle
development (Myostatin (MSTN)) and the management of aggressiveness, anxiety, and fear
(Solute Carrier Family 6 Member 4 (SLC6A4), Solute Carrier Family 6 Member 3 (SLC6A3), and
Monoamine Oxidase A gene (MAOA)) were evaluated. No association of elite performance
with muscle development regulation or the serotonin pathway was found [28].

The literature concerning the gene–environment interaction and sports lesions among
volleyball players is also limited [29–32]. In a study involving Brazilian volleyball players
(146 and 125 players, with and without tendinopathy, respectively; n = 271), the Forkhead
Box P3 (FOXP3) rs3761549 and the Fc Receptor Like 3 (FCRL3) rs7528684 were studied for
tendinopathy risk [32], which was more prevalent in males (OR = 2.87; 95% CI = 1.67–4.93)
and related to increased age (OR = 8.75; 95% CI, 4.33–17.69) and volleyball experience
(OR = 8.38; 95% CI, 3.56–19.73). Salles and co-workers [32] found that athletes carrying
the FCRL3 rs7528684 variant had a higher risk of developing tendinopathy (OR = 1.44;
95% CI = 1.02–2.04). A genotype/phenotype study examined the effect of the VDR-FokI
polymorphism in 60 Italian athletes (35 males and 25 females; 11.7% volleyball players)
with and without low back pain. Athletes carrying the F allele were two times more likely
to develop low back pain (aOR = 2.55, 95% CI 1.02–6.43, p = 0.046) [13].

Given the current gaps in our knowledge, the present study was designed to assess the
impact of three brain function-related genetic polymorphisms on the sports achievements
of elite volleyball players. As expected, significant differences in the anthropometric profile
between female and male athletes were shown, which could be due to biological-related
factors. More than a quarter of the players were competing at a professional level, and a
high incidence of sport-related lesions occurring at very early ages was reported by athletes
of both sexes. Age, hand length, and the SNP FAAH rs324420 were independent predictors
of high sports achievements. Regarding the impact of age, as older players have more
sports experience, inevitably they are more prepared for the demands of high-level athletic
performance. However, this might also be a mere case of opportunity, meaning older
players had more opportunities to win competencies than their counterparts. As for the
impact of hand length, this might be due to body composition requirements for technical
skills in volleyball (e.g., serving, setting, spiking, and blocking) [32]. Thus, players with
bigger hands are more equipped for the demands of volleyball.

The fatty acid amide hydrolase protein, involved in the metabolism of endocannabi-
noids, is encoded by the FAAH gene, which contains the SNP rs324420. The protein is
recognized for breaking down the metabolite N-Arachidonoyl ethanolamide (Anandamide,
AEA), which activates the cannabinoid type 1 receptor (CB1). The protein FAAH is acti-
vated during stress exposure circumstances (Figure 1), which raises the neuronal excitability
in the amygdala, a critical brain area that mediates anxiety [7]. As opposed to this, FAAH
inhibition lessens anxiety-like behavior [33] and may promote an antidepressant impact
via stimulation of the CB1 receptor [34].

According to the literature, FAAH is a good candidate for drug discovery in patients
dealing with pain and inflammation [35]. For elite athletes, especially those who play
volleyball at a high level of performance with a high incidence of sports lesions, this is of
vital importance. Prior research suggested that the 385A allele was associated with reduced
FAAH levels [33], with prevalence rates of 16% and 37% in the populations of Africa
and the Iberian Peninsula [36]. Although the resulting protein exhibits typical catalytic
properties, the 385A allele is associated with a higher sensitivity of FAAH to proteolytic
degradation and a shorter half-life, which accounts for the protein’s lower amounts [3,7].
The 385A allele may be linked to accelerated amygdala reactivity to threat habituation,
enhanced learning of how to overcome fear, and diminished anxiety-like behavior. This
is crucial for athletes to respond and adapt to unpredictably stressful situations, handle
stress more effectively, and increase motivation for performing and competing at a high
level [8,33,37]. This supports our results that showed that athletes carrying the 385A allele
(AA or AC genotype) were twice as likely to be super athletes than those carrying the
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CC genotype (aOR = 2.00; 95% Cl, 1.04–3.82; p = 0.037) [3]. Furthermore, the A allele
was also previously found to be associated with better athletic achievements among elite
rink-hockey players (aOR = 2.88; 95% Cl, 1.06–7.80). Therefore, the well-noticed effect of
FAAH rs324420 in high-level performance sports brings new insights for future research
in the FAAH’s mechanism of action via the endocannabinoid system [38], applied for
inflammation control, and pain regulation. This may also highlight the need to improve not
only the athletes’ physical health and performance, but also their mental status, especially
under stressful conditions [33].
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be triggered and increase the fatty acid amide hydrolase (FAAH) activity in the basolateral amyg-
dala. Consequently, AEA levels decrease, which are no longer able to restrain glutamate release. As 
a result, increased neural excitability in the basolateral amygdala enhances anxiety-like behavior 
(adapted by Silva et al.) [3]. CB1R: cannabinoid type 1 receptor; Gq: family G protein; mGluR5: 
metabotropic glutamate receptor 5; 2-AG: 2-arachidonoyl glycerol; DAGLα: diacylglycerol lipase-
α; PTP1B: protein tyrosine phosphatase 1B; NMDAR: NMDA receptor; LMO4: LIM domain only 4. 
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Figure 1. The central role of the endocannabinoid system in regulating the stress response of high-
level performance volleyball players. In normal conditions, the endocannabinoid system represses
the release of the neurotransmitter glutamate via N-arachidonoylethanolamine (AEA), modulating
the synaptic function. Nevertheless, under acute stress, the mechanism mediated by corticotropin-
releasing hormone (CRH) and its receptor (corticotropin-releasing hormone receptor 1-CRHR1) can
be triggered and increase the fatty acid amide hydrolase (FAAH) activity in the basolateral amygdala.
Consequently, AEA levels decrease, which are no longer able to restrain glutamate release. As a result,
increased neural excitability in the basolateral amygdala enhances anxiety-like behavior (adapted
by Silva et al.) [3]. CB1R: cannabinoid type 1 receptor; Gq: family G protein; mGluR5: metabotropic
glutamate receptor 5; 2-AG: 2-arachidonoyl glycerol; DAGLα: diacylglycerol lipase-α; PTP1B: protein
tyrosine phosphatase 1B; NMDAR: NMDA receptor; LMO4: LIM domain only 4.

As for the other two SNPs, in opposition to previous studies on athletic perfor-
mance [13,27,39], no significant association was identified. However, it should be noted that
the present study was not sufficiently powered to detect small effects. Hence, future studies
with larger cohort sizes are required to better explore their impact. Briefly, the Adrenoceptor
Beta 2 (ADRB2) rs1042713 (Arg16Gly) A allele was previously associated with a lower
resting cardiac output, protein density, and endurance performance [40], while the G allele
was related to the sprint performance of young football players [41]. The ADRB2 encodes
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the β2-adrenergic receptor (a member of the G protein-coupled receptor superfamily),
which is primarily responsible for the regulation of many physiological systems with direct
implications for athletic performance, including the central nervous, vascular, cardiac,
pulmonary, and endocrine systems [41–43]. The protein is involved in the catecholamine
system, namely, in the regulation of lipid mobilization from the adipose tissue, glucose
uptake, and energy expenditure [40]. As for Nitric Oxide Synthase 3 (NOS3) rs1799983
(G894T), it has been associated with the athletes’ susceptibility to sports lesions [44]. The
SNP has also been shown to have a potential role in reducing blood pressure in response to
physical exercise through the mechanism of endothelium vasodilatation, with implications
for athletes’ endurance performance [27]. Additionally, athletes carrying the SNP T allele
have shown a higher right ventricular mass index (32 ± 6 g vs. 27 ± 6 g, p < 0.01) and a
larger right ventricular stroke volume index (71 ± 10 mL vs. 64 ± 10 mL, p < 0.01) than
their counterparts (GG genotype carriers) [45].

Regarding the limitations of our study, although our cohort is highly representative
of elite volleyball players competing in Portugal, the small cohort size may have limited
the statistical power to detect small effects. Indeed, the sample collection for the present
study was extremely affected by the COVID-19 pandemic-imposed restrictions, which also
made it difficult to collect data on factors known to affect sports achievements [4]. Beyond
additional studies with larger cohort sizes, further investigation on the effect of FAAH
rs324420 on athletic performance should also include control groups (sedentary individuals
and not elite athletes) to better assess the implications of this SNP in sports practice.

5. Conclusions

Elite volleyball players carrying the 385A allele seem to be more prone to be super
athletes, which may be attributed to better stress-coping abilities and a higher pain tolerance.
This result is in line with our previous findings concerning rink-hockey players of high-
level performance. Considering the cumulated data, the SNP FAAH rs324420 may help
coaches and clinical staff plan the athletes’ training, considering their individual mental
and physical characteristics that together influence pain tolerance and decision-making in a
competition. Thus, sports healthcare professionals, including medical doctors, nutritionists,
and physiotherapists, should be aware of the potential of FAAH rs324420. However, despite
the encouraging results concerning this SNP, additional studies with larger cohort sizes are
mandatory to replicate and validate these findings and better characterize the functionality
of FAAH rs324420. Inclusively, further investigation in other individual sports disciplines
is encouraged. Additionally, this genetic polymorphism should also be investigated in
the framework of sports lesion prevention, treatment/rehabilitation, and the return of
volleyball players to sports activity. As for the other tested SNPs, their implications
should be evaluated using larger sample sizes given the lack of study power to discover
small effects.

Author Contributions: Conceptualization, H.-H.S., M.-R.G.S., F.C. and R.M.; methodology, H.-H.S.,
M.-R.G.S., V.T., B.V.N., F.C. and R.M.; software, H.-H.S., M.-R.G.S., V.T. and R.M.; validation, H.-H.S.,
V.T., M.-R.G.S., B.V.N., F.C. and R.M.; visualization, H.-H.S., V.T. and M.-R.G.S.; formal analysis, H.-
H.S., V.T., M.-R.G.S., B.V.N., F.C. and R.M.; investigation, H.-H.S., V.T., M.-R.G.S. and R.M.; resources,
H.-H.S., V.T., M.-R.G.S., B.V.N., F.C. and R.M.; data curation, H.-H.S., V.T., M.-R.G.S., B.V.N. and R.M.;
writing—original draft preparation, H.-H.S., V.T., M.-R.G.S., F.C. and R.M.; writing—review and
editing, H.-H.S., V.T., M.-R.G.S., B.V.N., F.C. and R.M.; supervision, R.M., F.C. and M.-R.G.S.; project
administration, H.-H.S., R.M., F.C. and M.-R.G.S.; funding acquisition, H.-H.S., V.T. and R.M. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by research found at ICBAS-PD Biomedical Sciences-200203100
and the Portuguese League Against Cancer—Northern Branch (LPCC-NRN).

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki and approved by the Ethics Committee of UNIVERSITY FERNANDO PESSOA (protocol
code CEUFP05062017).



Genes 2023, 14, 1164 11 of 13

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The authors confirm that the data supporting the findings of this study
are available within the article.

Acknowledgments: We would like to thank all the volleyball players who participated in this
study and the coaches for their collaboration. We would also like to thank the Instituto Português
de Oncologia do Porto (IPOP), the Fundação para a Ciência e Tecnologia (FCT), and the Faculty of
Health Sciences—University Fernando Pessoa, Porto. V.T. is a PhD scholarship holder (2020.08969.BD)
supported by Fundação para a Ciência e Tecnologia (FCT), and co-financed by European Social Funds
(FSE) and national funds of MCTES.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ahmetov, I.I.; Egorova, E.S.; Gabdrakhmanova, L.J.; Fedotovskaya, O.N. Genes and athletic performance: An Update. Med. Sport

Sci. 2016, 61, 41–54. [CrossRef]
2. Silva, H.H.; Silva, M.G.; Cerqueira, F.; Tavares, V.; Medeiros, R. Genomic profile in association with sport-type, sex, ethnicity,

psychological traits and sport injuries of elite athletes. J. Sports Med. Phys. Fit. 2021, 62, 418–434. [CrossRef] [PubMed]
3. Silva, H.H.; Tavares, V.; Silva, M.G.; Neto, B.V.; Cerqueira, F.; Medeiros, R. FAAH rs324420 Polymorphism Is Associated with

Performance in Elite Rink-Hockey Players. Biology 2022, 11, 1076. [CrossRef]
4. Silva, M.-R.G.; Paiva, T.; Silva, H.-H. The elite athlete as a special risk traveller and the jet lag’s effect: Lessons learned from

the past and how to be prepared for the next Olympic Games 2020 Tokyo? J. Sports. Med. Phys. Fitness. 2019, 59, 1420–1429.
[CrossRef]

5. Silva, M.G.; Silva, H.H. Comparison of body composition and nutrients’ deficiencies between Portuguese rink-hockey players.
Eur. J. Pediatr. 2017, 176, 41–50. [CrossRef] [PubMed]

6. Silva, M.-R.G.; Silva, H.-H.; Paiva, T. Sleep duration, body composition, dietary profile and eating behaviours among children
and adolescents: A comparison between Portuguese acrobatic gymnasts. Eur. J. Pediatr. 2018, 177, 815–825. [CrossRef] [PubMed]

7. Peplonska, B.; Safranow, K.; Adamczyk, J.; Boguszewski, D.; Szymański, K.; Soltyszewski, I.; Barczak, A.; Siewierski, M.;
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