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Abstract: The Fisher’s equation is established combining the Fick’s law for the
flux and the mass conservation law. Assuming that the reaction term depends on the
solution at some past time, a delay parameter is introduced and the delay Fisher’s
equation is obtained. Modifying the Fick’s law for the flux considering a temporal
memory term, integro-differential equations of Volterra type were introduced in the
literature.

In these paper we study reaction-diffusion equations obtained combining the two
modifications: a temporal memory term in the flux and a delay in the reaction
term. The delay integro-differential equations, also known as delay Volterra integro-
differential equations, are studied in the theoretical view point: stability estimates
are established. Numerical methods which mimic the theoretical models are studied.
Numerical experiments illustrating the established results are also included.
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1. Introduction

Nonlinear delay reaction-diffusion equations

∂u

∂t
(x, t) = D1

∂2u

∂x2
(x, t) + f(u(x, t), u(x, t− τ)), x ∈ (a, b), t ∈ (0, T ] (1)

where τ > 0 is a delay parameter, D1 > 0 is the diffusion coefficient, are
largely used on the description of biological phenomena.

The independent x-version of the equation (1) was considered in the liter-
ature to model a wide range of phenomena in biosciences (see [7]).
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Figure 1. Behaviour of the solutions: uF of the equation (2)
and uD of the equation (1) for different values of τ (τ = 0.2
(left), τ = 0.05 (right)).

Such equation arises naturally in the literature replacing the classical Fisher
equation (also known as Fisher-Kolmogorov-Petrovski-Piskunov equation)

∂u

∂t
(x, t) = D1

∂2u

∂x2
(x, t) + f(u(x, t)), x ∈ (a, b), t ∈ (0, T ], (2)

when the dependence of the reaction term on the solution u evaluated at the
present time t and at past time t− τ is assumed. The simplest model is the
one obtained replacing the diffusion Verhulst’s equation by the logistic delay
equation (1) with the reaction term

f(u(x, t), u(x, t− τ)) = Uu(x, t)
(

1 − u(x, t− τ)
)

.

Other reaction terms arise in the grow population phenomena (see for in-
stance [12], [29]).

In Figure 1 we compare, for the logistic term f(u) = Uu(1 − u), the be-
haviour of the solution uF of the classical Fisher equation (2) with the solu-
tion uD of (1) for U = 2, D1 = 0.1, τ = 0.05, 0.2, in [0, 50] and with the initial
condition

u0(x) =







1, x ≤ 25,

0, x > 25.
(3)

As it can be shown and as it is illustrated in Figure 1, when τ → 0, the
solution of (1) converges for the solution of (2).
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Delay Fisher’s equation (1) is based on Fick’s law for the flux J(x, t) - the
Fickian flux-

J(x, t) = −D1
∂u

∂t
(x, t), (4)

which is combined with the mass conservation law
∂u

∂t
(x, t) = −∂J

∂x
(x, t) + f(u(x, t), u(x, t− τ)). (5)

It should be stressed that in the context of heat conduction problems, the
flux J is known as Fourier flux.

For the logistic term f(u) = U(1 − u)u, if the initial condition is, for
instance, a step solution connecting the stationary states u = 0 (unstable
state) and u = 1 (stable state), then equation (2) has a travel wave solution
u(x, t) = φ(x − ct) such that c ≥

√
4D1U. Consequently, if the reaction

parameter goes to infinity, then the propagation speed also goes to infinity.
This pathologic behaviour is not presented in the physical phenomena but it
is introduced by the mathematical model. In order to avoid this limitation of
the classical Fisher’s equation in the context of reaction-diffusion phenomena,
in [15] and [16], was introduced the following non Fickian flux

J(x, t) = −D1

β

∫ t

0

e−
t−s
β

∂u

∂x
(x, s) ds. (6)

Infinite propagation speed is also a characteristic of the solution of heat
equation. In fact, if a sudden change in the temperature is made at a point
it will be felt instantaneously everywhere. This property, known as a infinite
propagation speed, is not present in heat conduction phenomena and is con-
sequence of the violation, by the Fourier law, of the principle of casuality for
the flux. Such behaviour induced Cattaneo to introduce in [11] the expres-
sion (6) for the heat flux including, in flux definition, a certain memory term
as an effort to avoid the infinite propagation speed ([11],[24], [35]).

The time memory flux (6) can be obtained assuming that a flux observed
at some time should be related with the gradient of the solution at some past
time, that is

J(x, t + β) = −D1
∂u

∂x
(x, t), (7)

where β is a delay parameter. Considering the first order approximation in
(7), we obtain

∂J

∂t
(x, t) +

1

β
J(x, t) = −D1

β

∂u

∂x
(x, t),
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Figure 2. Behaviour of the solutions: uF of the equation (2)
and uNF of the equation (9) for different values of β (β = 0.4
(left), β = 0.05 (right)).

whose solution is given by (6).
Combining (6) with the mass conservation law

∂u

∂t
(x, t) = −∂J

∂x
(x, t) + f(u(x, t)), (8)

the integro-differential equation

∂u

∂t
(x, t) =

D1

β

∫ t

0

e−
t−s
β

∂2u

∂x2
(x, s) ds + f(u(x, t)) , x ∈ (a, b), t > 0, (9)

is obtained.
In Figure 2 we compare, for the logistic term f(u) = Uu(1 − u), the be-

haviour of the solution of the classical Fisher equation (2) with the solution
of (9) for U = 1, D1 = 0.2, β = 0.05, 0.4, in [0, 50] and with the initial condi-
tion (3). As it can be shown and as it is illustrated in Figure 2, when β → 0,
the solution (9) converges to the solution of (2).

Let us now consider that in the reaction-diffusion system, the flux presents
two different components: one depending only on the diffusion and the second
one taking into account the time memory effect. This means that the flux
J(x, t) is splitted in two terms: the Fick’s flux J1(x, t) and the Cattaneo’s flux
J2(x, t) being the last one defined by (6). If we consider the mass conservation
law (8) then equation (9) is replaced by

∂u

∂t
(x, t) = D1

∂2u

∂x2
(x, t) +

D2

β

∫ t

0

e−
t−s
β

∂2u

∂x2
(x, s) ds + f(u(x, t)), (10)
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for x ∈ (a, b), t > 0. Otherwise, if we consider the mass conservation law (5),
then equation (10) is replaced by the Volterra integro-differential equation

∂u

∂t
(x, t) = D1

∂2u

∂x2
(x, t) +

D2

β

∫ t

0

e−
t−s
β

∂2u

∂x2
(x, s) ds + f(u(x, t), u(x, t− τ)),

(11)
for x ∈ (a, b), t > 0.

In some biological applications where delay models induced an erratic be-
haviour, the x-independent version of (11) have been applied. Without be
exhaustive we mention [7], [14], [19], [23],[32],[34], [36],[37]. Nevertheless, the
equation (11) should be consider to model such biological phenomena if the
spatial distribution is taken into account and the diffusion flux has two main
contributions: Fickian and the non Fickian.

The theoretical and numerical analysis of the Volterra integro-differential
equations (9) and (10) were consider for instance in [2]- [5], [8], [13],[15]-[17],
[24], [30], [31], [33]. Existence results for the solution of IBVP defined with
the retarded Volterra integro-differential equations (11) were established in
[9], [10].

Our aim in this paper is to study, from analytical and numerical viewpoints,
the solutions of retarded Volterra integro-differential equations (11) with the
conditions

u(a, t) = ua(t), u(b, t) = ub(t), t ∈ (0, T ], (12)

u(x, t) = u0(x, t), x ∈ (a, b), t ∈ [−τ, 0]. (13)

From analytical viewpoint we establish estimates to the L2 norm of the so-
lution and to the L2-norm of the past in time of its gradient. Such estimates
enable us to conclude the stability of the mathematical model with respect
to perturbations of the initial condition. From numerical point of view we
propose simple numerical methods that present the qualitative behaviour of
the continuous counterparts. The results obtained in this paper can be seen
as extension to the retarded Volterra integro-differential equations of the re-
sults previously obtained by the authors in [2]- [5], [8], for the solutions of
integro-differential equations. We point out that these results can be seen
also as extensions of the results obtained in [18] for delay reaction-diffusion
equations.

The paper is organized as follows. In Section 2 we study the retarded
Volterra integro-differential equations (11) with the conditions (12), (13).
The stability of the stationary states of (11) is analysed in Section 3. A
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simple discretization of (11), (12), (13) is introduced in Section 4. The dis-
crete version of the results proved for the continuous models in Section 2 are
established in Section 5. Finally, in Section 6 are included some numerical
simulations illustrating the theoretical results obtained in Section 5.

2. On the continuous retarded Volterra integro-differential

problem

2.1. Stability. In this section we analyse the stability of the IBVP (11),
(12), (13) with respect to perturbations of the initial condition (13).

We use the following notation: by v(t) we denote the x-function if v is
defined in [a, b] × [0, T ] and t is fixed. We represent by (., .) the usual L2

inner product and by ‖.‖ the usual L2 norm. By H1
0(a, b) we represent the

usual Sobolev space H1(a, b) of functions v null on the boundary points a and
b. Let L2(0, T, H1

0(a, b)) be the space of functions v defined in [a, b] × [0, T ]
such that, for t ∈ [0, T ], v(t) ∈ H1

0(a, b) and
∫ T

0

‖v(t)‖2
1 dt < ∞,

where ‖.‖1 denotes the usual norm in H1(a, b). Let L2(0, T, L2(a, b)) be de-
fined as L2(0, T, H1

0(a, b)) replacing H1
0(a, b) by L2(a, b).

In what follows we assume the following assumptions:

Mτ = T, (14)

u(x, t) ∈ [c, d], (x, t) ∈ [a, b] × [−τ, T ], (15)

for some c, d.

f is continuously differentiable in [c, d] × [c, d] , f(0, 0) = 0, (16)

and we use the notations:
(∂f

∂x

)

max
= max

(x,y)∈[c,d]×[c,d]

∂f

∂x
(x, y),

(∂f

∂y

)

max
= max

(x,y)∈[c,d]×[c,d]

∂f

∂y
(x, y) .

We establish, in the following result, an estimate for the energy functional

Eg,u(t) = ‖u(t)‖2 + 2D1

∫ t

0

‖∂u

∂x
(s)‖2 ds +

D2

β
‖
∫ t

0

e−
t−s
β

∂u

∂x
(s) ds‖2 , t ∈ [0, T ],

depending on the behaviour of the initial condition u0(x, t) for x ∈ [a, b] and
t ∈ [−τ, 0].
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Theorem 1. Let u be a solution of (11)-(13) with homogeneous boundary
conditions and such that

u ∈ L2(0, T, H1
0(a, b)),

∂u

∂t
,
∂2u

∂x2
∈ L2(0, T, L2(a, b)).

Then, under the assumptions (14)-(16) and for m = 1, . . . , M, we have

Eg,u(t) ≤ emCτ (1 + 2η2τ)m max
s∈[−τ,0]

‖u0(s)‖2 , t ∈ [(m − 1)τ, mτ ], (17)

where

C = max{1, 1

2η2

(∂f

∂y

)2

max
+ 2
(∂f

∂x

)

max
} (18)

and η denotes a nonzero constant.

Proof: Multiplying (11) by u(t) with respect to the inner product (., .)
and using integration by parts, we easily get

1

2

d

dt
‖u(t)‖2 = −D1‖

∂u

∂x
(t)‖2 − D2

β
(

∫ t

0

e−
t−s
β

∂u

∂x
(s) ds,

∂u

∂x
(t))

+(f(u(t), u(t− τ)), u(t)).

(19)

We study separately each term of the second member of the last equality.
As f(0, 0) = 0,

f(u(t), u(t− τ)) =
∂f

∂y
(0, θ1u(t − τ))u(t− τ) +

∂f

∂x
(θ2u(t), u(t− τ))u(t),

with θ1, θ2 ∈ [0, 1], and

(
∂f

∂y
(0, θ1u(t − τ))u(t− τ), u(t)) ≤ η2‖u(t − τ)‖2 +

1

4η2

(∂f

∂y

)2

max
‖u(t)‖2,

for some nonzero constant η, we obtain for (f(u(t), u(t − τ)), u(t)) the fol-
lowing estimate

(f(u(t), u(t− τ)), u(t)) ≤
( 1

4η2

(∂f

∂y

)2

max
+
(∂f

∂x

)

max

)

‖u(t)‖2 + η2‖u(t− τ)‖2.

(20)
For the second term of the second member of (19) holds the following repre-
sentation

(

∫ t

0

e−
t−s
β

∂u

∂x
(s) ds,

∂u

∂x
(t)) =

1

2

d

dt
‖
∫ t

0

e−
t−s
β

∂u

∂x
(s) ds‖2+

1

β
‖
∫ t

0

e−
t−s
β

∂u

∂x
(s) ds‖2.

(21)
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Considering (20) and (21) in (19), we get

d

dt

(

‖u(t)‖2 + 2D1

∫ t

0

‖∂u

∂x
(s)‖2 ds +

D2

β
‖
∫ t

0

e−
t−s
β

∂u

∂x
(s) ds‖2

)

≤ max{−2

β
, 1,

1

2η2

(∂f

∂y

)2

max
+ 2
(∂f

∂x

)

max
}
(

‖u(t)‖2 + 2D1

∫ t

0

‖∂u

∂x
(s)‖2ds

+
D2

β
‖
∫ t

0

e−
t−s
β

∂u

∂x
(s) ds‖2

)

+ 2η2‖u(t− τ)‖2 .

(22)
In order to get an estimate to Eg,u(t), we point out that, from (22), we have

E ′
g,u(t) ≤ CEg,u(t) + 2η2‖u(t − τ)‖2, t > 0, (23)

with C given by (18).
Let us consider t ∈ [0, τ ]. From (23) we obtain

d

dt

(

e−CtEg,u(t) − 2η2

∫ t

0

e−Cs‖u(s − τ)‖2ds
)

≤ 0 (24)

and then

Eg,u(t) ≤ eCt‖u(0)‖2 + 2η2

∫ t

0

eC(t−s)‖u(s− τ)‖2 ds . (25)

From inequality (25) we finally get for the energy Eg,u(t), with t ∈ [0, τ ],

Eg,u(t) ≤ eCτ (1 + 2η2τ) max
s∈[−τ,0]

‖u0(s)‖2 . (26)

Let us consider now t ∈ [τ, 2τ ]. From (23) we obtain

d

dt

(

e−CtEg,u(t) − 2η2

∫ t

τ

e−Cs‖u(s − τ)‖2ds
)

≤ 0 (27)

and then

Eg,u(t) ≤ eC(t−τ)Eg,u(τ) + 2η2

∫ t

τ

eC(t−s)‖u(s − τ)‖2 ds

≤ eCτEg,u(τ) + 2η2τeCτ max
t∈[τ,2τ ]

‖u(t − τ)‖2 .

(28)

Using (26) in (28) we deduce

Eg,u(t) ≤ e2Cτ (1 + 2η2τ) max
s∈[−τ,0]

‖u0(s)‖2 + τ2η2eCτ max
s∈[0,τ ]

‖u(s)‖2, (29)
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and again, using (26) in (29), we obtain

Eg,u(t) ≤ e2Cτ (1+2η2τ) max
s∈[−τ,0]

‖u0(s)‖2 + τ2η2e2Cτ (1+2η2τ) max
s∈[−τ,0]

‖u0(s)‖2 .

(30)
Inequality (30) implies

Eg,u(t) ≤ e2Cτ (1 + 2η2τ)2 max
s∈[−τ,0]

‖u0(s)‖2 , t ∈ [τ, 2τ ]. (31)

Considering now that for t ∈ [(m− 2)τ, (m− 1)τ ] holds the inequality (17)
with m replaced by m−1, following the procedure described above, we easily
get for t ∈ [mτ, (m + 1)τ ], the inequality (17).

The estimate (17) establishes an upper bound for

‖u(t)‖2,

∫ t

0

‖∂u

∂x
(s)‖2 ds, ‖

∫ t

0

e−
t−s
β

∂u

∂x
(s) ds‖2,

for each time t ∈ [0, T ], depending on eCmτ (1 + 2η2τ)m when t ∈ [(m −
1)τ, mτ ]. The exponential term can be eliminated in some cases. Neverthe-
less, in those cases, we only get an upper bound for

‖u(t)‖2, ‖
∫ t

0

e−
t−s
β

∂u

∂x
(s) ds‖2.

In fact, if we use in the identity (19) the Friedrichs-Poincaré inequality we
get

d

dt

(

‖u(t)‖2 +
D2

β
‖
∫ t

0

e−
t−s
β

∂u

∂x
(s) ds‖2

)

≤ max{−2

β
,− 2D1

(b − a)2
+

1

2η2

(∂f

∂y

)2

max
+ 2
(∂f

∂x

)

max
}
(

‖u(t)‖2

+
D2

β
‖
∫ t

0

e−
t−s
β

∂u

∂x
(s) ds‖2

)

+ 2η2‖u(t − τ)‖2,

(32)

which replaces (22). If the behaviour of the reaction term depending on the
solution at the present time t is dominated by the diffusion, that is,

D1

(b − a)2
−
(∂f

∂x

)

max
> 0, (33)
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then we conclude

d

dt

(

‖u(t)‖2 +
D2

β
‖
∫ t

0

e−
t−s
β

∂u

∂x
(s) ds‖2

)

≤ 2η2‖u(t − τ)‖2 (34)

with η defined by

2η2 =
1

2

(

∂f
∂y

)2

max

D1

(b−a)2
−
(

∂f
∂x

)

max

. (35)

Attending that (34) holds, following the proof of Theorem 1, we can prove
for

Eu(t) = ‖u(t)‖2 +
D2

β
‖
∫ t

0

e−
t−s
β

∂u

∂x
(s) ds‖2,

the next result:

Theorem 2. Let u be a solution of (11)- (13) with homogeneous boundary
conditions. Let us suppose that

u ∈ L2(0, T, H1
0(a, b)),

∂u

∂t
,
∂2u

∂x2
∈ L2(0, T, L2(a, b)),

and (14)-(16) hold.
If (33), then, for , m = 1, . . . , M, we have

Eu(t) ≤ (1 + 2η2τ)m max
s∈[−τ,0]

‖u0(s)‖2 , t ∈ [(m − 1)τ, mτ ] (36)

where 2η2 is defined by (35), else, m = 1, . . . , M,

Eu(t) ≤ eCmτ (1 + 2η2τ)m max
s∈[−τ,0]

‖u0(s)‖2 , t ∈ [(m − 1)τ, mτ ], (37)

holds, with

C = max{−2

β
,− 2D1

(b − a)2
+ 2
(∂f

∂x

)

max
+

1

2η2

(∂f

∂y

)2

max
}, (38)

for every nonzero constant η.

In what follows we establish the relation between the previously obtained
estimates and the known estimates for the solution of the Volterra integro-
differential equation (10), that is, the solution of (11) with the reaction term
f delay independent. In [2] the next result was proved for Eu(t), but for
Eg,u(t) holds the following:
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Theorem 3. Let u be a solution of (10)- (13) with homogeneous boundary
conditions. Let us suppose that

u ∈ L2(0, T, H1
0(a, b)),

∂u

∂t
,
∂2u

∂x2
∈ L2(0, T, L2(a, b)),

the assumption (15) holds, and f is continuously differentiable with f(0) = 0.
If f ′

max = max
u∈[c,d]

f ′(u) < 0, then

Eg,u(t) ≤ ‖u0‖2, t ∈ [0, T ], (39)

else

Eg,u(t) ≤ ef ′

maxt‖u0‖2, t ∈ [0, T ]. (40)

For Eu(t) holds

Eu(t) ≤ e
2 max{− 1

β
,f ′

max−
D1

(b−a)2
}t‖u0‖2, t ∈ [0, T ]. (41)

From Theorem 3 we conclude that if f ′ < 0 then Eg,u(t) is less or equal to
‖u0‖2 and Eu(t) goes to zero when t → +∞, else Eg,u(t) remains bounded in
bounded time intervals.

For the retarded Volterra integro-differential problems we are only able to
conclude the following: Eg,u(t) remains bounded in bounded time intervals
with an exponential increasing factor being this factor eliminated when Eu(t)
is considered provided that (33) holds.

In what follows we study the stability of the solutions of the IBVP (11)-
(13) when the initial condition (13) is perturbed. Let u and P ũ be solutions
of the IBVP(11)- (13) with initial conditions u0 and ũ0 respectively. Let w be
defined by w(x, t) = u(x, t) − ũ(x, t), x ∈ [a, b], t ∈ [0, T ]. Then w is solution
of the IBVP

∂w

∂t
(x, t) = D1

∂2w

∂x2
(x, t) +

D2

β

∫ t

0

e−
t−s
β

∂2w

∂x2
(x, s) ds

+f(u(x, t), u(x, t− τ)) − f(ũ(x, t), ũ(x, t − τ)), x ∈ (a, b), t > 0,

(42)

w(a, t) = w(b, t) = 0, t ∈ (0, T ], (43)

w(x, t) = u0(x, t) − ũ0(x, t), x ∈ (a, b), t ∈ [−τ, 0]. (44)
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As for f(u(x, t), u(x, t−τ))−f(ũ(x, t), ũ(x, t−τ)) holds the representation

f(u(x, t), u(x, t− τ)) − f(ũ(x, t), ũ(x, t − τ))

=
∂f

∂x
(u(x, t) + θ1w(x, t), u(x, t− τ))w(x, t)

+
∂f

∂y
(ũ(x, t), ũ(x, t) + θ2w(x, t− τ))w(x, t− τ)), θ1, θ2 ∈ [0, 1],

following the proof of Theorem 1 it can be shown the next result.

Theorem 4. Let u and ũ be solutions of (11)- (13) with initial conditions
u0 and ũ0. Let us suppose that (14)-(16) hold (with f(0, 0) not necessarily
equal to zero) and

u , ũ ∈ L2(0, T, H1(a, b)),
∂u

∂t
,
∂ũ

∂t
,
∂2u

∂x2
,
∂2ũ

∂x2
∈ L2(0, T, L2(a, b)).

Then

Eg,w(t) ≤ emCτ (1 + 2η2τ)m max
s∈[−τ,0]

‖u0(s) − ũ0(s)‖2 , t ∈ [(m− 1)τ, mτ ], (45)

for m = 1, . . . , M, where C is defined by (18) and η denotes a nonzero
constant.

If (33) then

Ew(t) ≤ (1 + 2η2τ)m max
s∈[−τ,0]

‖u0(s) − ũ0(s)‖2 , t ∈ [(m − 1)τ, mτ ], (46)

for m = 1, . . . , M, where 2η2 is defined by (35), else

Ew(t) ≤ eCmτ (1 + 2η2τ)m max
s∈[−τ,0]

‖u0(s) − ũ0(s)‖2 , t ∈ [(m − 1)τ, mτ ], (47)

for m = 1, . . . , M, with C defined by (38) and η represents an arbitrary
nonzero constant.

The stability of the IBVP (11)- (13) is consequence of Theorem 4. In fact,
from the previous result, we conclude that if max

s∈[−τ,0]
‖u0(s) − ũ0(s)‖ is small,

then

‖u(t) − ũ(t)‖2,

∫ t

0

‖∂u

∂x
(s) − ∂ũ

∂x
(s)‖2 ds, ‖

∫ t

0

e−
t−s
β

(∂u

∂x
(s) − ∂ũ

∂x
(s)
)

ds‖2

remains small in bounded time intervals.
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From Theorem 4 we also conclude that if the IBVP (11)- (13) has a solution
u then u is unique. In fact, let ũ be another solution. Then ‖u(t)−ũ(t)‖2 ≤ 0
for t ∈ [0, T ], which means that u(t) = ũ(t) in L2(a, b) for each time t,
t ∈ [0, T ].

2.2. Stationary states. In this section our aim is to study the stability of
the stationary states of (11) when x ∈ R. In order to do that we consider
the initial value problem (IVP)































∂u

∂t
(x, t) = D1

∂2u

∂x2
(x, t) +

D2

β

∫ t

0

e−
t−s
β

∂2u

∂x2
(x, s) ds

+f(u(x, t), u(x, t− τ)), x ∈ R, t > 0,

u(x, t) = u0(x, t), x ∈ R, t ∈ [−τ, 0].

(48)

Let u be a solution of (48) and let us suppose that u and u0 are smooth
enough. Then u satisfies the following equation

∂2u

∂t2
(x, t) = D1

∂3u

∂t∂x2
(x, t) +

D2

β

∂2u

∂x2
(x, t) − D2

β2

∫ t

0

e−
t−s
β

∂2u

∂x2
(x, s) ds

+
∂

∂t
f(u(x, t), u(x, t− τ)),

(49)
and it is easy to show that u is solution of the following IVP


























































∂2u

∂t2
(x, t) = D1

∂3u

∂t∂x2
(x, t) +

D2

β

∂2u

∂x2
(x, t) +

∂

∂t
f(u(x, t), u(x, t− τ))

−1

β

(∂u

∂t
(x, t) − D1

∂2u

∂x2
(x, t)− f(u(x, t), u(x, t− τ)),

)

, x ∈ R, t > 0,

∂u

∂t
(x, t) =

∂u0

∂t
(x, t), x ∈ R, t ∈ [−τ, 0],

u(x, t) = u0(x, t), x ∈ R, t ∈ [−τ, 0].
(50)

Let us suppose now that u is solution of the IVP (50). Then, from the
retarded Volterra integro-differential equation we get for u the equivalent
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equation

∂2u

∂t2
(x, t) +

1

β

∂u

∂t
(x, t) =

∂

∂t

(

D1
∂2u

∂x2
(x, t) + f(u(x, t), u(x, t− τ))

)

+
D2

β

∂2u

∂x2
(x, t) +

1

β

(

D1
∂2u

∂x2
(x, t) + f(u(x, t), u(x, t− τ))

)

which allow us to conclude that u satisfies

∂u

∂t
(x, t) = D1

∂2u

∂x2
(x, t) +

D2

β

∫ t

0

e−
t−s
β

∂2u

∂x2
(x, s) ds + f(u(x, t), u(x, t− τ))

+e
t
β

(∂u

∂t
(x, 0)−

(

D1
∂2u

∂x2
(x, 0) + f(u(x, 0), u(x,−τ))

))

.

(51)
From (51) we deduce that u is solution of the IVP (48) provided u0 satisfies
the following equality

∂u0

∂t
(x, 0) = D1

∂2u0

∂x2
(x, 0) + f(u0(x, 0), u0(x,−τ)), x ∈ R. (52)

In the next proposition we summarize the previous considerations:

Proposition 1. If u is solution of (48), u and u0 are smooth enough, then
u is solution of (50). Furthermore, if u is solution of (50) then u is solution
of (48) provided u0 satisfies (52).

In what follows we prove the following proposition:

Proposition 2. The IVP (48) with f(u(x, t), u(x, t − τ)) = Uu(x, t)(1 −
u(x, t − τ)) has the stationary states u = 0 and u = 1, respectively unstable
and stable.

Proof: Using Proposition 1 it is easy to show that u is a stationary state
of (48) if and only if u satisfies the following

D1 + D2

β
u′′(x) +

1

β
f(u(x), u(x)) = 0, x ∈ R,

or, equivalently
Z ′(x) = F (Z(x)), x ∈ R, (53)

with Z(x) = (z1(x), z2(x)), z1(x) = u(x), z2(x) = u′(x) and

F (Z(x)) = (z2(x),− 1

D1 + D2
f(z1(x), z2(x))), x ∈ R.
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The points (0, 0) and (1, 0) are equilibrium points of the phase portrait
of (53) respectively unstable and stable. Then we conclude that u = 0 and
u = 1 are stationary states of (48) for the logistic reaction term, respectively
unstable and stable.

Proposition 2 allow us to conclude that the retarded Volterra integro-
differential equation obtained combining a Fickian flux or a non Fickian flux
or a flux with two contributions (Fick and non Fick), with a mass conserva-
tion law with a delay reaction term, has the same stationary states as the
delay reaction-diffusion equation (obtained with the Fickian flux and a mass
conservation law with the reaction term f(u)) and with the same qualitative
behaviour.

3. A discrete retarded Volterra integro-differential model

The retarded Volterra integro-differential IBVP (11)-(13) are non linear
and analytical expressions for their solutions are not known. Numerical meth-
ods are the only procedure to get, at least approximately, the solutions of
such problems. In this section we propose a numerical method to compute
the solution of (11)- (13). We study the stability of such method and discrete
versions of the proved results for the continuous model are obtained.

In [a, b] we introduce the grid Ih = {xi, i = 0, . . . , N} with x0 = a, xN = b

and xi+1 = xi + h, i = 0, . . . , N − 1. Let ∆t be the temporal stepsize and

p ∈ N such that p =
τ

∆t
. In [−τ, T ] we consider the grid {tℓ, ℓ = −p, . . . , M}

defined by

t−p = −τ, tℓ+1 = tℓ + ∆t, ℓ = −j, . . . , M − 1, tM = T.

Let un+1
h (xi) be the fully discrete approximation to u(xi, tn+1) defined by

un+1
h (xi) = un

h(xi) + ∆tD1D2,xu
n+1
h (xi) + ∆t2

D2

β

n+1
∑

ℓ=1

e−
tn+1−tℓ

β D2,xu
ℓ
h(xi)

+∆tf(un+1
h (xi), u

n+1−p
h (xi)),

(54)
for i = 1, . . . , N − 1, n = 1, . . . , M − 1, and such that

un
h(x0) = ua(tn), un

h(xN) = ub(tn), n = 1, . . . , M, (55)

un
h(xi) = u0(xi, tn), i = 0, . . . , N, n = −p + 1, . . . , 0. (56)
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In (54) the difference operator D2,x is the usual second order centered finite
difference operator

D2,xvh(xi) =
vh(xi+1) − 2vh(xi) + vh(xi−1)

h2
1, i = 1, . . . , N − 1.

The stability analysis is established with respect to a L2 discrete norm
which is defined in what follows. By L2(Ih) we denote the space of grid
functions vh such that vh(x0) = vh(xN) = 0. In L2(Ih) we introduce the inner
product

(vh, wh)h = h

N−1
∑

i=1

vh(xi)wh(xi), vh, wh ∈ L2(Ih). (57)

By ‖.‖L2(Ih) we denote the norm induced by the inner product (57).
We introduce other notations:

(vh, wh)h,+ = h

N
∑

i=1

vh(xi)wh(xi), (58)

‖vh‖L2(Ih,+) =

(

h

N
∑

i=1

vh(xi)
2

)1/2

. (59)

Let D−x be the usual backward finite difference operator. The following
relations have a central role on the proof of the main result of this section -
Theorem 5:

(D2,xvh, wh)h = −(D−xvh, D−xwh)h,+, vh, wh ∈ L2(Ih), (60)

‖vh‖2
L2(Ih) ≤ (b − a)2‖D−xvh‖2

L2(Ih,+), vh ∈ L2(Ih). (61)

Identity (60) can be proved using summation by parts. The second relation
is known as a discrete Poincaré-Friedrichs inequality.

The discrete version of the energy Eu(tn)

E(un+1
h ) = ‖un+1

h ‖2
L2(Ih) +

D2

β
‖∆t2

n+1
∑

ℓ=1

e−
tn+1−tℓ

β D−xu
ℓ
h‖2

L2(Ih,+),

is studied in what follows. According to this remark, Theorem 5 can be seen
as a discrete version of Theorem 2.
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Theorem 5. Let un+1
h be defined by (54)-(56) with homogeneous boundary

conditions and such that uℓ
h(xi) ∈ [c, d], i = 1, . . . , N − 1, ℓ = −p, . . . , M.

Let us suppose that the reaction term f satisfies (16). If (33) then, for 2η2

defined by (35), (m − 1)p ≤ n ≤ mp, without any restriction to ∆t, we have

E(un
h) ≤ (1 + 2η2τ)(1 + 2η2∆t) max

ℓ=−p,...,0
‖u0(tℓ)‖2

L2(Ih)

m−1
∑

i=0

(

2η2τ(m − i)
)i

.

(62)
Else, for (m − 1)p ≤ n ≤ mp,

E(un
h) ≤ (1 + τ)(1 + ∆t) max

ℓ=−p,...,0
‖u0(tℓ)‖2

L2(Ih)C̃
mp

m−1
∑

i=0

(

τ(m − i)
)i

(63)

with

C̃ =
1

1 − ∆t
(

2
(

(

∂f
∂x

)

max
− D1

(b−a)2

)

+
(

∂f
∂y

)2

max

), (64)

provided that ∆t satisfies

∆t <
1

2
(

(

∂f
∂x

)

max
− D1

(b−a)2

)

+
(

∂f
∂y

)2

max

. (65)

Proof: Multiplying (54) by un+1
h with respect to the inner product (., .)h

and using summation by parts we get

‖un+1
h ‖2

L2(Ih) = (un
h, u

n+1
h )h − ∆tD1‖D−xu

n+1
h ‖2

L2(Ih,+)

−∆t2
D2

β

n+1
∑

ℓ=1

e−
tn+1−tℓ

β (D−xu
ℓ
h, D−xu

n+1
h )h,+

+∆t(f(un+1
h , u

n+1−p
h ), un+1

h )h,

(66)

where f(un+1
h , u

n+1−p
h )(xi) = f(un+1

h (xi), u
n+1−p
h (xi)), i = 1, . . . , N − 1.

We compute now a new representation of the two last terms of the second
member of (66). Analogously to the continuous case, for the last term we
have

(f(un+1
h , u

n+1−p
h ), un+1

h )h ≤
(

(∂f

∂x

)

max
+

1

4η2

(∂f

∂y

)2

max

)

‖un+1
h ‖2

L2(Ih)

+η2‖un+1−p
h ‖2

L2(Ih),

(67)



18 J.A. FERREIRA, J.R. BRANCO AND P. DA SILVA

where η 6= 0 is an arbitrary constant. For the first mentioned term hods the
following representation

(
n+1
∑

ℓ=1

e−
tn+1−tℓ

β D−xu
ℓ
h, D−xu

n+1
h )h,+ =

1

2
‖

n+1
∑

ℓ=1

e−
tn+1−tℓ

β D−xu
ℓ
h‖2

L2(Ih,+)

−e−2∆t
β

2
‖

n
∑

ℓ=1

e−
tn−tℓ

β D−xu
ℓ
h‖2

L2(Ih,+) +
1

2
‖D−xu

n+1
h ‖2

L2(Ih,+).

(68)

Considering in (66) the Poincaré-Friedrichs inequality (61), the Cauchy-
Schwarz inequality, the upper bound (67) and the representation (68), we
obtain
(

1 − ∆t
(

2
(∂f

∂x

)

max
+

1

2η2

(∂f

∂y

)2

max
− 2D1

(b − a)2

))

‖un+1
h ‖2

L2(Ih)

+
D2

β
‖∆t

n+1
∑

ℓ=1

e−
tn+1−tℓ

β D−xu
ℓ
h‖2

L2(Ih,+)

≤ ‖un
h‖2

L2(Ih) + e−2∆t
β

D2

β
‖∆t

n
∑

ℓ=1

e−
tn−tℓ

τ D−xu
ℓ
h‖2

L2(Ih,+) + 2η2∆t‖un+1−p
h ‖2

L2(Ih).

(69)
If (33) then with 2η2 defined by (35) and without any restriction on the

time step size ∆t, we get

E(un+1
h ) ≤ E(un

h) + 2η2∆t‖un+1−p
h ‖2

L2(Ih). (70)

Else, for every nonzero constant η we have, for ∆t satisfying (65),

E(un+1
h ) ≤ C̄

(

E(un
h) + 2η2∆t‖un+1−p

h ‖2
L2(Ih)

)

, (71)

with

C̄ =
1

1 − ∆tC

where C is now defined by

C =
(

2
(∂f

∂x

)

max
+

1

2η2

(∂f

∂y

)2

max
− 2D1

(b − a)2

)

.

Let us now consider the following inequality

E(un+1
h ) ≤ C̃

(

E(un
h) + 2η2∆t‖un+1−p

h ‖2
L2(Ih)

)

, (72)
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which has as particular cases the two previous relations (70) and (71). Rela-
tion (72) can be considered only for n = 1, . . . , M − 1.

In what follows we establish an estimate to E(un+1
h ) depending on ‖u0(tℓ)‖2

L2(Ih)

for ℓ = 1 − p, 2 − p, . . . , 0, and E(u1
h).

Let us consider j = 2, . . . , p. From (72) we obtain

E(uj+1
h ) ≤ C̃j−1E(u1

h) + C̃2η2∆t

j
∑

i=2

C̃j−i‖u0(ti−p)‖2
L2(Ih)

≤ C̃j−1E(u1
h) + 2η2C̃j−1(j − 1)∆t max

i=2,...,j
‖u0(ti−p)‖2

L2(Ih)

≤ C̃j−1(1 + 2η2τ) max{E(u1
h), max

i=2,...,j
‖u0(ti−p)‖2

L2(Ih)}.

(73)

As for E(u1
h) we have

(

1 − ∆t
(

2
(∂f

∂x

)

max
+

1

2η2

(∂f

∂y

)2

max
− 2D1

(b − a)2

))

‖u1
h‖2

L2(Ih)

+
D2

β
‖∆tD−xu

1
h‖2

L2(Ih,+) ≤ ‖u0
h‖2

L2(Ih) + 2η2∆t‖u1−p
h ‖2

L2(Ih),

(74)

that is

E(u1
h) ≤ C̃(1 + 2η2∆t) max

ℓ=1−p,0
‖u0(tℓ)‖2

L2(Ih), (75)

with C̃ as before, from (73) we conclude, for j = 1, . . . , p,

E(uj
h) ≤ C̃j(1 + 2η2τ)(1 + 2η2∆t) max

i=1,...,j
‖u0(ti−p)‖2

L2(Ih). (76)
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Let us consider now j = p + 1, . . . , 2p. For j = p + 1 we have

E(up+1
h ) ≤ C̃E(up

h) + C̃2η2∆t‖u1
h‖2

L2(Ih)

≤ C̃E(up
h) + C̃2η2∆tE(u1

h)

≤ C̃p+1(1 + 2η2τ)(1 + 2η2∆t) max
ℓ=1−p,...,0

‖u0(tℓ)‖2
L2(Ih)

+C̃22η2∆t(1 + 2η2∆t) max
ℓ=1−p,0

‖u0(tℓ)‖2
L2(Ih)

≤
(

C̃p+1 + C̃22η2∆t
)

(1 + 2η2τ)(1 + 2η2∆t) max
ℓ=1−p,...,0

‖u0(tℓ)‖2
L2(Ih).

(77)
Analogously, it can be shown that for j ∈ {2, . . . , p} we have

E(up+j
h ) ≤

(

C̃p+j + jC̃j+12η2∆t
)

(1 + 2η2τ)(1 + 2η2∆t) max
ℓ=1−p,...,0

‖u0(tℓ)‖2
L2(Ih).

(78)
Attending that for j = p we have (78), we deduce from (72) the following
estimate

E(u2p+1
h ) ≤

(

C̃2p+1 + C̃p+22η2∆t
(

p+1
∑

m1=1

1
)

+ C̃3
(

2η2∆t
)2
)

(1 + 2η2τ)(1 + 2η2∆t) max
ℓ=1−p,...,0

‖u0(tℓ)‖2
L2(Ih).

(79)

Similarly it can be shown for j ∈ {2, . . . , p}

E(u2p+j
h ) ≤

(

C̃2p+j + C̃p+j+12η2∆t

p+j
∑

m1=1

1 +
(

2η2∆t
)2

C̃j+2

j
∑

m1=1

m1
∑

m2=1

1
)

(1 + 2η2τ)(1 + 2η2∆t) max
ℓ=1−p,...,0

‖u0(tℓ)‖2
L2(Ih).

(80)
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As (80) holds for j = p, we deduce from (72) the inequality

E(u3p+j
h ) ≤

(

C̃3p+j + C̃2p+j+12η2∆t

2p+j
∑

m1=1

1 +
(

2η2∆t
)2

C̃p+j+2

p+j
∑

m1=1

m1
∑

m2=1

1

+
(

2η2∆t
)3

C̃j+3

j
∑

m1=1

m1
∑

m2=1

m2
∑

m3=1

1
)

(1 + 2η2τ)(1 + 2η2∆t) max
ℓ=1−p,...,0

‖u0(tℓ)‖2
L2(Ih).

It can be shown that

E(ump
h ) ≤

(

C̃mp + C̃(m−1)p+12η2∆t

(m−1)p
∑

i=1

1

+
(

2η2∆t
)2

C̃(m−2)p

(m−2)p+2
∑

m1=1

m1
∑

m2=1

1

+
(

2η2∆t
)3

C̃(m−3)p+3

(m−3)p
∑

m1=1

m1
∑

m2=1

m2
∑

m3=1

1

+
(

2η2∆t
)4

C̃(m−4)p+4

(m−4)p
∑

m1=1

m1
∑

m2=1

m2
∑

m3=1

m3
∑

m4=1

1

+ . . . +
(

2η2∆t
)m−1

C̃p+m−1

p
∑

m1=1

m1
∑

m2=1

m2
∑

m3=1

m3
∑

m4=1

. . .

mm−2
∑

mm−1=1

1
)

(1 + 2η2τ)(1 + 2η2∆t) max
ℓ=1−p,...,0

‖u0(tℓ)‖2
L2(Ih).

(81)

Similar relation holds for E(ump+j
h ) with j = 1, . . . , p − 1.

We obtain now a practical estimate for E(un
h) with (m − 1)p ≤ mp. From

(81) we get

E(un
h) ≤ (1 + 2η2τ)(1 + 2η2∆t) max

ℓ=1−p,...,0
‖u0(tℓ)‖2

L2(Ih)C̃
mp

m−1
∑

i=0

(

2η2∆tp(m − i)
)i

≤ (1 + 2η2τ)(1 + 2η2∆t) max
ℓ=1−p,...,0

‖u0(tℓ)‖2
L2(Ih)C̃

mp

m−1
∑

i=0

(

2η2τ(m − i)
)i

,
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which conclude the proof.

In the following result we establish the stability of (54)-(56) with respect
to perturbations of the initial condition u0.

Theorem 6. Let un+1
h , ũn+1

h be defined by (54)-(56) with initial condition u0

and ũ0 respectively. Let wn
h, n = −p, . . . , M be defined by wn

h = un
h − ũn

h,

n = −p, . . . , M. We assume that un+1
h , ũn+1

h and the reaction term f satisfies
the assumptions of Theorem 5 being f(0, 0) not necessarily equal to zero. If
(33) then, for 2η2 defined by (35), (m−1)p ≤ n ≤ mp, without any restriction
to ∆t, we have

E(wn
h) ≤ (1 + 2η2τ)(1 + 2η2∆t) max

ℓ=1−p,...,0
‖u0(tℓ) − ũ0(tℓ)‖2

L2(Ih)

m−1
∑

i=0

(

2η2τ(m − i)
)i

.

Else, for (m − 1)p ≤ n ≤ mp,

E(wn
h) ≤ (1 + τ)(1 + ∆t) max

ℓ=1−p,...,0
‖u0(tℓ) − ũ0(tℓ)‖2

L2(Ih)C̃
mp

m−1
∑

i=0

(

τ(m − i)
)i

,

with C̃ defined by (64) and for ∆t satisfying (65).

Proof: We start by remarking that wn
h satisfies

wn+1
h (xi) = wn

h(xi) + ∆tD1D2,xw
n+1
h + ∆t2

D2

β

n+1
∑

ℓ=1

e−
tn+1−tℓ

β D2,xw
ℓ
h(xi)

+∆tf(un+1
h (xi), u

n+1−p
h (xi)) − f(ũn+1

h (xi), ũ
n+1−p
h (xi)),

for i = 1, . . . , N − 1, n = 1, . . . , M − 1, with the boundary conditions

wn
h(x0) = wn

h(xN) = 0, n = 1, . . . , M,

and the initial conditions

un
h(xi) = u0(xi, tn), i = 0, . . . , N, n = −p + 1, . . . , 0.
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As

f(un+1
h (xi), u

n+1−p
h (xi)) − f(ũn+1

h (xi), ũ
n+1−p
h (xi))

=
∂f

∂x
(θ1u

n+1
h (xi) + (1 − θ1)ũ

n+1
h (xi), u

n+1−p
h (xi))w

n+1
h (xi)

+
∂f

∂y
(ũn+1

h (xi), θ2ũ
n+1−p
h (xi) + (1 − θ2)u

n+1−p
h (xi))w

n+1−p
h (xi)), θ1, θ2 ∈ [0, 1],

the proof of this result follows the proof of Theorem 5.

Remark 1. In Theorems 5 and 6 in the definitions of C̃ and in the upper

bound for ∆t arises the term
(∂f

∂y

)2

max
. An increasing in this term implies a

decreasing of the upper bound to ∆t. This behaviour is not natural attending

that
(∂f

∂y

)2

max
is associated with an explicit term of the discretization (54).

Following the proof of these two results it can be shown that holds
(

1 − ∆t
(

2
(∂f

∂x

)

max
+ 2η2 − 2D1

(b − a)2

))

‖un+1
h ‖2

L2(Ih)

+
D2

β
‖∆t

n+1
∑

ℓ=1

e−
tn+1−tℓ

β D−xu
ℓ
h‖2

L2(Ih,+)

≤ ‖un
h‖2

L2(Ih) + e−2∆t
β

D2

β
‖∆t

n
∑

ℓ=1

e−
tn−tℓ

τ D−xu
ℓ
h‖2

L2(Ih,+)

+
∆t

2η2

(∂f

∂y

)2

max
‖un+1−p

h ‖2
L2(Ih).

If (33) then holds

‖un+1
h ‖2

L2(Ih) +
D2

β
‖∆t

n+1
∑

ℓ=1

e−
tn+1−tℓ

β D−xu
ℓ
h‖2

L2(Ih,+)

≤ ‖un
h‖2

L2(Ih) + e−2∆t
β

D2

β
‖∆t

n
∑

ℓ=1

e−
tn−tℓ

τ D−xu
ℓ
h‖2

L2(Ih,+)

+∆t

(

∂f
∂y

)2

max

2( D1

(b−a)2 −
(

∂f
∂x

)

max
)
‖un+1−p

h ‖2
L2(Ih).
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and then

E(un+1
h ) ≤ E(un

h) + ∆t

(

∂f
∂y

)2

max

2( D1

(b−a)2
−
(

∂f
∂x

)

)
‖un+1−p

h ‖2
L2(Ih).

If (33) does not holds we conclude

E(un+1
h ) ≤ C̃

(

E(u
n
h) + ∆t

(

∂f
∂y

)2

max

2( D1

(b−a)2 −
(

∂f
∂x

)

max
)
‖un+1−p

h ‖2
L2(Ih)

)

.

with

C̃ =
1

1 − ∆t
(

2
((

∂f
∂x

)

max
− 2D1

(b−a)2

)

+ 1
)

and provided that ∆t satisfies

∆t <
1

2
((

∂f
∂x

)

max
− 2D1

(b−a)2

)

+ 1
.

Based on this considerations we conclude that Theorems 5 and 6 hold con-
sidering the convenient adaptations induced by the previous comments.

4. Numerical results

In all numerical experiments that we present in this section we consider
f(u(x, t), u(x, t − τ)) = Uu(x, t)(1 − u(x, t − τ)). We start by illustrating
the stability without any condition on the time stepsize when condition (33)
holds. We consider a = 0, b = 1, U = 0.05 D1 = D2 = τ = β = 0.1 and
h = 0.1. In Figure 3 we plot the results obtained for

u0(x) =

{

1, x ≤ 0.5
0, x > 0.5,

when ∆t increases. A stable behaviour was observed. As condition (33) holds
this behaviour was expected.

We consider now a = 0, b = 50 and u0 defined by (3). We took D1 =
0.1, D2 = 0.3, β = 0.1 and τ = 0.2. In order to illustrate the stable behaviour
of the method (54) when condition (33) does not holds, we consider in what
follows h = 0.1 and ∆t = 0.05. In this case the upper bound to ∆t is
approximately (2U + U 2)−1. Then we expect that the unstable behaviour
arises at U ≃ 3.59. In Figure 4 we plot the numerical results that confirm
our observation.
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Figure 3. Numerical results obtained with method (54) for
∆t = 0.01 (left), ∆t = 0.05 (center) ∆t = 0.1(right).
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Figure 4. Numerical results obtained with method (54) for
∆t = 0.05 and for different values of U : U = 2 (left), U =
3.59(right).In the second row we present a zoom of the pictures
of the first row.

Finally we illustrate the behaviour of the proposed method when the con-
dition (65) does not holds.In this case we can observe an unstable behaviour
but a stable behaviour can be also observed. The obtained results are plotted
in Figure 5.
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Figure 5. Numerical results obtained with method (54) for
∆t = 0.05 and for different values of U : U = 4.8, D1 = D2 = τ =
0.1, β = 0.2 (left), U = 8, D1 = β = 0.1, D2 = 0.3, τ = 0.2(right).
In the second row we present a zoom of the pictures of the first
row and a 3D version of the pictures of the first row is in last
rwo.
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