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ABSTRACT: Angelesco systems of measures with Jacobi type weights are consid-
ered. For such systems, strong asymptotic development expressions for sequences
of associated Hermite-Padé approximants are found. In the procedure, an approach
from Riemann-Hilbert Problem plays a fundamental role.
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1. The statement of the Riemann-Hilbert problem

Let A; = [c15,¢2;] C R, j = 1,2, be two intervals which are symmetric
with respect to the origin. This means that ¢ = —cp92 and ¢ 9 = —cg1. For
each j = 1,2, we take a holomorphic function h;, on a neighborhood V; of
Aj,ie. h; € H(Vy,). Let us define the system of measures (o1, 02) where
o1 and oy have the differential form

h;(z)dx
Vi —eig)(eay —a)
This system (o1, 09) belongs to the class of Angelesco systems introduced by
Angelesco in [1]. Fix a multi-index n = (ny,ns), we say that a polynomial
@n #Z 0is a type [T multiple-orthogonal polynomial corresponding to a system

(01, 09), if deg Qn < |n| = n1+n9 and @y, satisfies the following orthogonality
conditions

reN;, j=1,2

doj(x) =

/ 2"Qn(x)doj(x) =0, v=0,...,n;—1, j=1,2.
Aj

It is well known that for any multi- mdeX n= (nq, ng) the polynomial (), has

exactly nq+ns9 simple zeros lying in A1 UAQ, where A denotes the interior set
of Aj, 7 =1,2. Our propose in the present article COIlSlStS in obtaining results
about the strong asymptotic development of sequences of multi-orthogonal
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polynomials {Q, : n € Z*}. An effective method for such study with this
kind of “very well” measures, is analyzing of the Riemann-Hilbert problem for
multi-orthogonal polynomials, which was introduced in [5]. Let us consider
a 3 X 3 square matrix, Y, whose entries are complex functions Y, : C — C,

s,k =1,2,3. Given a point x € A;UAs, the following matricial limits, where
z € C\ (A1 UA)) tending to x, represent the formal pontual limits of all
entries of Y at the same time:

lIimY(z) = Yi(z), Sm(z)>0

Z—T

limY(z) = Y_(z), Sm(z)<0.

Z—T

Let 0, denote the Kroneker delta function. Let us look for a matrix func-
tion Y which satisfies the following conditions:

(1) The entries of Y, Y; 1, belongs to H(C \ (A; U Ay)), which we write
as Y € H(C\ (A1UA2));
(2) For each A, j = 1,2, the so called jump condition takes place

1 27Ti51_]jh1(£6)d£6 27Ti52_]jh2(£6)d£6
\/(58—01,1)(02,1—96) \/(58—01,2)(02,2—30) o
Vi) = V() [ 1 ; rely;
0 0 1

(3) Given a multi-index n = (ny, ns), we require the following asymptotic
condition at infinity,

im0 0
Y()I 0 2 0| =I4+0(1/2) as z— o0,
0 0 2™

where I is the identity matrix with rank 3 ;
(4) For each i,7 = 1,2, we set the following behavior around the end-
points ¢; ; ,
92,5

1 o+ — 2§+
2.7 v 1z—cijl Ly \/|§—Cm‘|

2,5

5 J J
1 527j + 01 517j + Oy
V1z—cijl V17—l

This problem, which consists in finding the matrix function Y, was called in [5]
a Riemann-Hilbert problem for type II multiple orthogonal polynomials, and
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for the system of measures (o1, 02), RHP in short. The solution Y is unique
and has the form

Qn( ) fAl Q"’ :U) z— 96) _fAQ Qnd(;%(fx)

Y(2) = denl o, O (@) 22— [, Qu 22 ()
d2Qu2 () = [y, Qu2 (1) — [y, Qn2 227
with d; 7' = _fAi x"i_lQni_(x)dai(x), i = 1,2, and if n = (n1,n9), n! =

(ny — 1,n9) and n? = (ny,ny — 1).

The key of our procedure is based in finding the relationship between Y and
a matrix function R which is the solution of another RHP with the following
formulation. Suppose that v is a closed simple and smooth contour on the
complex plane C, then find a matrix function, R, such that:

(1) R: C — C* belongs to H(C \ v);
(2) Re(§) = R-(§Val§), £ €;
(3) R(z) =1 as z — o0,
where V,, is a 3 x 3 matrix function, which is called the jump matrix.
Given an arbitrary 3 x 3 matrix function K = [Ki] ., s,k = 1,2,3,
defined on a open set 2 C C let us denote by || K| (respectively, | K||q) the

matrix infinity norm which consists in the maximum sum of row’s entries
modulus, defined for 3 x 3 matrices, i.e.

3
171 = s D1l (respecivel, [l =sup 1)

Theorem 1 (See Theorem 3.1 in [7]). Suppose that  is an open set con-
taining . In condition (2) of the RHP for R, let us require for V, € H(S2)
that there exist constants C' and 6n, > 0 for which

Ve —Iljq < On.
Then, any solution of the RHP for R satisfies that
|R(z) =1|| < C||Va = 1||o  for every =z € C\ 7.

Notice that if we know the relationship between R and Y and if we can also
describe the development of R when |[n| — 0o, we would have a description
for the development of all entries of Y when |n| — oo, particularly for

Y11(2) = Qa(2).
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The RHP for Y is not normalized in the sense that the conditions (3) at
infinity for Y and R are different. In order to normalize the RHP, we are
going to modify Y in such a way that we set another RHP with the same
contours (possibly different jump conditions), for which the solution tends to
the identity matrix as z — 0o. For normalizing we need to take into account
the behavior of Y (z) for large z. This behavior depends on the distribution
of the zeros of the multiple-orthogonal polynomials. The zero distribution
of the orthogonal polynomials is usually given by an extremal problem in
logarithmic potential theory. In section 2 we introduce some concepts and
results which we will need about this theory and we will normalized the
Riemann-Hilbert problem at infinity. In section 3 such a Riemann-Hilbert
problem with oscillatory and exponentially decreasing jumps can be analyzed
by using the steepest descent method introduced by Deift and Zhou (see [3,

4]).

2. The equilibrium problem and the normalization at
infinity
Let us fix j € {1,2}. M, 5(4;) denotes the set of all finite Borel measures

whose supports, i.e. supp (-), are contained in A; with total variation 1/2.
Take p1; € My /9(A;) and define its logarithmic potential as follows

VHi(z) = /1og| ! ‘duj( T), z e C.

For each pair of measures (p1, p2), where p1; € My 5(4;), j = 1,2, we define
the quantities

mj(:ulaluQ) = min (QVNJ(x) + vuk(l‘)) ) jak = 1727 ] 7& k.

xEAj

The following Proposition is deduced immediately from the results of [6].

Proposition 1. There exists a unique pair (fiy, fiz) € My o(A1) X My 9(As),
which satisfies for 7,k =1,2

VI (z) + VI (x) = m;(fi1, fia) = mj, x €supp (i;) =4, j#k.
For each j = 1,2 the measure [i; has the following differential form
_ p1(z)dx _ p2(x)dx
A (x) = ;o dip(x) = ;
V(e —cin)(ean — ) V(w—cip)(cap — )

where p; € H(V,,), with V,. denoting an open set which contains A;.
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The pair (fi, fio) is called extremal or equilibrium pair of measures with
respect to (A1, As). Let us denote for each j = 1,2 the analytic potentials

gi(z) = / log(z — x)dp;(z) = —VF(2) + i/ arg (z — x)dpi(z),

A*

J

where A}’f is the support of the extremal measure, fi;, that coincides in
our case with A;, for j = 1,2. Substituting the potential logarithmic in
Proposition 1 we obtain for each j, k = 1,2 with j # k that

— g5+ +gi-] (@) —gr—(x) =m;, x€A;.
Observe that

0 if C2.j <ux
(gj—i- - gj—) (.I') =T if C1,j > .
2im [ dpi(t) if x € A

In what follows all the multi-indices will have the form n = (n,n). Let us
introduce the matrices

e—2n(g1(2)+92(2)) 0 0 1 0 0
G(z) = 0 enoz) , L=|[0 e?m . (2)
0 0 62ngg(z) 0 0 6_2nm2

We define the matrix function T = LYGL™! | where L, G are as in (2) and YV’
is given by (1). Hence T is the unique solution of the RHP:

(1) T € H(C\ (A UAY));
(2) Ty(x) =T (x)M(z), © € Ay U Ay;
EZ; T(z) =14+ 0(1/z) as z — o0;

T and Y have the same behav10r on the endpoints of the intervals A,

for j=1,2,
where the jump matrix M has the form
6_2mﬂ- f;z,j dpi; (t) 25j717m'w1(x) 25j,27m'w2(x) o
M(x) = 0 e2ndaim 124 djin (t) 0 , T EA;.

0 0 62715]-_,21'71' f;2’2 djia(t)
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3. The opening of the lens
For each j = 1,2, let ¢; denote the function defined by

6;(2) = i / Ldit) for eV =V, (AN NV (A)).

Notice that ¢;4(z) = im [** dj;(t) is purely imaginary and its derivative

J

Lo(2) = —ir pi(7)
Pi(2) V@ —cij)(c;— )

where —mp;(z)/\/(x —c1;)(ca; — ) <0, z € A;.

Rewrite ¢;(z) = Uj(2) +iV;(2) € H(V;). By the Cauchy-Riemann conditions
we have that the real part of ¢;, e ¢; , is an increasing function on any point
z € V; with Sm(z) > 0. Since Re¢; is zero in A;, it is positive in such

point. Notice ¢;1(z) = —¢;_(x), x € A;, hence we can proceed analogously
when Sm (z) < 0.
We analyze the jump function in A;, i.e.

6_2n¢j+(x) 27m'5j,1w1(x) 27m'5j,2w2(x) 5 }le @) 00
: j,1€ -
M(z) = 0 e~ 2051m61- () 0 Nl e 10
0 0 —20j,2nd2-(2 _ Gjpe7 02
€ 2miws () 01
0 27m'5j,1w1(x) 27m'5j,2w2(x) 1 00
0y S 0 _ Gjae i@ 0
X 271'%1111(1’) J»2 27m'w1¢(:v)( :
- 2. . 5,7', 67271 2+ (@
2miws () 0 53’1 o 227m'w2(:v) 01

Now we are going to follow an analogous procedure as in section 9 of [7]. Let
us fix a § > 0 such that the intervals [¢; j— 9, ¢1 ;] and [ca;, ¢2 j+ 0] are subsets
of V;, 7 = 1,2, and for each interval let us define two curves X, , XJ;_ in V;,
which goes from ¢; ; to g j, where ¥, = [¢1,—9, CLj]UZ;iU[CQ’j, co.j+0], with
the elements of the curves X7, satisfying that if 2 € ¥7,, then 0 < £3m (2)
(cf. Figure 1). Set I'j+ the domains that lie between X, and A;. Let us
introduce the matrix function S, defined by
1 0 0
51 e 2nd1-(2)
S(z)=T :FLJQMT(Z) L O], 2€Tl,s, and S=T, outside. (3)

52 je—2n¢2,(z)

+ 2miws(z) 0 1
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Hence on open intervals |¢; j—9, ¢1 ;[ and e j, c2,;+9] there are two combined
jumps. For the function w; we have that

wj-f—(x) - _wj—(x)a reRN V(A]) \ Aj? Jg=172.
Observe that

1 00 1 00 1 00

—2n —2n o 2nd
53'718. 2n¢y 5j71€' 2n¢y 1 0 1 1 61,476 i L 1 0 o H
2miw; — 2miwg 4 — w1— w1+ 2mi - 5
53_728.—271452 1 5j72€.—2n¢2 0 1 1 1 5273'872”@51 O 1
2wy 2miway Wo_ Wot 211

which means that S, defined by (3), is analytic function across Jc; ; — 0, ¢1 4]
and e j,c05 + 6], 5 = 1,2. Let 75, 7 = 1,2, be closed contours with the
clockwise direction, such that for each j = 1,2, v; = 25 UXE,. We have
changed the direction of the curve 7. . The function S satisfies the RHP:

(1) S € H(C\ Uj=12(8; Uj));
(2) The jump conditions for j = 1,2 are,

0 25147’(@11)1(.%) 2(52J7Ti71)2($)
015 o
S+(Q7) - S—(:U) _271'2511117(1') 527j 0 if x¢€ Aj,
o 271'25)23(50) 0 51 J
1 00

:|:§17je_2"¢’1(z) 10 . ~
Si(z) = S_(2) | 2mme if zevyN{xlmz<0};
:|:527j672n¢2(2)
2miws(z)

(3) S(2)=1+0(1/z) as z — o0;
(4) The conditions for the endpoints are the same as for 1.

-

Ej+

co; + 5
cl; -0 23

FIGURE 1. Opening of lens
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Now, we consider the limiting problem, because for the matrix S the jump
matrix function on each «; for j = 1,2 tends to the identity matrix when
In| — oo. We look for the matrix function N which satisfies the follow-
ing RHP:

(1) N e H(C\ (AU Ag));
(2) The jump conditions in A; for j = 1,2 are,

0 201 jmiw (x) 209 jmiws(x)
517j
Ni(@)=N-(2) | “zmm@m % ¥ ()
o 27715)2](:17) 0 517j

(3) N(2) =1+ 0(1/2) as z — oo}
(4) N satisfies the same conditions for the endpoints as S .

Set N = KD, where D is a diagonal matrix function and K = [Kj i,
k,l = 1,2, is the solution of the RHP:

(1) K e H(C\ (AU Ay));

(2) The jump conditions in A; for j = 1,2 are, because of (4),

0 2517j7T’L' 2527j7T’L'
V(eoa—z)(@—ci1)  \/(cr0—)(z—c12)
K (z)=K_(x) —517j\/(02,217;$)($—61,1) 5. 0 . (5)
—02,j4/ (c22—x)(x—C1,2)
\/ 27i 0 51,3’

(3) K(2) =14+ 0(1/2) as z — oo}
(4) K and N have the same conditions for the endpoints.

Analogously to the ideas in [2], let us choose the branches of the square root
which glue along the intervals A;, j = 1,2, i.e.

(\/(x — o) (@ — cl,j)> . (\/(x — ) — cl,j)> CrEN;, j=12.

+ —
For each i = 1,2, 3, we rewrite (5) as

(Y ko) (@) = (Kuaf2)+(
(Kia)s(2) = (Kig)-(2)

, T €N
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(L Kial)) @) = ()l
(Ki2)+(2) = (Kiz)- (@)

and we denote

Gi(2) = Kia(e), and wi(e) = YEZIE ) ey e,
Then from the relations (5), we may interpret each row ¢ = 1,2,3 of such
matrix K as a function defined on a Riemann surface. Let R define the
Riemann surface which has two cuts. One of them connects the two branch
points ¢17 and c¢o; with the cut in the interval Ay = [c11, c21]. The other
cut is made in the interval Ay = [c; 9, ¢22], to connect the two other branch
points c¢12 and cp2. The sheet Ry is glued to another sheet R; along the
cut A1, and Ry is also glued to Ry along the interval As. Let us denote by
W', i = 1,2,3, three multi-valued function ¢' = (¢, ¢}, 1%) , such that its
components ¢!, i = 1,2,3, 1 = 0,1,2, map the corresponding sheet R; on C,
and satisfy for j = 1,2

ngi(x) = ;-]F(x), LESIARH wﬁ(z’) =0(1) as z—cy, k=1,2; (6)
for j,k =1,2, ¥{(z) = O(1), as z — ¢ ;; around the infinity, and j = 1,2,
vo(2) =61 +O(1/2) , Yi(z) =201 +O(1) as z— o0.
The equalities (6) are equivalent to
(Wov))+ (@) = (Wpj) (), z€h;, j=1.2.

From Liouville’s theorem, it is easy to see that (¢fu{¢4)(z) = 1, z € C. This
implies that ¢;, [ = 0,1,2, 7 =1,2,3, do not become zero. Hence

1

(w6¢z>(z)=meH(@\Az), Lk=12 1#k =123
(2
We obtain that for each [ = 1,2, that is x € &l,
: : 1 S 1
Vo, ()Y (7) = — or equivalently (¢, v )(z) = —
o+ (2)¢p() ) (Vi )() e

That yields to the problems for ¢!, [ =1,2:
° ’g/}ll € H(C\Al),
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o (Vi ¥ )(@) =1/Yi(z), =€ A
o }(2) = 26; 1+ O (1) as 2 — 00}
e )i(2)=0(1)as z—cpy, k=1,2.
This problem is equivalent to the system of integral equations:

TR
vo(z) = D)0 (2)
i (2)
— ex \/(Z — Cl,l)(Z — 6271) IOg '@/}]Z{;(gf) dx | )
Y ( on A/ (=) (o —a)2—x +0irnga )> ,

for | = 1,2, with z € C\ A, and ga, is the analytic function which tends to
oo as log z, and whose real part vanishes in A;, j = 1,2
Let us find the diagonal 3 x 3 matrix function D with diagonal elements
Dy, Dy, Do, such that N(z) = K(z)D(z). The conditions (5) yield that entries
of D must satisfy the following conditions
hj(@)Dos(w) = Dy () when x € ﬁj, g, k=12, k#7.
Dy (x) = Dy ()
Analogously to the function !, we obtain the following problem for the
entries of D:
i) (DyD1Dy) = 1, which implies that for each [ = 0,1,2, D; does not
become zero;
ii) Dye HC\ A),1=1,2;
iii) (DieDi-)(x) = hg(x)/(Ds(x)), s=1,2, s#1, xe€A,l=1,2;
iv) Di(z) =1+ 0O (1/z) as z — o0, [ = 1,2,
v) Di(z) =01)asz — ¢y, k=1,2,1=1,2.

This problem is equivalent to the following system of integral equations where
[=1,2,

V(= )z — e log (hk(:@) dx

Di(z) = ex
l( ) p 27T A, \/(x—cl’l) (0271_'@)2—33

Do(Z) = m with ZE@\&[.
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Let us take the three multi-valued function (Dy(z), D1(z), Do(2)). Notice
that for each [ = 0, 1, 2, the function D; is another function which maps the
sheet R; on C. In our case the components of functions (Dy(z), D1(2), Da(z))
satisfy the conditions iv) and v) required for D;, [ = 0,1,2. Finally the
matrix function N has the form

(Do) () 22

o)
N() = | (D)) o2 q;)
(Doy)(e) 2t

(x—ci1

(2) (D2¢3)(2)
21—x) 4/ (a— 0122) 2,2—7)

(C) (U)zi) . (7)
(2 (2

)(z
2,1~ I) \/(ZC 012) 2,27 I)
) (D2v3)(2)
02 1— ,T) \/(SC C1 2)(02 2— ,T)

A\_/A\_/A\_/

We define R(z) = S(2)N~!(z). Since S and N have the same jump across ﬁj,

j=1,2, hence Ry (v) = R_(z) for x € Aj, j = 1,2. From the definition of R,
and the endpoint conditions for /N, we can also deduce that c;, i,k = 1,2,
are a removable singularity. Hence R is an analytic function across the full

intervals A; and Ay, and it has jumps on the curve ~. Then we have the
following RHP for R:

(1) Re HC\ (mUm));
(2) The jump conditions are for j = 1,2
1 00
§; e~ 2n1¢1(2) )
Ri(z)=R_(2) | T*75mwmy 1 0 if zevy N{£JImz < 0};
0. 2@_2"2¢2(z)
J72m’wg(z) 01

(3) R(2) =1+0(1/z).
Observe that matrix function R satisfies the hypothesis of the Theorem 1.

Then uniformly for z € C\ (7 U ), we have that R(z) =1+ O ( C'"')
with ¢ > 0 and

1 0 0
Y(z)= [0 enm (]1+(9(e—0|"|))
0 0 elnm
elPllit92) () 0 0
x N(z) 0 e~ Inl(mi+g1(2)) 0 :
0 0 e~ Inl(ma+g2)(2)

where N is given by (7).
Finally, we state the main result of this paper.
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Theorem 2.

Vii(2) = Qu(z) = Do(2)ub(2)em o420 (140 (e}

as n| — oo
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