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Abstract
The lattice of faces of the convex set of reduced density matrices is essential for the
construction of the information projection to a hierarchical model. The lattice of faces
is also important in quantum state tomography. Yet, the description and computation
of these faces is elusive in the simplest examples. Here, we study the face lattice of
the set of two-body reduced density matrices: We show that the three-qubit lattice
has no elements of rank seven and that it has a family of coatoms of rank five. This
contrasts with the three-bit lattice, where every coatom has rank six. We discovered
the coatoms of rank five using a novel experimental method, which employs convex
duality, semidefinite programming, and algebra. We also discuss nonexposed points
for three and six qubits. Using frustration-free Hamiltonians, we provide a new char-
acterization of probability distributions that factor.
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1 Introduction

Information geometry is concerned with statistical manifolds in a differential geomet-
rical framework [4]. One important aspect is the projection of a probability distribution
to a statistical manifold, a special case of which is the reverse information projection
[16], which we call information projection in the sequel.

In the quantum setting, there is the Gibbs family of trace-normalized states,

E =
{

exp(A)

Tr(exp(A))
: A ∈ U

}
,

defined by the exponential map, given a vector space U of hermitian matrices. The
information projection of a density matrix ρ is the unique point in E having the same
expected values as ρ with respect to all elements in U . The information projection has
the same fibers as the orthogonal projection of the set of density matrices onto U with
respect to the Hilbert-Schmidt inner product. We call the image of the set of density
matrices under the orthogonal projection joint numerical range [11], see Sect. 3.4
for details. As a compact and convex set, the joint numerical range contains its own
boundary, whereas the Gibbs family E has no points in the fibers over this boundary.
We resolved this problem by constructing a boundary to E , the pieces of which are
defined in terms of the faces of the joint numerical range [48].

This paper is about many-body systems. An economical way to work with the
set of density matrices of exponentially large dimension is to collect the relevant
information in the reduced density matrices. For example, the k-body reduced density
matrices capture all information a k-local Hamiltonian, which ignores subsystems of
more than k units, can observe [14, 54]. If U is the space of k-local Hamiltonians,
then the Gibbs family E is the hierarchical model of k-body interactions [49] and the
information projection has the same fibers as the linear map that assigns the reduced
density matrices to a density matrix.

Density matrices can represent probability distributions in the commutative setting
of diagonal matrices [21]. Here, the information projection of an empirical distribution
to a Gibbs family E is the maximum-likelihood estimate. It is well-known that the
boundary ofE is required in order to have the information projection and themaximum-
likelihood estimate defined with probability one [8, Sect. 9.3], [16]. The space of local
Hamiltonians is known as a hierarchical model subspace [27] and the reduced density
matrices are the marginals of a distribution [7, Section 2.9]. Again, with the goal to
define the information projection with probability one, algebraic [23] and approximate
[43] approaches have been developed for the computation of the faces of the convex
set of marginals.

As an application, the information projection to a hierarchical model can be
employed to compute the entropy distance from a hierarchical model. Quantifying
the complexity of the many-body system, the entropy distance is important in the neu-
ral sciences [3, 7] and in condensed matter theory [34, 49, 54, 55]. Understanding the
faces of the set of reduced density matrices is even more important than understanding
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the faces of the set of marginals, in the sense that the maximum-entropy inference,1

and hence the information projection, is discontinuous in the quantum setting [47].
Continuous approximations are possible in commutative settings, such as probability
distributions [8, Sect. 9.3], or quantum stabilizer states [55].

Despite decades of research in quantum chemistry [18, 38] andmore recent research
in state tomography [13–15, 25, 28, 54], the face lattice of the convex set of reduced
density matrices is widely unexplored. An example is the set of two-body reduced
density matrices of three qubits. We only have accurate knowledge of its extreme
points [15, 28]. A description of the set of (AB, BC) reduced density matrices of a
three-qubit system ABC is still an open problem, see [52] and [54, Section 4.4.2].
Even the extreme points can be challenging for small systems. For instance, while the
set of two-body reduced density matrices of three qubits has no nonexposed points,
the set of two-body reduced density matrices of six qubits has nonexposed points
[25], as we will discuss in Sect. 4.6. Here, we distinguish an exposed face, the set of
minimizers of a linear functional, from a nonexposed face that cannot be written as a
set of minimizers.

In this paper, we explore the exposed faces of the set of reduced density matrices
with a focus on the coatoms (maximal faces). Coatoms are important for several
reasons. They are dual to the extreme points of the dual convex set, a spectrahedron.
All exposed faces are intersections of coatoms. These are special properties of the set
of reduced density matrices, see Sections 4 and 6 in [50]. Numerically, the sampling
procedure described below typically yields extreme points of the dual spectrahedron
and leads to coatoms through duality.

We propose an experimental method to analyze coatoms in three steps, see
Remark 2. First, we search for extreme points of the spectrahedron, which we achieve
efficiently with the help of semidefinite programming [33] (the computational com-
plexity has a meaning in information geometry [24]). Secondly, we guess algebraic
expressions for the samples. Thirdly, we confirm or reject that the expressions are
extreme points, using linear algebra and lattice theory. Notably, a lattice isomorphisms
from the exposed faces of the set of reduced density matrices to the ground projectors
of the local Hamiltonians associates the notion of a matrix rank to each coatom.

The experimental method works well for the two-body reduced density matrices
of three qubits. We present a family of coatoms of rank five in the lattice of ground
projectors in Sect. 4.5, whereas all coatoms have rank six in the setting of probability
distributions. We owe the low-rank coatoms to the high-rank extreme points on the
curved boundary portions of the dual spectrahedron. An instructive example is the
spectrahedron

{
(x, y, z) ∈ R

3 |
(

1 x y
x 1 z
y z 1

)
� 0

}
,

which contains the one-skeleton of a tetrahedron and which is bounded by the Cayley
cubic, see Fig. 1. The four vertices of the underlying tetrahedron correspond to rank
one matrices, while the rest of the yellow surface corresponds to rank two matrices.

1 Finding the maximum-entropy state is computationally hard [17], even if the face is known.
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Fig. 1 Spectrahedron bounded
by the Cayley cubic

The relative interiors of the six edges of the tetrahedron constitute the set of boundary
points that are not extreme.

Some of our results only address probability distributions. We describe the faces of
the set of two-body marginals of three bits in Sect. 4.4. In Sect. 4.2 look at hierarchical
models of probability distributions. It is well known that their elements factor. For
a distribution of full support this means the distribution is the exponential of a local
Hamiltonian (by the Hammersley-Clifford theorem [19, 27]). The equivalence was
extended from maximal to nonmaximal support, employing algebraic varieties and a
combinatorial condition on the support projectors [19].We add to the topic of nonmax-
imal support in Sect. 4.2 using frustration-free Hamiltonians. This is refined aspect to
the lattice of faces of the set of marginals, as the ground projectors of only some local
Hamiltonians support probability distributions that factor. It would be interesting to
clarify a similar meaning of frustration-free Hamiltonians [22, 32, 54] in the context
of hierarchical models of quantum states.

The article is structured as follows. Section2 introduces matrix algebras. Section3
explains the experimental method in the general setting of the joint numerical range.
Section4 addresses reduced density matrices and marginals.

Remark 1 (Complexity) Two computational problems may be responsible for the dif-
ficulty to grasp the faces of the set of reduced density matrices. The first problem is
estimating the ground state energy of a local Hamiltonian, the second is the marginal
problem of deciding whether a collection of states is the collection of reduced den-
sity matrices of a state. Both problems are QMA-complete, meaning they cannot be
solved efficiently on a quantum computer [26, 29]. The marginal problem can be
solved by a hierarchy of semidefinite programs [53]. This problem is trivial for non-
overlapping subsystems, but it becomes QMA-complete again for indistinguishable
particles, fermions or bosons [30, 44], where a spectral polytope describes the solution
[5, 31, 39, 40].

2 Matrix ∗-algebras
This section introduces the algebras we employ throughout the paper.
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2.1 Lattices, state spaces, projectors

A lattice [10] is a partially ordered set in which any pair of elements has an infimum
and a supremum. A lattice is complete if every subset has an infimum and a supremum.
LetL be a latticewith least element 0 and greatest element 1. An atom ofL is aminimal
element of L \ {0}. A coatom of L is a maximal element of L \ {1}. The lattice L is
atomistic if each of its element is the supremum of a set of atoms (such a lattice is
called atomic in [10]). The latticeL is coatomistic if each of its element is the infimum
of a set of coatoms.

Let Md denote the ∗-algebra of complex d × d matrices, and Id the d × d identity
matrix. We write the matrix product of A, B ∈ Md in the form A.B to distinguish
it from the tensor product AB = A ⊗ B in Sect. 4.1. We will work with a ∗-algebra
A ⊆ Md over the reals as this give us the possibility to decrease the dimension
(see Sect. 2.4). This also includes the ∗-algebras over the complex field. The Hilbert-
Schmidt inner product on A is defined by 〈A, B〉 = Tr(A∗. B) for all A, B ∈ A. The
real vector space of hermitian matrices

H(A) = {A ∈ A : A∗ = A}

is a Euclidean space with the restricted Hilbert-Schmidt inner product. The setH(A)

is partially ordered by the Loewner order A 	 B, or equivalently B � A, which is
valid if B − A is positive semidefinite for all A, B ∈ H(A). We denote the set of
positive semidefinite matrices by

A+ = {A ∈ A : A � 0}.

The state space [2] of the algebra A is the set

D(A) = {ρ ∈ A+ : Tr(ρ) = 1}.

The setA+ is a closed, convex cone andD(A) is a compact, convex set. The elements
of D(A) are called density matrices or quantum states [9]. The extreme points of
D(A) are called the pure states ofA. Endowed with the restricted Loewner order, the
set of projectors in A,

P(A) = {P ∈ A : P = P∗ = P2},

is a complete lattice [2].
Rank one projectors are important, as they are the atoms of P(Md). Every rank

one projector P ∈ P(Md) is a pure state and we write it as P = |ψ〉〈ψ | in Dirac’s
notation, where |ψ〉 ∈ C

d is any unit vector in the image of P . If every atom of P(A)

has rank one, then the converse holds: Every pure state of A is a rank one projector.
From now on, we assume the ∗-algebraA contains the d × d identity matrix Id . In

contrast, the multiplicative identity of the ∗-algebra

P.A.P = {P.A.P : A ∈ A}
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is P for all projectors P ∈ P(A). The assumption of Id ∈ A guarantees that every
eigenvalue of a matrix A ∈ A is a spectral value of A in the algebra A, which is
important in our definition of a ground projector in Sect. 3.3.

2.2 Diagonal matrices

Given a finite set X , the space C
X of functions X → C is a ∗-algebra. Let δx ∈ C

X

be defined by δx (y) = 0 if x �= y and δx (y) = 1 if x = y, for all x, y ∈ X . The
support of a function f ∈ C

X is the set of points {x ∈ X | f (x) �= 0}. We identify
the set of functions C(d) → C on the configuration space C(d) = {0, . . . , d − 1}
with the set of d × d diagonal matrices, in such a way that f ∈ C

C(d) corresponds
to the diagonal matrix diag( f (0), f (1), . . . , f (d − 1)) . In the notation of Sect. 2.1,
the space H(CC(d)) of hermitian matrices is the set of real functions C(d) → R, the
state space D(CC(d)) is the simplex of probability distributions on C(d), and the set
P(CC(d)) of projectors is the set of {0, 1}-valued functions on C(d). There is a lattice
isomorphism

P(CC(d))→ 2C(d), P �→ supp(P), (1)

from the set of projectors to the power set of the configuration space C(d), which
maps the rank one projector δx to x for all x ∈ C(d).

2.3 The qubit-algebra

The qubit is the information unit of quantum theory. The algebra associated with the
qubit is the complex ∗-algebra of 2× 2 matrices M2, spanned by the identity matrix

I = I2 =
(
1 0
0 1

)

and the Pauli matrices

X = (
0 1
1 0

)
, Y = (

0 −i
i 0

)
, Z = (

1 0
0 −1

)
.

These matrices also span the real space H(M2) of hermitian matrices. Any traceless
hermitian matrix can be written in the form

n̂ · σ = nx X + nyY + nz Z

where n̂ = (nx , ny, nz) ∈ R
3 is the Bloch vector and σ = (X ,Y , Z) the Pauli vector.

The matrix n̂ · σ has the eigenvalues ±|n̂| and the spectral decomposition

n̂ · σ = |n̂|(I + n̂
|n̂| · σ)/2− |n̂|(I − n̂

|n̂| · σ)/2, n̂ �= 0.

123



Information Geometry (2023) 6:293–326 299

The state space of M2 is the Bloch ball

D(M2) =
{
(I + n̂ · σ)/2 : n̂ ∈ R

3, |n̂| ≤ 1
}

.

The set of pure states is the Bloch sphere {(I + n̂ · σ)/2 : n̂ ∈ R
3, |n̂| = 1}.

2.4 The disk-algebra

The real ∗-algebraM2(R) = spanR{I , X , Z , iY } is interesting as it is noncommutative
and has a smaller dimension than M2. The space of hermitian matrices is

H(M2(R)) = spanR{I , X , Z}.

The state space is the disk D(M2(R)) = {ρ ∈ D(M2) : 〈ρ,Y 〉 = 0}, a cross section
of the Bloch ball.

2.5 The bit-algebra

The information unit of digital computers is the bit, which has the configuration space
C(2) = {0, 1}. Thinking of the elements of C

C(2) as 2-by-2 diagonal matrices as in
Sect. 2.2, we write C

C(2) as the span of the identity matrix I and the Pauli matrix Z
introduced in Sect. 2.3. As per the lattice isomorphism (1), the rank one projectors

1
2

(
I + (−1)x Z)

, x = 0, 1,

of C
C(2) are in a one-to-one correspondence with the configurations 0 and 1.

3 Experimental approach to the coatoms of the lattice of exposed
faces of the joint numerical range

This section focusses on the joint numerical range W , the convex set which is the
projection of the state space D(A) of the ∗-algebra A onto a vector space of hermi-
tian matrices. The main result is an experimental method, described in Remark 2 in
Sect. 3.6, that allows us to calculate coatoms of the lattice of exposed faces ofW . The
experimental method is based on convex geometry and lattice isomorphisms (sum-
marized in Fig. 2). The gist of the lattice isomorphism is Thm. 3, which leads to the
random search (step one) of the experimental method.

We begin by discussing exposed faces and normal cones in Sect. 3.1, and convex
duality in Sect. 3.2. The purpose of Sect. 3.3 is to write exposed faces and normal
cones of the state space in terms of ground projectors. Sect. 3.4 introduces the joint
numerical range W and describes the lattice of exposed faces of W in terms of the
lattice of ground projectors of the underlying space of hermitian matrices. Based on
the normal cones of W , Sect. 3.5 develops computational approaches to the lattice
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of ground projections, which lead to the verification (step three) of the experimental
method. The dual spectrahedron to W defined in Sect. 3.6 completes the bouquet of
convex sets, lattices, and isomorphisms needed in the experimental method.

We refer to [37, 41] regarding convex geometry, and to [6] regarding the convex
geometry of quantum states.

3.1 Exposed faces and normal cones

Let (E, 〈·, ·〉) be a Euclidean space and C ⊆ E a convex subset. An exposed face of C
is a subset of C , which is either empty or equal to the set of points at which a linear
function attains its minimum on C . We denote the set of exposed faces of C by F(C).
If C is compact then the minimum μC,u = minx∈C 〈x, u〉 exists for all u ∈ E and we
define the map

FC : E→ F(C), u �→ {x ∈ C : 〈x, u〉 = μC,u}.

We call FC (u) the exposed face of C exposed by the vector u. A point x ∈ C is an
exposed point if {x} is an exposed face. Partially ordered by inclusion, the set F(C)

is a complete lattice, and the infimum is the intersection.
The normal cone to C at a point x ∈ C is the closed convex cone

NC (x) = {u ∈ E | 〈y − x, u〉 ≥ 0 ∀y ∈ C}.

The normal cone toC at a nonempty convex subsetG ⊆ C is defined as the intersection
NC (G) = ∩x∈GNC (x). We put NC (∅) = E. Partially ordered by inclusion, the set
N (C) of normal cones to C is a complete lattice, and the infimum is the intersection.

In a slight abuse of the symbol NC , we define the map

NC : F(C)→ N (C), F �→ NC (F). (2)

IfC is not a singleton, then this map is an antitone lattice isomorphism. The statements
of this section are proved in [46].

3.2 Convex duality

Let (E, 〈·, ·〉) be a Euclidean space and denote the orthogonal projection onto a sub-
space U ⊆ E by πU : E→ E. The dual convex cone to a subset C ⊆ E is the closed
convex cone

C∨ = {u ∈ E | 〈u, x〉 ≥ 0 ∀x ∈ C}.

If C is a closed convex cone, then C = (C∨)∨ holds. If C = C∨, then C is called a
self-dual convex cone. The dual convex set to any subset C ⊆ E is

C◦ = {u ∈ E | 1+ 〈u, x〉 ≥ 0 ∀x ∈ C}.
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The set C◦ is a closed convex set containing the origin. If C is a compact, convex set
containing the origin as an interior point, then the dual convex set C◦ is compact and
contains the origin as an interior point, too [37, 41].

Section 3.6 uses the following one-to-one correspondence between normal cones
of C and exposed faces of C◦. If C is a compact, convex set containing the origin as
an interior point and if dim(E) ≥ 1, then the map

χC : N (C)→ F(C◦), N �→
{
N ∩ ∂C◦ if N �= E,

C◦ if N = E,
(3)

is an isotone lattice isomorphism, where ∂C◦ is the boundary of C◦. The composition
of the maps (2) and (3) is the antitone lattice isomorphism F(C)→ F(C◦) that maps
an exposed face to its conjugate face [41]. The inverse isomorphism to (3) is

χ−1C : F(C◦)→ N (C), F �→ pos(F), (4)

where pos(F) = {λx : λ ≥ 0, x ∈ F} is the positive hull of any nonempty exposed
face F of C◦, and pos(∅) = {0}, see for example [46, Section 8]. Lemma 7.2 of [46]
shows that the cone χ−1C (F) is the normal cone to C at the exposed face FC (u) of C
which is exposed by any nonzero vector u in the relative interior of χ−1C (F), for all
exposed faces F �= C◦ of C◦.

The following construction is fundamental in Sect. 3.6. Let C ⊆ E be a closed
convex cone with interior point ε �= 0. Then

BC,ε = {u ∈ C∨ : 〈u, ε〉 = 1}

is a compact convex set, which is a base of C∨. Let U ⊆ E be a linear subspace
incident with ε, let

VU ,ε = {u ∈ U : 〈u, ε〉 = 0}

be the orthogonal complement to ε in U , and

SC,U ,ε = {x ∈ VU ,ε : ε + x ∈ C}

an affine section of the cone C .

Lemma 1 Let C ⊆ E be a closed convex cone and let ε �= 0 be an interior point of C.
Let U ⊆ E be a linear subspace incident with ε. Then SC,U ,ε is the dual convex set to
πVU ,ε

(BC,ε) with respect to the Euclidean space VU ,ε .

Proof Let x ∈ VU ,ε and let B = BC,ε . Then

x ∈ SC,U ,ε ⇐⇒ ε + x ∈ C ⇐⇒ ∀u ∈ C∨ : 〈u, ε + x〉 ≥ 0

⇐⇒ ∀u ∈ B : 〈u, ε + x〉 ≥ 0 ⇐⇒ ∀u ∈ B : 1+ 〈u, x〉 ≥ 0

⇐⇒ ∀u ∈ πVU ,ε
(B) : 1+ 〈u, x〉 ≥ 0.
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This proves the claim. ��

3.3 Geometry of the state space

The exposed faces and the normal cones of the state space D(A) are represented in
terms of projectors.

Let P0 : H(A) → P(A) denote the map from the set of hermitian matrices to
the set of projectors, where P0(A) is the spectral projector of A corresponding to the
smallest eigenvalue of A. We call P0(A) the ground projector of A by its name in
physics if A represents an energy observable.

The exposed face of the state space D(A) exposed by A ∈ H(A) is

FD(A)(A) = D(P0(A).A.P0(A)).

Note that

FD(A)(A) = {ρ ∈ D(A) | S(ρ) 	 P0(A)},

where S(ρ) is the support projector of ρ, the sum of the spectral projectors corre-
sponding to the nonzero eigenvalues. Moreover, the map

φA : P(A)→ F(D(A)), P �→ D(P.A.P) (5)

is an isotone lattice isomorphism from the lattice of projectors P(A) to the lattice of
exposed faces of D(A), see for example [2] or [45, Section 2.3]. As

FD(A)(A) = (φA ◦ P0)(A), A ∈ H(A), (6)

the map FD(A) : H(A)→ F(D(A)) factors through P(A).
The concatenation of the maps (5) and (2) is the antitone lattice isomorphism

νA : P(A)→ N (D(A)), P �→ (ND(A) ◦ φA)(P), (7)

where

νA(P) = {A ∈ H(A) | P 	 P0(A)}

is the normal cone to D(A) at the exposed face φA(P), see [51, Section 3]. Here, the
Euclidean space to define normal cones in Eqn. (2) is E = H(A). We ignore the case
A ∼= C where D(A) = {Id/d} and (7) is not injective.

3.4 The joint numerical range and its exposed faces

In the sequel, let U ⊆ H(A) be a vector space of hermitian matrices, and let πU :
H(A)→ H(A) denote the orthogonal projection onto U .
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If F1, . . . , Fk is a spanning set of U , then the map

Av : H(A)→ R
k, A �→ 〈A, Fi 〉ki=1,

factors through U as per Av = Av◦πU . The map U Av→ Av(U) is a linear isomorphism,
see [45, Remark 1.1], which restricts to the bijection

πU (D(A))
Av−→ Av (D(A)) .

The set Av (D(A)) is known as the joint numerical range [11] of F1, . . . , Fk . Here we
call the set πU (D(A)) joint numerical range of U . In physics, Av(ρ) is the vector of
expected values or averages of the observables F1, . . . , Fk if the state of the system is
represented by the density matrix ρ ∈ D(A).

Equation (6) shows that the function which maps a hermitian matrix A to the
exposed face of D(A) exposed by A factors through the lattice of ground projectors.
If A ∈ U then the map factors also through the lattice of exposed faces of the joint
numerical range,

FD(A)(A) = (φA ◦ P0)(A) = (πU |−1D(A)
◦ πU ◦ φA ◦ P0)(A), A ∈ U . (8)

Note that the orthogonal projection πU : H(A) → H(A) operates as a set-valued
map here. The operator πU |−1D(A)

maps a subset of the subspace U to its pre-image
inside the state space D(A). As detailed in Section 3.1 of [45], by endowing the set
of ground projectors

P0(U) = {P0(A) : A ∈ U} ∪ {0}

with the Loewner order and the set of exposed faces FD(A)(U) ∪ {∅} with the partial
order of inclusion, one obtains the lattice isomorphisms

P0(U) φA(P0(U)) = FD(A)(U) ∪ {∅} F(πU (D(A))).
φA πU

πU |−1D(A)

(9)

The lattices P0(U), φA(P0(U)), and F(πU (D(A))) are complete, coatomistic lat-
tices [50, Corollary 6.5]. The infimum in the lattices φA(P0(U)) and F(πU (D(A)))

is the intersection. The infimum in P0(U) is the same as the infimum in the lattice
P(A) of all projectors, restricted to subsets of P0(U), of course [51, Section 4].

3.5 Normal cones of the joint numerical range

We discuss the antitone isomorphism between the ground projectors and the normal
cones of the joint numerical range. The atoms (rays) of the lattice of normal cones
characterize the coatoms of the lattice of ground projectors.
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IfπU (D(A)) is not a singleton, then the lattice isomorphisms (9) and (2) concatenate
to the antitone lattice isomorphism

P0(U)→ N (πU (D(A))), P �→ νA(P) ∩ U . (10)

Here, the Euclidean space to define normal cones in Eqn. (2) is E = U . Also, νA(P)

is a normal cone to the state space, see Eqn. (7), and

νA(P) ∩ U = {A ∈ U |P 	 P0(A)}

is the normal cone to the joint numerical range πU (D(A)) at the convex subset πU ◦
φA(P) for all P ∈ P(A). See [51, Section 4] for more details.

From now on we assume that the space of hermitian matrices U ⊆ H(A) contains
thed×d identitymatrix Id .A somewhat simpler object than the normal cone νA(P)∩U
is the cone

K(P) = P ′.A+.P ′ ∩ U (11)

= {A ∈ U | A � 0, P 	 ker(A)}, P ∈ P(A).

Here, P ′ = Id − P denotes the complementary projector to P .
The following statement is Theorem 5.1 of [51]. We use it in Sect. 4.4 to identify

elements in the lattice of ground projectors.

Theorem 1 Let U ⊆ H(A) be a linear subspace containing the identity matrix Id ∈ U
and let P ∈ P(A). Then P lies in P0(U) if and only if P is the greatest element of the
set of all Q ∈ P(A) which satisfy K(Q) = K(P).

Thm. 1 yields a necessary condition for projectors to lie in P0(U).

Corollary 1 Let U ⊆ H(A) be a linear subspace with Id ∈ U and let P �= Id be a
projector in A. If there exists a hermitian matrix A ∈ H(A) orthogonal to U and a
nonzero number λ �= 0 such that P ′.A.P ′ = λP ′, then P /∈ P0(U).

Proof Let A ∈ U⊥ and λ �= 0 such that P ′.A.P ′ = λP ′ and let U ∈ K(P). Since
U = P ′.U .P ′, we have

λTr(U ) = λ〈P ′,U 〉 = 〈P ′.A.P ′,U 〉 = 〈A,U 〉 = 0.

Since λ �= 0 we get Tr(U ) = 0. As U � 0 this implies U = 0. The claim follows
from Thm. 1 as K(Id) = {0}. ��

Thm. 2 is proved as Theorem 6.1 of [51]. The second statement of Thm. 2 is clear,
as the cone of positive semidefinite matrices A+ contains no lines. We use this result
(and Lemma 2 below) in the experimental method (third step) described in Remark 2.

Theorem 2 Let U ⊆ H(A) be a linear subspace containing the identity matrix Id ∈ U
and let P ∈ P0(U). Then P is a coatom of P0(U) if and only if K(P) is a ray. This
happens if and only if dimK(P) = 1.
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Finding the dimension of the cone K(P) is a problem of linear algebra.

Lemma 2 Let U ⊆ H(A) be a linear subspace with Id ∈ U and let P ∈ P0(U). Then
the real span of the cone K(P) isH(P ′.A.P ′) ∩ U .

Proof The cone K(0) = A+ ∩ U has the span U as required, as Id ∈ U . Let P �= 0.
As P ∈ P0(U) and as Id ∈ U , there is a (positive semidefinite) matrix U ∈ U such
that P = P0(U ) andU .P = 0. Hence,U is invertible in the algebra P ′.A.P ′. Thus,U
is an interior point of the cone of positive semidefinite matrices P ′.A+.P ′ with respect
to the topology of H(P ′.A.P ′), see Prop. 2.7 of [45]. This proves the claim. ��

3.6 Finding coatoms via semidefinite programming

We show that the coatoms of the lattice of ground projectorsP0(U) are in a one-to-one
correspondence with the extreme points of a spectrahedron. This yields a numerical
algorithm to find candidates for coatoms, and an algebraic method to verify the can-
didates are indeed coatoms.

Besides the hypothesis that Id ∈ U , we assume dim(U) ≥ 2 from now on. We
introduce the space

V = {A ∈ U : 〈A, Id〉 = 0} = {A ∈ U : Tr(A) = 0}.

The joint numerical ranges πV (D(A)) = πU (D(A)) − Id/d are translates of each
other, and the lattices of ground projectors P0(V) = P0(U) coincide. The affine
section

S(U) = {A ∈ V : Id + A ∈ A+}

of the cone of positive semidefinite matrices is a spectrahedron [36]
It is well known that the cone of positive semidefinite matrices (Md)

+ is a self-dual
convex cone within the Euclidean space of hermitian matricesH(Md). The analogue
is true for every real ∗-algebraA ⊆ Md , see Corollary 2.8 of [45]. Therefore, Lemma 1
shows

S(U) =W◦, (12)

where the whole space E assumed in defining W◦ is V , and where

W = πV (D(A))

denotes the joint numerical range. That is to say, the spectrahedron S(U) is the dual
convex set toW .

Combining two lattice isomorphisms, we identify P0(U) and the set of exposed
faces of S(U). Equation (10) provides an antitone lattice isomorphism P0(U) →
N (W) to the lattice of normal cones of W , as W is not a singleton under the chosen
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Fig. 2 Commutative diagram
with isomorphisms between the
lattices P0(U), F(W),N (W),
and F(S(U))

P0(U)

F(S(U))

V F(D(A))

N (W)

F(W)

P0

FD(A)

FW

φA

πV

ι

νA( · ) ∩ V

NW

χW pos

assumptions. As W is compact, Equation (3) provides the isomorphism N (W) →
F(S(U)). The function composition of (10) and (3) is the antitone lattice isomorphism

ι : P0(U)→ F(S(U)), P �→
{

νA(P) ∩ ∂S(U) if P �= 0,
S(U) if P = 0,

(13)

where νA(P) ∩ V is a normal cone toW , as introduced in Equation (10).
We invert the isomorphism (13). Note that all faces of the spectrahedron S(U) are

exposed faces [36]. In particular, all extreme points are exposed points.

Theorem 3 Let U ⊆ H(A) be a subspace with dim(U) ≥ 2 and Id ∈ U . Let (P, F) �=
(0,S(U)) be a point in the graph of the isomorphism ι. Then P = P0(A) holds for
any nonzero matrix A in the relative interior of the positive hull pos(F). The map ι

restricts to the bijection

{
coatoms of P0(U)

}
→

{
{A} | A is an exposed point of S(U)

}
. (14)

Let (P, {A}) be a point in the graph of the map (14). Then A is the unique matrix
in V with ground projector P = P0(A) for which Id + A is positive semidefinite of
nonmaximal rank. If P ∈ U then A = Tr(P)

Tr(P ′) P
′ − P.

Proof The commutative diagram in Fig. 2 provides an overview of themaps introduced
in Sect. 3, which are relevant to this proof. By applying the positive hull operator to
the equation ι(P) = F , we obtain

νA(P) ∩ V = pos(F).

Let A be a nonzero point in the relative interior of pos(F). As discussed below of
Equation (4), the convex cone pos(F) is the normal cone to W at the exposed face
FW (A), that is to say
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νA(P) ∩ V = NW ◦ FW (A).

The commutative diagram then shows P = P0(A).
The isomorphism ι restricts to the bijection (14), since every atom of the lattice

of exposed faces of S(U) is an exposed point. To prove this, it suffices to show that
every nonempty exposed face F of S(U) contains an exposed point of S(U). Since F
is compact, it has an extreme point A by Minkowski’s theorem [41]. As F is a face of
S(U), the point A is an extreme point of S(U), and hence an exposed point of S(U).

Let P be a coatom of P0(U) and let A be an exposed point of S(U) such that
{A} = ι(P). Since A is in the relative interior of the ray pos({A}), we get P = P0(A)

as above. As P is a coatom of P0(U), the relation P 	 P0(B) implies P = P0(B) for
all nonzero traceless matrices B ∈ U . Hence, the ray

νA(P) ∩ V = pos({A})

consists of all matrices B ∈ V such that P = P0(B), and of zero, as per the definition
of νA(P) in Equation (7). The ray intersects the boundary ∂S(U) only in A. This
completes the characterization of A, because boundary points B of the spectrahedron
S(U) are characterized by Id + B being positive semidefinite of nonmaximal rank. If
P ∈ U , then the matrix Tr(P)

Tr(P ′) P
′ − P fulfills the characterizing conditions of A. ��

Theorem 3 underpins the initial idea to the experimental method in Remark 2 and
to this article, which is to sample extreme points from the dual spectrahedron, in order
to find coatoms of the lattice of exposed faces of the joint numerical range. Sect. 4.5
shows how this works in an example of reduced density matrices.

Remark 2 (Experimental Method) The search for coatoms of the lattice of exposed
faces of the joint numerical range W works in three steps.

The first step is a numerical random search. The coatoms of the lattice F(W) of
exposed faces of the joint numerical rangeW = πV (D(A)) are amenable to a numer-
ical exploration, since the map from the exposed faces of W to their conjugate faces
defines an antitone isomorphism F(W) → F(S(U)) to the lattice of exposed faces
of the spectrahedron S(U). This map induces a one-to-one correspondence between
the coatoms of F(W) and the atoms of F(S(U)), which are the extreme points of
S(U). Numerically, one can draw linear functionals from the dual space V∗ of V at
random, and minimize them on S(U). The minimum of a generic linear functional is
attained at a single extreme point of S(U). This means that this random search will
allow us to sample extreme points, or at least numerical approximations of such. The
minimization can be done efficiently, using semidefinite programming [33].

To illustrate some subtleties of the underlying process let us revisit the Cayley cubic
example of Fig. 1. In that case there are two types of extreme points, the four rank
one vertices and the surface of rank two extreme points. While there are only four
rank one extreme points, their normal cones have a high volume, hence it is quite
likely that while searching in a random direction we end up sampling those points.
In Fig. 3 one can see the possible search directions in R

3, color coded by which type
of extreme point they lead to. The directions that lead to rank one matrices form four
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Fig. 3 Search directions in the
Cayley cubic

equal spherical caps pairwise tangent. One can easily calculate that a random search
would therefore lead to a rank one matrix around 84.5% of the times, and a rank two
matrix otherwise. The exceptional directions that would lead to linear forms that are
minimized in higher dimensional faces are the six tangency points of the caps.

This gives us some hint of possible issues if one wants to find representatives for
all classes of extreme points. In high dimensions, if the union of the normal cones of
the extreme points in some class is of very low volume, it might be hard to sample by
a uniformly generated random search direction. This problem should not be as acute
in moderate dimensions, and does not stop us from attempting to find new interesting
classes of extreme points.

The second step of the experimental method is the guesswork to find possible
algebraic expressions for the numerical extreme points from step one.

The third step is the algebraic verification that the algebraic expressions from step
two are indeed extreme points. The latticeF(W) is isomorphic to the latticeP0(U) of
ground projectors by Eqn. (9). This brings about a one-to-one correspondence between
the coatoms ofF(W) and the coatoms ofP0(U). Let A ∈ V be an arbitrary matrix, for
example an output of the random search described above. Then the ground projector
P = P0(A) lies in the lattice P0(U). Thm. 2 and Lemma 2 above prove that P is a
coatom of P0(U) if and only if the real vector space

H(P ′.A.P ′) ∩ U (15)

is a line (here, P ′ = Id − P). Verifying that the vector space in equation (15) has
dimension one allows us to confirm that P = P0(A) is a coatom.

4 Reduced density matrices

We discuss examples of two-body reduced density matrices. The highlight is the
application of the experimental method of Remark 2 to the reduced density matrices
of three qubits.
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The basic notation of a many-body system is settled in Sect. 4.1. The Sects. 4.3
and 4.5 examine two-body reduced density matrices of three qubits. Sec. 4.3 shows
that no two-local Hamiltonian has a ground projector of rank seven. Sect. 4.5 applies
the experimental method of Remark 2 to the convex set of two-body reduced density
matrices of three qubits. We examine the commutative case of three bits in Sect. 4.4.
Sect. 4.6 comments on nonexposed points of the set of two-body reduced density
matrices of three and six qubits in the context of quantum state tomography.

Section 4.2 goes beyond the case of two-body interaction. It addresses probability
distributions that factor.

4.1 Reduced density matrices and local Hamiltonians

We specify an interaction pattern on a many-body system of N ∈ N units by choosing
a family g of subsets of Ω = {1, 2, . . . , N }. Let (d1, d2, . . . , dN ) be a sequence of
natural numbers and a = (A1,A2, . . . ,AN ) a sequence of ∗-algebras, where Ai is
included in Mdi and contains the di × di identity matrix Idi for all i ∈ Ω .

The ∗-algebra of the subsystem with units in a subset ν ⊆ Ω is the tensor product
Aν := ⊗

i∈ν Ai . We omit the tensor product symbol ⊗ when no confusion arises.
That is to say, we write AB in place of A ⊗ B for two matrices A, B. We denote
the multiplicative identity of Aν by Iν , and write ν̄ = Ω \ ν. The partial trace
Trν̄ : AΩ → Aν over the subsystem ν̄ is the adjoint to the embedding Aν → AΩ ,
A �→ AIν̄ . The matrix Trν̄ (ρ) is a state in D(Aν), called the reduced density matrix
in physics [18, 54], for every state ρ ∈ D(AΩ). Let

red(g,a) : H(AΩ)→×ν∈gH(Aν), A �→ (Trν̄ (A))ν∈g (16)

denote the map which assigns reduced density matrices with respect to the pair (g, a).
A g-local Hamiltonian [15] (also, quasi-local Hamiltonian [25]) is an element of the
real vector space of hermitian matrices

U(g, a) =
{∑

ν∈g Aν Iν̄ : Aν ∈ H(Aν), ν ∈ g
}

. (17)

We write

P0(g, a) = P0(U(g, a)) ∪ {0}

to denote the lattice of ground projectors of U(g, a).
In statistics [27], the space U(g, a) is known as a hierarchical model subspace.

Strictly speaking, one has to distinguish between the quantummechanical concept of a
Hamiltonian, or more generally of an observable, and its mathematical representation
in terms of a hermitian matrix or a self-adjoint operator [9]. As it is common in
theoretical physics [54], we refer with a local Hamiltonian to a matrix. Similarly, we
apply to following notions of an interaction and of a frustration-free Hamiltonian to
matrices.
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Without changing the spaceU(g, a), one can reduce g to the antichain of itsmaximal
elements (partially ordered by inclusion) and one can augment g by adding all subsets
of its elements as new elements. In the reduced form, g is known as the generating class
of U(g, a) in statistics [19, 27]. If g has the augmented form we call g a hypergraph.

It is useful to decompose local Hamiltonians into interaction terms. A matrix A ∈
H(AΩ) is a ν-factor interaction, ν ⊆ Ω , if A ∈ U({ν}, a) and A is perpendicular
to U({μ}, a) for all μ ⊂ ν. In statistics, ν-factor interactions are called |ν|-factor
interactions [27, Section B.2]. If g is a hypergraph, then U(g, a) is the direct sum

U(g, a) =⊕
ν∈g{A ∈ H(AΩ) is a ν-factor interaction}. (18)

We construct a basis for each summand in the direct sum (18). Let Bi be an orthogonal
basis of H(Ai ), i ∈ Ω . Then the matrices B1B2 . . . BN , where Bi ∈ Bi , i ∈ Ω , are
an orthogonal basis of H(AΩ). If Bi contains the identity matrix Idi for each i ∈ Ω ,
then the set

{
B1B2 . . . BN | Bi ∈ Bi and Bi = Idi if and only if i ∈ ν̄ for all i ∈ Ω

}

is an orthogonal basis for the space of ν-factor interactions, the dimension of which
is therefore

∏
i∈ν(dimH(Ai )− 1).

As per red(g,a) = red(g,a) ◦πU(g,a), the map red(g,a) factors through the space
U(g, a). The map restricts to the linear isomorphism

U(g, a)
red(g,a)−→ red(g,a)(H(AΩ)),

as its injectivity follows from equation (18). The map restricts to the bijection

πU(g,a)(D(AΩ))
red(g,a)−→ red(g,a)(D(AΩ)), (19)

between the joint numerical range and the set of reduced density matrices. The dimen-
sion of the set of reduced density matrices is therefore dim(U(g, a))− 1.

Theorem 4 The lattice of exposed faces F (
red(g,a)(D(AΩ))

)
of the convex set of

reduced density matrices red(g,a)(D(AΩ)) is isomorphic to the lattice of exposed
faces F (

πU(g,a)(D(AΩ))
)
of the joint numerical range πU(g,a)(D(AΩ)). Both lat-

tices are isomorphic to the lattice of ground projectors P0(g, a) of the space of local
Hamiltonians U(g, a) .

Proof The affine isomorphism in Equation (19) induces a lattice isomorphism between
the lattices of exposed faces in the first statement. The lattice isomorphism (9) com-
pletes the proof. ��

Thm. 4 allows us to employ the experimental method of Remark 2 to search for
coatoms in the lattice of exposed faces of the set of reduced density matrices.

In the sequel, we focus mainly on three-body systems, where Ω = {1, 2, 3}. Up
to permutations, there are only two generating classes with overlapping subsets, the
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edge sets {{1, 2}, {2, 3}} and {{1, 2}, {2, 3}, {3, 1}} of the path graph P3 and the cycle
graph C3, respectively. We denote their hypergraphs by

p3 =
{
∅, {1}, {2}, {3}, {1, 2}, {2, 3}

}

and

c3 =
{
∅, {1}, {2}, {3}, {1, 2}, {2, 3}, {3, 1}

}
,

respectively. By Equation (18), we have

dim U(c3, a) =∏3
i=1 dimH(Ai )−∏3

i=1(dimH(Ai )− 1)

and

dim U(p3, a) = dim U(c3, a)− (dimH(A1)− 1)(dimH(A3)− 1).

This gives dim U(c3, a) = 37 and dim U(p3, a) = 28 for three qubits.
We denote the set of all subsets of cardinality k ofΩ by

(N
k

)
. An

(N
k

)
-local Hamilto-

nian is called a k-local Hamiltonian [54] and red
((Nk ),a)

(D(AΩ)) is the set of k-body

reduced density matrices. We will focus on the interaction pattern
(3
2

) = c3 of three-
body systems.

Remark 3 A special class of local Hamiltonians appears in information theory and sta-
tistical mechanics frequently. A matrix A ∈ H(AΩ) is a frustration-free Hamiltonian
[22, 32, 54] with respect to the pair (g, a) if there are Aν ∈ H(Aν), ν ∈ g, such that

A =∑
ν∈g Aν Iν̄ ,

and such that the ground projectors satisfy P0(A) 	 P0(Aν Iν̄ ) with respect to the
Loewner order for all ν ∈ g. Hence, the set of ground projectors of all frustration-free
Hamiltonians, together with the zero projector, is the set

P ff
0 (g, a) =

{∧
ν∈g Pν Iν̄ : Pν ∈ P(Aν), ν ∈ g

}
. (20)

As per the associativity of the infimum, the infimum of any subset of P ff
0 (g, a) in the

Loewner order on P(AΩ) lies in P ff
0 (g, a). Hence, P ff

0 (g, a) is a complete lattice [10,
Section I.4]. Furthermore, the lattice P ff

0 (g, a) is coatomistic. The set of coatoms of
P ff
0 (g, a) is

⋃
ν∈g {Pν Iν̄ : Pν is a coatom of P(Aν)} (21)

if g is a generating class.
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4.2 Probability distributions that factor

This section adds a refined aspect to the lattice of faces of the set of marginals, as the
ground projectors of only some local Hamiltonians support probability distributions
that factor. The projectors have to satisfy a certain condition [19]. We show that the
condition is that the projector is the ground projector of a frustration-free Hamiltonian.

Let Ai = C
C(di ) be the ∗-algebra of complex functions on the configuration space

C(di ) = {0, 1, . . . , di − 1}, i ∈ Ω , introduced in Sect. 2.2. The algebra Aν of the
subsystem ν ⊆ Ω is the set Aν = C

Cν of complex functions on the configuration
space

Cν =×
i∈ν

Ci .

If x = (xi )i∈Ω is an element of CΩ and ν ⊆ Ω , then xν denotes the truncation of x
to ν, that is to say, xν = ((xν)i )i∈ν is the element of Cν which satisfies (xν)i = xi for
all i ∈ ν. Let g be a family of subsets of Ω and let

Cg = {(ν, y) | y ∈ Cν, ν ∈ g}

denote the disjoint union of the configuration spaces Cν , ν ∈ g. The matrix M =
(m(ν,y),x ) of the map (16) has the coefficients

m(ν,y),x = red(g,a)(δx )(ν, y) (22)

= Trν̄ (δx )(y) = δxν (y), (ν, y) ∈ Cg, x ∈ CΩ,

with respect to the bases (δx )x∈CΩ of R
CΩ and (δ(ν,y))(ν,y)∈Cg of×ν∈g R

Cν . The set
of marginals is the convex hull of the columns of the matrix M , which is called the
marginal polytope [43].

By definition, a probability distribution P ∈ D(AΩ) factors with respect to g if
there exist a function ψν : Cν → R for each ν ∈ g such that

P(x) =∏
ν∈g ψν(xν), x ∈ CΩ.

It is well known [19] that a probability distribution P ∈ D(AΩ) factors with respect
to g if and only if P = Pθ for some θ ∈ [−∞,∞)Cg , where

Pθ (x) = 1
Z(θ)

e〈θ,T (x)〉, x ∈ CΩ. (23)

Here, T (x) = (m(ν,y),x )(ν,y)∈Cg is the column with index x ∈ CΩ of the matrix M
defined above in Equation (22). The bracket 〈·, ·〉 is the inner product onR

Cg restricted
to nonnegative values in the second argument and extended to minus infinity in the
first, by defining (−∞) · 0 = 0 and (−∞) · t = −∞ for all t > 0. The number
Z(θ) is a normalization constant. As e−∞ = 0, the Equation (23) defines a probability
distribution if and only if 〈θ, T (x)〉 > −∞ holds for at least one x ∈ CΩ . Parametric
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models of the form (23) are called hierarchical models in the literature [7, 27], they
are special cases of exponential families or log-linear models [19].

Probability distributions that factor have been characterized in terms of support sets
and commutative algebra. A subset F ⊆ CΩ is M-feasible if

supp T (x) �
⋃

y∈F supp T (y), for all x ∈ CΩ \ F .

Here, supp T (x) is the subset of points (ν, y) ∈ Cg for which the coefficients of T (x)
are nonzero (and hence equal to one). This means that (ν, y) belongs to supp T (x)
if and only if xν = y. The nonnegative toric variety XM is the set of all vectors
ξ = (ξx )x∈CΩ in [0,∞)CΩ which satisfy

∏
x∈CΩ

ξ
ux
x =∏

x∈CΩ
ξ

vx
x

whenever u = (ux )x∈CΩ , v = (vx )x∈CΩ ∈ Z
CΩ are vectors of nonnegative integers

such that u − v is in the kernel of M .

Theorem 5 (Geiger et al. [19]) LetAi = C
C(di ) for all i ∈ Ω and let P ∈ D(AΩ) be

a probability distribution. Then P factors with respect to g if and only if the support
of P is M-feasible and P lies in the nonnegative toric variety XM.

We describe the support condition of Theorem 5 in terms of ground projectors. We use
themap (1) to identify projectors inAν and subsets ofCν , ν ⊆ Ω . The complementary
projector to P ⊆ Cν is P ′ = Cν\P = Iν − P .

Lemma 3 Let Ai = C
C(di ) for all i ∈ Ω and let P ∈ P(AΩ) be a projector. The

following assertions are equivalent.

1. P is M-feasible,
2. P =⋂

x∈P ′
⋂

ν∈gx
{xν}′ Iν̄ , where gx = {ν ∈ g | xν �= yν for all y ∈ P},

3. there exists a frustration-free g-local Hamiltonian A ∈ U(g, a) such that P =
P0(A) is the ground projector of A.

Proof Let P be M-feasible. Then for all x ∈ P ′ there exists ν ∈ g such that xν �= yν
holds for all y ∈ P . This shows that the set gx above is nonempty for all x ∈ P ′.
Without any assumptions on the projector P , the inclusion “⊆” of the assertion 2)
holds. Since each of the sets gx , x ∈ P ′, is nonempty, the right-hand side of the
equation 2) cannot contain any points of P ′. This proves 1)⇒ 2). The implication 2)
⇒ 3) was discussed in Equation (20).

Let P = ⋂
ν∈g Pν Iν̄ , where Pν ∈ P(Aν) for all ν ∈ g, and let x ∈ P ′. Then there

exists ν ∈ g such that x /∈ Pν Iν̄ , that is to say, xν /∈ Pν . Since yν ∈ Pν holds for all
y ∈ P , this proves that P is M-feasible, hence 3)⇒ 1). ��
Corollary 2 Let Ai = C

C(di ), i ∈ Ω , and let P ∈ P(AΩ) be a nonzero projector.
Then P is the ground projector of a frustration-free g-local Hamiltonian if and only
if there are functions Aν ∈ R

Cν , ν ∈ g, such that P = ∏
ν∈g Aν Iν̄ . If this is the case,

then there are projectors Pν ∈ P(Aν), ν ∈ g, such that P =∏
ν∈g Pν Iν̄ .

123



314 Information Geometry (2023) 6:293–326

Proof If the projector P factors, then the uniform probability distribution P
|P| on the set

P factors. Theorem 5 then shows that P is M-feasible and Lemma 3 concludes that P
is the ground projector of a frustration-freeHamiltonian. Conversely, if P is the ground
projector of a frustration-freeHamiltonian, thenEquation (20) shows P =⋂

ν∈g Pν Iν̄ ,
where Pν ∈ P(Aν), ν ∈ g. This proves the claim, as

⋂
ν∈g Pν Iν̄ =∏

ν∈g Pν Iν̄ . ��

4.3 A first glimpse at three qubits

We consider a system of N ∈ N qubits. The algebras

aN ,qu = (M2, M2, . . . , M2︸ ︷︷ ︸
N copies

)

of the units are all equal to the algebra M2 of a single qubit (Sect. 2.3). The algebra

AΩ = M⊗N
2 = M2N

of the full system is the N -fold tensor product of M2. The space of hermitian matrices
H(AΩ) has the orthogonal basis

{A1A2 . . . AN : Ai ∈ {I , X ,Y , Z}, i ∈ Ω = {1, 2, . . . , N }}.

We begin with an observation regarding the space U(c3, a3,qu) of two-local three-
qubit Hamiltonians.

Lemma 4 The space U(c3, a3,qu) contains no matrix of rank one. In other words, the
lattice of ground projectors P0(c3, a3,qu) contains no projector of rank seven.

Proof Let P = |ψ〉〈ψ | be the projector onto the line spanned by a unit vector
ψ ∈ (CC(2))⊗3. It is known [1] that, up to a local unitary transformation, there are
κ0, κ1, . . . , κ4 ≥ 0 and θ ∈ [0, π) such that

ψ = κ0e
iθ |000〉 + κ1|001〉 + κ2|010〉 + κ3|100〉 + κ4|111〉.

Let us assume that P lies in U(c3, a3,qu). Then the inner products of P with all three-
factor interactions vanish. In particular

0 = 〈P, Z Z Z〉 = κ2
0 − κ2

1 − · · · − κ2
4 ,

which is only possible if κ0 = 1/
√
2, as ψ is a unit vector. Hence,

〈P, Z Z X〉 = √2 κ1 cos(θ), 〈P, Z X Z〉 = √2 κ2 cos(θ),

〈P, X Z Z〉 = √2 κ3 cos(θ), 〈P, XXX〉 = √2 κ4 cos(θ),

123



Information Geometry (2023) 6:293–326 315

which shows κ1 = κ2 = κ3 = κ4 = 0 if θ �= π
2 modulo π . Also,

〈P, Z ZY 〉 = −√2 κ1 sin(θ), 〈P, ZY Z〉 = −√2 κ2 sin(θ),

〈P,Y Z Z〉 = −√2 κ3 sin(θ), 〈P,YYY 〉 = √2 κ4 sin(θ),

shows κ1 = κ2 = κ3 = κ4 = 0 if θ = π
2 modulo π . In any case,

1/2 = κ2
0 + κ2

1 + κ2
2 + κ2

3 + κ2
4 = 〈ψ |ψ〉 = 1

is a contradiction. ��

4.4 All about three bits

We consider a system of N ∈ N bits, which is a special case of the setup discussed in
Sect. 4.2. The configuration space of a bit is C(2) = {0, 1}. The algebras

aN ,cl = (CC(2), C
C(2), . . . , C

C(2)︸ ︷︷ ︸
N copies

)

of the units are all equal to the algebra C
C(2) of 2-by-2 diagonal matrices, associated

with a single bit (Sect. 2.5). The algebra

AΩ = (CC(2))⊗N = C
CΩ

of the full system is the N -fold tensor product of C
C(2), which is the set of complex

functions on CΩ . The set

{A1A2 . . . AN : Ai ∈ {I , Z}, i ∈ Ω}

is an orthogonal basis of the space of hermitian matricesH(AΩ) = R
CΩ . We identify

two representations of rank one projectors in AΩ , using the isomorphism of Equa-
tion (1),

x1x2 . . . xN = 1
2N

(
I + (−1)x1 Z)(

I + (−1)x2 Z)
. . .

(
I + (−1)xN Z)

, (24)

for all N -digit binary numbers x = x1x2 . . . xN ∈ CΩ . On the left-hand side of
Equation (24) there is an element of the configuration space CΩ , and on the right-
hand side there is a diagonal 2N × 2N matrix. The number x marks the position of
the diagonal entry 1 of this matrix, which has all other entries equal to 0. The position
increases from x = 00 . . . 0 at the top left to x = 11 . . . 1 at the bottom right of the
diagonal.

We focus on N = 3 where Ω = {1, 2, 3}. In Lemma 5 we simplify the charac-
terization of the coatoms of the lattice of ground projectors of the space U(c3, a3,cl)
of two-local three-bit Hamiltonians [51]. We also describe the ground projectors of
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frustration-free Hamiltonians, in Lemma 6, and of Hamiltonians interacting along a
path without a cycle, in Lemma 7.

Note that the space U(c3, a3,cl) is the orthogonal complement to f = Z Z Z in
H(AΩ). We have

f (x1x2x3) = (−1)x1+x2+x3 , x1, x2, x3 ∈ C(2),

f = diag(+1,−1,−1,+1,−1,+1,+1,−1).

We identify the vertex set of the complete bi-partite graph K4,4 with CΩ , the bi-
partition being defined by the two fibers of f . In other words, {x, y} ⊆ CΩ is an edge
of K4,4 if and only if the digit sums of x and y differ modulo two.

The projectors in AΩ are in a one-to-one correspondence with the subsets of CΩ

by means of the isomorphism (1). The complementary projector to P ⊆ CΩ is P ′ =
CΩ\P = I I I − P .

Lemma 5 Let P ⊆ C(2)×3 be a subset. The projector P is a coatom of P0(c3, a3,cl)
if and only if P ′ is an edge of the graph K4,4. The projector P lies in P0(c3, a3,cl) if
and only if P ′ is a union of edges of K4,4 (possibly empty).

Proof We abbreviate U = U(c3, a3,cl) and P0 = P0(c3, a3,cl). The lattice P0 has no
elements of rank seven by Lemma 4.

If P ∈ P0 has rank atmost five, then P is not a coatom. Indeed, as f is perpendicular
to U , Cor. 1 shows that f is nonconstant on P ′. Hence, there are mutually distinct
points x, y, z ∈ P ′ such that f (x) �= f (y) = f (z). Then the spaceH(P ′.AΩ.P ′)∩U
has dimension at least two, as it contains the linearly independent rank two projectors
{x, y} and {x, z}. According to Equation (15), this proves that P is not a coatom of
P0.

The preceding part of the proof shows that a projector P ⊆ C(2)×3 is a coatom of
P0 if and only if P ∈ P0 and |P| = 6. Let P ′ = {x, y} with x �= y and consider the
cone K(P) = P ′.A+Ω.P ′ ∩ U defined in Equation (11). If f (x) �= f (y) then K(P) is
the ray spanned by {x, y}. If f (x) = f (y) thenK(P) = {0}. Thus, Thm. 1 completes
the assertion on coatoms.

The second assertion is true since the infimum in P0 is the intersection and since
P0 is coatomistic by Thm. 2. ��

We describe the coatoms of P0(c3, a3,cl) in terms of matrices and extreme points.

Remark 4 (Edges, Matrices, and Extreme Points) Lemma 5 above characterizes the
coatoms ofP0(c3, a3,cl) as those projectors P ⊆ C(2)×3 forwhich the complementary
projectors P ′ are edges of the complete bi-partite graph K4,4. Table 1 and Table 2 list
the sixteen edges of K4,4 in the matrix notation of Equation (24). By Theorem 3,
the matrix 4P ′ − I I I is an extreme point of the spectrahedron S(U(c3, a3,cl)) for
all sixteen coatoms P of P0(c3, a3,cl), because they are two-local Hamiltonians. All
extreme points of the spectrahedron S(U(c3, a3,cl)) are obtained in this way.

Lemma 6 Let P ⊆ C(2)×3 be a subset. The projector P is a coatom of the lattice
P ff
0 (c3, a3,cl) if and only if P ′ is an edge of the graph K4,4 which connects two vertices
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Table 1 Edges of K4,4 that connect vertices differing in exactly one digit

{000, 001} = diag(1, 1, 0, 0, 0, 0, 0, 0) = 1
4 (I + Z)(I + Z)I

{010, 011} = diag(0, 0, 1, 1, 0, 0, 0, 0) = 1
4 (I + Z)(I − Z)I

{100, 101} = diag(0, 0, 0, 0, 1, 1, 0, 0) = 1
4 (I − Z)(I + Z)I

{110, 111} = diag(0, 0, 0, 0, 0, 0, 1, 1) = 1
4 (I − Z)(I − Z)I

{000, 010} = diag(1, 0, 1, 0, 0, 0, 0, 0) = 1
4 (I + Z)I (I + Z)

{001, 011} = diag(0, 1, 0, 1, 0, 0, 0, 0) = 1
4 (I + Z)I (I − Z)

{100, 110} = diag(0, 0, 0, 0, 1, 0, 1, 0) = 1
4 (I − Z)I (I + Z)

{101, 111} = diag(0, 0, 0, 0, 0, 1, 0, 1) = 1
4 (I − Z)I (I − Z)

{000, 100} = diag(1, 0, 0, 0, 1, 0, 0, 0) = 1
4 I (I + Z)(I + Z)

{001, 101} = diag(0, 1, 0, 0, 0, 1, 0, 0) = 1
4 I (I + Z)(I − Z)

{010, 110} = diag(0, 0, 1, 0, 0, 0, 1, 0) = 1
4 I (I − Z)(I + Z)

{011, 111} = diag(0, 0, 0, 1, 0, 0, 0, 1) = 1
4 I (I − Z)(I − Z)

Table 2 Edges of K4,4 that connect vertices differing in all three digits

{000, 111} = diag(1, 0, 0, 0, 0, 0, 0, 1) = 1
4 (I I I + I Z Z + Z I Z + Z Z I )

{001, 110} = diag(0, 1, 0, 0, 0, 0, 1, 0) = 1
4 (I I I − I Z Z − Z I Z + Z Z I )

{010, 101} = diag(0, 0, 1, 0, 0, 1, 0, 0) = 1
4 (I I I − I Z Z + Z I Z − Z Z I )

{100, 011} = diag(0, 0, 0, 1, 1, 0, 0, 0) = 1
4 (I I I + I Z Z − Z I Z − Z Z I )

that differ in exactly one digit. The projector P lies in P ff
0 (c3, a3,cl) if and only if P ′

is a union of the described edges.

Proof Let P ff
0 = P ff

0 (c3, a3,cl). By Equation (21), the set of coatoms of P ff
0 is

⋃3
i=1

{
P I{i} : P is a coatom of P(AΩ\{i})

}
.

The complementary projector to the coatom P I{i} can be written as

(P I{i})′ = IΩ − P I{i} = QI{i},

where Q = IΩ\{i} − P is an atom of the latticeP(AΩ\{i}). SinceAΩ\{i} is isomorphic
to the two-bit algebra C

C(2) ⊗ C
C(2), the projector Q is a rank one projector, which

we write as a two-digit binary number Q = xy for some x, y ∈ C(2). This shows that
the two elements in the subset

(P I{i})′ = QI{i} ⊆ C(2)×3

differ exactly in the i-th digit. Conversely, (IΩ\{i} \ {xy})I{i} is a coatom of P ff
0 , again

by Equation (21), for all i ∈ Ω and x, y ∈ C(2). The second statement is true as the
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infimum in P ff
0 is the intersection and since P ff

0 is coatomistic, see the discussion in
Sect. 4.1. ��

We turn to the interaction pattern p3 with generating class {{1, 2}, {2, 3}}, the edge
set of the path graph P3. The space U(p3, a3,cl) is the orthogonal complement of the
span of f = Z Z Z and g = Z I Z inH(AΩ) = R

CΩ . We have

g(x1x2x3) = (−1)x1+x3, x1, x2, x3 ∈ {0, 1},
g = diag(+1,−1,+1,−1,−1,+1,−1,+1).

Lemma 7 Let P ⊆ C(2)×3 be a subset. The projector P is a coatom of the lattice
P0(p3, a3,cl) if and only if P ′ is an edge of the graph K4,4 which connects two ver-
tices that differ exactly in the first digit or exactly in the third. The projector P lies
in P0(p3, a3,cl) if and only if P ′ is a union of the described edges. Every nonzero
element of P0(p3, a3,cl) is the ground projector of a frustration-free p3-local three-bit
Hamiltonian.

Proof We abbreviate U = U(p3, a3,cl) and P0 = P0(p3, a3,cl). The lattice P0 has no
elements of rank seven by Lemma 4.

If P ∈ P0 has rank at most five, then P is not a coatom. Indeed, since f and g
are perpendicular to U , Cor. 1 shows that both f and g are nonconstant on P ′. As
|P ′| ≥ 3, there are three mutually distinct points x, y, x ∈ P ′, such that both f and g
are nonconstant on {x, y, z}. First, let both f and g be nonconstant on a subset of size
two of {x, y, z}. Then P is not a coatom of P0 by a similar reasoning as in Lemma 5
above. Otherwise, by multiplying f and g with ±1 and permuting the labels of the
points x, y, z, we can assume without loss of generality that

+1 = f (x) �= f (y) = f (z) = −1,
+1 = g(x) = g(y) �= g(z) = −1.

Second, if P ′ = {x, y, z} then the conesK(P) andK({x, z}′), defined inEquation (11),
are equal to the ray spanned by {x, z}. Thm. 1 then shows P /∈ P0. Third, let η ∈
P ′ \ {x, y, z}. If f (η) = f (a) and g(η) = g(a) for a point a ∈ {x, y, z}, then P /∈ P0
again by a similar reasoning as in Lemma 5. Finally, if f (η) = +1 and g(η) = −1
then the spaceH(P ′.AΩ.P ′)∩U contains the linearly independent rank two projectors
{x, z} and {y, η}, hence P is not a coatom by Equation (15).

Let P ⊆ C(2)×3. The preceding part of the proof shows that P is a coatom of P0
if and only if P ∈ P0 and |P| = 6. Let P ′ = {x, y} for x �= y. As cone K(p) is a
ray if and only if f (x) �= f (y) and g(x) �= g(y), Thm. 2 confirms the assertion on
coatoms.

The second assertion, regarding general elements of P0, is true since the infimum
in P0 is the intersection and because P0 is coatomistic (see the last paragraph of
Sect. 3.4).

The third assertion follows from the fact that every coatom P of P0 is the ground
projector of its complementary projector P ′, and that P ′ is a frustration-free p3-local
three-bit Hamiltonian, see the rows 1–4 or 9–12 of Table 1. ��
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Lemma 7, Lemma 6, and Lemma 5 describe the lattices of ground projectors

P ff
0 (p3, a3,cl) = P0(p3, a3,cl) ⊂ P ff

0 (c3, a3,cl) ⊂ P0(c3, a3,cl).

The coatoms in each lattice are projectors of rank six, which are complements to
certain edges of the graph K4,4. The eight edges in Table 1, rows 1–4 and 9–12,
belong to the coatoms in the lattices P ff

0 (p3, a3,cl) = P0(p3, a3,cl) . All twelve edges
in Table 1 pertain to the lattice of ground projectors of the frustration-free two-local
Hamiltonians. The sixteen edges of Table 1 and Table 2 together belong to the lattice
of ground projectors of all two-local Hamiltonians. All other lattice elements are
intersections of coatoms in each of the lattices.

4.5 A family of coatoms of rank five

We present a family of coatoms of rank five in the lattice P0(c3, a3,qu) of ground
projectors of the space U(c3, a3,qu) of two-local three-qubit Hamiltonians. This is in
contrast with the lattice P0(c3, a3,cl) in the commutative setting, where Lemma 5 rules
out the existence of coatoms of rank five.We found the family of coatomswith the help
of the semidefinite programming strategy that samples extreme points from the dual
spectrahedron proposed in Sect. 3.6. Whereas this is a two-parameter family, it covers
a higher-dimensional family of extreme points in the spectrahedron of dimension up
to eleven. In fact [12], the generic dimension of the orbit of a mixed (or pure) N -qubit
state under local unitary transformations is 3N if N ≥ 2. The question as to whether
our family provides two nonlocal parameters can be rigorously studied using invariant
theory, see [20, 35, 42] and the references therein.

4.5.1 The numerical procedure

Recall that we are trying to find extreme points of the spectrahedron S(U(c3, a3,qu)).
By what was seen in Sect. 4.1, this spectrahedron is given by

S(U(c3, a3,qu)) =
{
x ∈ R

36 : I8 +
36∑
i=1

xi Ai � 0

}
,

where the Ai range over all thematrices of the form B1B2B3 where Bj ∈ {I , X ,Y , Z},
for j = 1, 2, 3, at least one of them is I , but not all three are I .

This is then a 36-dimensional object defined by an 8 × 8 positive semidefinite
condition, an object that is quite amenable to semidefinite programming.UsingMOSEK
9.2.10, we optimized in randomlygenerated directions inR

36 and recorded the ranks
of the correspondingmatrices.After 65000we recorded the following rank distribution

Rank 2 3 4
Frequency 83.62% 9.57% 6.81%

.

Note that the ranks indicated are numerical, obtained by cutting off eigenvalues of
sufficiently small magnitude, and do not provide exact certificates of the existence of
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such extreme points. This, however, strongly suggests that in addition to the rank 6
coatoms in U(c3, a3,cl), there exist rank 4 and 5 coatoms in U(c3, a3,qu).

By carefully looking at the samples we were obtaining with rank 3, and after some
ad hoc algebraic manipulations we were able to identify some of them that seem to
come from the two-parameter family

M(a, t) =

⎛
⎜⎜⎜⎝

a2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 4 cos(t)2 −√η sin(2t) 0 0 0 0
0 0 −√η sin(2t) η sin(t)2 0 0 0 0
0 0 0 0 4 sin(t)2

√
η sin(2t) 0 0

0 0 0 0
√

η sin(2t) η cos(t)2 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎠

= I I I + a2

4
[ I I Z + sin(t)2 I Z I + cos(t)2 Z I I ]

+
√

η

2
sin(2t) ( I Z − Z I ) X

+ a2

8
( I Z + Z I ) Z − 1

8
(8− a2) cos(2t) ( I Z − Z I ) Z − η

4
Z Z I ,

where η = 4− a2, 0 ≤ a ≤ 2, and t ∈ [0, π).
This suggests that the matrices in this family correspond to a family of extreme

points of S(U(c3, a3,qu)) whose normal cones collectively have some non-negligible
positive volume. The last task remaining is to, from this heuristically derived family,
derive an exact certificate that it is indeed a family of extreme points. In what follows,
we illustrate that procedure.

4.5.2 Algebraic certificates

We show that the ground projector P = P0(M(a, t)) defined in the prior section is a
coatom of the lattice P0(c3, a3,qu) except for special parameters.

By Equation (15) in Remark 2, it suffices to show that the intersection of the
space H(P ′.AΩ.P ′) of hermitian matrices in the algebra P ′.AΩ.P ′ with the space
U(c3, a3,qu) of two-local three-qubit Hamiltonians is the line spanned by M(a, t). If P
is a coatom, thenwe also learn fromTheorem3 that the hermitianmatrixM(a, t)− I I I
is an extreme point of the spectrahedron S(U(c3, a3,qu)). Here, P ′ = I I I − P , and
AΩ = A{1,2,3} = M⊗32 is the algebra associated with three qubits.

Let us recover the matrix M(a, t) from P in the sense that H(P ′.AΩ.P ′) ∩
U(c3, a3,qu) is the line spanned by M(a, t), under the condition that a /∈ {0, 2} and
t /∈ {0, π

2 }. The matrix M(a, t) is positive semidefinite of rank three, and its kernel is
spanned by the vectors

|001〉, |110〉, |111〉,
|ψ1〉 = √η sin(2t)|010〉 + 4 cos(t)2|011〉,
|ψ2〉 = √η sin(2t)|100〉 − 4 sin(t)2|101〉.
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Let A ∈ U(c3, a3,qu) be an arbitrary two-local Hamiltonian. We can write A =∑37
i=1 zi Ai for some z ∈ R

37, where the Ai range over all the matrices of the form
B1B2B3 where Bj ∈ {I , X ,Y , Z}, for j = 1, 2, 3 and at least one of them is I .
Assuming that A lies in the algebra P ′.AΩ.P ′, we can set the real and imaginary parts
of the vectors A|001〉, A|110〉, and A|111〉 to zero, as the vectors |001〉, |110〉, |111〉
lie in the kernel of every matrix from P ′.AΩ.P ′. This allows us to get rid of 29 of the
zi ’s with the help of Wolfram Mathematica 9. One eliminates by hand seven
of the remaining eight parameters by requiring that the real and imaginary parts of the
vectors A|ψ1〉 and A|ψ2〉 are zero. This is the only place where the variables a and t
play a role, as far as a /∈ {0, 2} and t /∈ {0, π

2 } guarantees that the seven variables can
be eliminated.

Out of curiosity, we discuss the special parameter values. As the matrix M(0, t) has
rank two, Theorem 3 and Lemma 4 show that the point M(0, t)− I I I is an extreme
point of the spectrahedron S(U(c3, a3,qu)). The corresponding coatom of the lattice
P0(c3, a3,qu) is the matrix I I I − 1

4M(0, t), as the positive eigenvalues of M(0, t)
are equal for all t ∈ [0, π). The matrix M(2, t) belongs to the commutative algebra
(CC(2))⊗3 and has rank three unless t = 0 or t = π

2 , in which case it has rank
two. By Lemma 5, the ground projector P0(M(2, t)) is not a coatom of U(c3, a3,cl)
if M(2, t) has rank three. It follows that the point M(2, t)− I I I is an extreme point
of the spectrahedron S(U(c3, a3,qu)) if and only if t ∈ {0, π

2 }. The matrix M(a, 0)
belongs to the commutative algebra (CC(2))⊗3 and has rank three unless a = 0 or
a = 2, in which case it has rank two. It follows that M(a, 0) − I I I is an extreme
point of the spectrahedron S(U(c3, a3,qu)) if and only if a ∈ {0, 2}. The same happens
at t = π

2 , where the point M(a, π
2 ) − I I I is an extreme point of the spectrahedron

S(U(c3, a3,qu)) if and only if a ∈ {0, 2}.

4.6 Tomography and nonexposed faces

Karuvade et al. [25] discovered a six-qubit state that is uniquely determined by its
two-body reduced density matrices, but which is not the unique ground state of any
two-local Hamiltonian. We discuss the convex geometric consequences of this result.
Related observations have been made earlier [15, 38].

A basic problem of quantum state tomography is to find conditions under which
a state can be recovered from certain data, for example from its image under the
projection πU onto a space of hermitian matrices U . We say a state ρ ∈ D(A)

is uniquely determined by πU if ρ = σ whenever πU (ρ) = πU (σ ) for all states
σ ∈ D(A). We say a subset of D(A) is uniquely determined by πU if all its elements
are.

Another problem of tomography is concernedwith ground states. A state ρ ∈ D(A)

is a ground state of a hermitian matrix A ∈ H(A) if ρ is supported by the ground
projector P0(A), that is to say, if ρ lies in φA(P0(A)), as defined in Equation (5). A
state ρ is the unique ground state of A if we have {ρ} = φA(P0(A)). In this case
ρ = P0(A)/Tr(P0(A)) holds.

The above notions of tomography have counterparts in terms of faces of the joint
numerical range πU (D(A)). A face of a convex set C in a Euclidean space is a convex

123



322 Information Geometry (2023) 6:293–326

subset F of C such that whenever (1 − λ)x + λy lies in F for some λ ∈ (0, 1) and
x, y ∈ C , then x and y are also in F . It is well known that every exposed face of C is
a face of C . A face that is not an exposed face is called a nonexposed face. If x ∈ C
and {x} is a face or nonexposed face, then x is called an extreme point or nonexposed
point, respectively.

A subset F ofD(A) is lift-invariant under πU if F = πU |−1D(A)
(πU (F)). Note that

every subset of D(A) which is uniquely determined by πU is lift-invariant under πU .
Lemma 8 A subset F ⊆ D(A) is the preimage πU |−1D(A)

(G) of a face G of πU (D(A))

if and only if F is a face of D(A) which is lift-invariant under πU . If F is a face of
D(A) lift-invariant under πU , then πU (F) is an exposed face of πU (D(A)) if and only
if F = φA(P0(A)) holds for some A ∈ U .
Proof The first statement is proved in Prop. 5.7 in [46] for faces F . This and the fact
that preimages of faces are faces prove the statement for general subsets F . The second
statement follows from Equation (8). ��

We remark that the inverse isomorphism φ−1A , introduced in Equation (5), can be

applied to the preimage F = πU |−1D(A)
(G) of every face G of πU (D(A)), not only to

the exposed faces. In the context of g-local Hamiltonians (17), the image P(Cd) ⊆ C
d

of the projector P = φ−1A (F) associated with F has been called a g-correlated space
[15].

Corollary 3 For any state ρ ∈ D(A), the singleton {ρ} is the preimage of an extreme
point of πU (D(A)) if and only if ρ is a pure state of A which is uniquely determined
by πU . If ρ is a pure state ofA uniquely determined by πU , then πU (ρ) is an exposed
point of πU (D(A)) if and only if ρ is the unique ground state of a matrix A ∈ U .
Proof The claim follows from Lemma 8 as every lift-invariant singleton is uniquely
determined by πU . ��

It was an open problem [14, 15] whether the set of reduced density matrices can
have nonexposed faces. Here, we discuss prior work [15, 25] regarding two-body
reduced density matrices of N qubits. Using the notation of the Sects. 4.1 and 4.3, we
employ the algebra Ai = M2 for each unit i ∈ Ω = {1, 2, . . . , N }. We denote the
linear map (16), which maps a density matrix to its reduced density matrices, by

redN = red
((N2),aN ,qu)

and the space of two-local N -qubit Hamiltonians (17) by

UN = U(
(N
2

)
, aN ,qu).

Equation (19) shows that the map redN factors through UN and that

πUN (D(AΩ))
redN−→ redN (D(AΩ)) (25)

is a bijection from the joint numerical range onto the set of two-body reduced density
matrices of N qubits. The set red6(D(AΩ)) has a nonexposed point.
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Remark 5 (Six Qubits) Using dissipative quantum control theory, Karuvade et al. [25,
Section IV.B] discovered a pure six-qubit stateρ ∈ D(AΩ) that is uniquely determined
by its two-body reduced density matrices, but which is not the unique ground state
of any matrix in U6, the space of two-local six-qubit Hamiltonians. Equation (25)
shows that ρ is uniquely determined by the projection πU6 . Hence the point πU6(ρ)

is a nonexposed point of the joint numerical range πU6(D(AΩ)) by Corollary 3, and
the point red6(ρ) is a nonexposed point of the set red6(D(AΩ)) of two-body reduced
density matrices of six qubits, again by Equation (25).

Lemma 9 (Three Qubits) The set red3(D(AΩ)) of two-body reduced density matrices
of three qubits has no nonexposed points.

Proof Let x be an extreme point of the convex set red3(D(AΩ)). Then x = red3(ρ)

is the image of an extreme point (pure state) ρ of the state space D(A). First, let ρ be
of the GHZ type [9]

|GHZ〉 = α|000〉 + β|111〉

for some α, β ∈ C satisfying |α|2 + |β|2 = 1. That is to say,

ρ = U1U2U3.|GHZ〉〈GHZ|.U∗1U∗2U∗3
for some unitaries U1,U2,U3 ∈ U (2). Applying a unitary similarity, we can take
Ui = I , i = 1, 2, 3, without loss of generality. Then the two-body reduced density
matrices are red3(ρ) = y(|β|2), where

y(λ) = (σ, σ, σ ) and σ = (1− λ)|00〉〈00| + λ|11〉〈11|, 0 ≤ λ ≤ 1.

Since the segment {y(λ) | 0 ≤ λ ≤ 1} lies in red3(D(AΩ)) and since the point
x = y(|β|2) is an extreme point, we have σ = |i i〉〈i i | and ρ = |i i i〉〈i i i | either
for i = 0 or i = 1. This shows that ρ is the unique ground state of the two-local
Hamiltonian

(I{1,2} − σ)I{3} + I{1}(I{2,3} − σ).

Second, if the pure state ρ is not of the GHZ type, then ρ is the unique ground state
of a two-local Hamiltonian, too [15, Section V.A].

In both cases, the state ρ is the unique ground state of a two-local Hamiltonian.
Equation (9) then shows that πU3(ρ) is an exposed point of the joint numerical range
πU3(D(AΩ)). Equation (25) proves that red3(ρ) is an exposed point of the set of
reduced density matrices red3(D(AΩ)). ��

Remark 5 and Lemma 9 prompt the question of whether the convex sets
red4(D(AΩ)) and red5(D(AΩ)) have nonexposed points. It would also be inter-
esting to establish whether the convex set red3(D(AΩ)) has nonexposed faces of
higher dimensions 1, 2, . . . , 34.
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