Pré-Publicagoes do Departamento de Matematica
Universidade de Coimbra
Preprint Number 07-42

LABELLING METHODS FOR THE GENERAL CASE OF
THE MULTI-OBJECTIVE SHORTEST PATH PROBLEM - A
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ABSTRACT: This paper is devoted to the study of labelling techniques for solving
the multi-objective shortest path problem (MSPP) which is an extension of the
shortest path problem (SPP) resulting from considering simultaneously more than
one cost function (criteria) for the arcs.

The generalization of the well known SPP labelling algorithm for the multi-
objective situation is studied in detail and several different versions are considered
combining two labelling techniques (setting and correcting), with different data
structures and ordering operators.

The computational experience was carried out making use of a large and repre-
sentative set of test problems, consisting of around 9000 instances, involving three
types of network (random, complete and grid) and a reasonable range for the num-
ber of criteria.

The computational results show that the labelling algorithm is able to solve large
size instances of the MSPP, in a reasonable computing time. The computational
experience reported in this paper is complemented by the results presented in a
twin paper [22] showing that the label correcting technique proves to be the fastest
procedure when the computation of the full set of non-dominated paths is required.
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1. Introduction

The shortest path problem (SPP) is a well known combinatorial optimiza-
tion problem intensively studied since the pioneer works published in the
middles of the last century [4, 15, 17, 24]. Given a network G = (N, A, ¢),
where N is the set of nodes (or vertices), A C N x N is the set of oriented
arcs and c is a cost function defined over A, the SPP consists of finding a
path linking, at least cost, two specific nodes of NV, say s and ¢.
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When c is a k-dimensional vectorial function (k > 2), one has the multi-
objective shortest path problem (MSPP) firstly addressed in the literature in
a paper published in 1974, [34]. Until now, most of the work done relatively
to the MSPP is focused on the bi-objective case (k = 2), where the solutions
verify some properties yielding to the development of specific techniques for
solving the problem.

The general case has progressively deserved more attention from the re-
searchers, mainly due to the increasing number of real life applications re-
quiring a multi-criteria approach. In fact, the shortest path problem describes
real life situations related to transportation and distribution systems where
several criteria must be taken into account. In several cases, the MSPP
appears as a sub-problem of other models (knapsack problem, set covering
problem, project management, etc.) [1, 3, 6, 7, 26].

Most of the algorithms presented in the literature for the MSPP correspond
to an extension of the labelling technique known as very efficient for the single
objective case.

Let us recall that the labelling method used for the mono-criteria case
consists of assigning a label to each node ¢ of the network with the cost of
the current best path from s to ¢. In each iteration of the algorithm, the
labels are updated accordingly to one of two distinct techniques known as,
respectively, label correcting and label setting. The latter corresponds to
scanning the labels in such way that at least one label is made definitive
meaning that the least cost path from s to a certain node was found. Using
the label correcting technique, any label may be updated until a stopping
condition is verified. In [1], the interested reader can find a good description
of efficient implementations using both techniques for the SPP.

The generalization of this technique to deal with several criteria must have
into account that, in general, there is not a path exhibiting the best value for
all the criteria. Hence, for the MSPP, we are looking for non-dominated (ND)
paths in the network (also called of Pareto optimal or efficient solutions), that
is, paths for which it is not possible to find a better value for one criterion
without getting worse for some of the other criteria. As mentioned in [23], the
algorithms for solving the MSPP can be grouped into two classes depending
on when a specific single solution is required or there is a need of computing
all of the non-dominated paths. The first class includes global optimization
procedures [7] (where a utility function is defined) and interactive methods [§]
(where the user guides the searching within the criteria space). In the second
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group, one considers the well-known labelling algorithm, [5, 20, 33, 34], the
ranking paths procedures, [9, 10], and an algorithm presented by Mote [25]
that computes the full set of ND paths, after solving the linear programming
relaxation for the MSPP.

Concerning to the labelling approach for the MSPP, part of the published
papers describe algorithms based on the label correcting technique [5, 18, 19,
33, 34|, while the others present procedures making use of the label setting
technique [18, 20, 21]. A particular case occurs in a twin paper of the present
one [22], where we describe an algorithm combining the labelling method with
deviation path techniques.

As we said before, the several labelling procedures presented in the litera-
ture for the MSPP correspond to extensions of the single objective algorithm.
Likewise for the SPP, at each iteration of the procedure, both for the label
correcting and the label setting technique, a label is selected for scanning in
order to create other labels from it. Using the label correcting technique,
some authors tested a FIFO (first in, first out) [1], a LIFO (last in, first out)
[1], or a DEQue (Double End Queue) [27, 28] policy for selecting the label
that will be scanned. When adopting the label setting method, there must
be the guarantee that the selected label can be made definitive. As we show
later in this paper, that can be achieved by using a utility function in order to
assure that the optimality principle holds for the multi-objective case. One
example of such a function is associated with the lexicographic order oper-
ator used in [18, 20, 21]. In this work, we present and test other operators
that can be used for determining the label that will be made definitive.

Again, like for the SPP, the structure used for keeping the set of candidates
for scanning, plays an important role in the computational performance of
the labelling approach for the MSPP. In this work, we test three different
well-known structures (list [1], binary heap [1] and Dial [13, 14] data struc-
tures) for keeping the set of candidates ordered and, consequently, selecting
the "best” candidate in the label setting versions. For the label correcting
versions, we use the FIFO and DEQue data structures.

Now, let us recall that, unlike for the single-objective case, in the MSPP
one node may have several labels all of them corresponding to non-dominated
paths, even in a temporary basis. Hence, one alternative that may be consid-
ered for the MSPP is to adopt a node selection policy. However, confirming
the conclusions expressed in previous works [5, 18], our previous computa-
tional experience [30], showed that adopting a node selection policy requires
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a greater implementation effort and, in general, is less efficient than using
a label selection policy. Hence, we discarded the node selection policy from
the set of implementations tested in this paper for the MSPP.

Although the reasonable amount of work reported in the literature, it is not
easy to make a judgment, in terms of computational performance, about the
different versions presented for the labelling algorithm applied to the MSPP.
In fact, many of the papers above referred just describe the procedures and
do not provide, at all, computational results. Others only consider the bi-
objective case and report computational experience with randomly generated
networks with up to 1000 nodes and 10000 arcs. In the literature, as far as we
know, there are only two papers reporting computational results for instances
with a number of criteria larger than two [18, 19].

In [19], the author reports a limited computational experience with ran-
domly generated networks (7 instances with a maximum of 100 nodes for
k = 5 and 500 nodes for k = 2). At the time, only three versions for the
label correcting technique were tested.

Almost 20 years later, the authors in [18] consider instances with up to
4 criteria for randomly generated networks (up to 40000 nodes and 100000
arcs) and grid networks (up to 625 nodes). That paper compares the compu-
tational performance of 7 different versions for the labelling algorithm corre-
sponding to combinations of the label techniques (correcting or setting), the
label /node selection policy and the data structure for the set of labels. The
conclusions in the referred paper state that the label selection policy is more
efficient than the node selection one, and, only for the largest size randomly
generated test problems, the label correcting technique outperforms the label
setting method.

The remaining works strictly referring to a labelling approach for the
MSPP, show computational results only for the bi-objective case. In [5],
several versions for the label correcting method with a node selection pol-
icy (FIFO, LIFO and DEQue structures), are tested for randomly generated
networks with 100 and 250 nodes, and up to 3000 arcs. More recently, the
authors in [33] report experience relative to three versions of the label cor-
recting algorithm on much larger size randomly generated networks (1000
nodes/3000 arcs and 500 nodes/7500 arcs).

Additionally, let us refer that computational experiments with a ranking
path approach for the bi-objective shortest path problem are reported in
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2, 9, 10]. The largest size instances considered for those tests correspond to
randomly generated networks having up to 5000 nodes and 40000 arcs.

Yet for the bi-objective case, a computational study is reported in [25], com-
paring the label setting algorithm proposed in [20], the algorithm based on
a ranking paths procedure described in [9, 10] and the Linear Programming
based algorithm presented in the paper. The computational tests involved a
small number of instances for two type of networks: randomly generated (up
to 1000 nodes and, at most, 10000 arcs), and grid networks (400 nodes).

Finally, in a twin paper of this one [22], we present an algorithm combining
the labelling approach with a deviation path technique for the MSPP. There,
we compare the computational performance of the new algorithm with the
best versions identified in the present work for the labelling algorithm. We
tested the algorithms with very large size instances using three type of net-
works (randomly generated, complete and grid networks). For example, we
tried out the algorithms for test problems with £ = 6 on networks with 15000
nodes and 90000 (randomly generated), 120 nodes (complete networks) and
144 nodes (grid). The largest number of criteria (k = 10) was considered for
networks with up to 5000 nodes and 30000 arcs (randomly generated) and
100 nodes (complete and grid). Altogether, more than 3500 instances were
solved.

In the present paper, we report the extensive computational study carried
out in order to identify the best out of 27 different versions of the labelling
algorithm for the MSPP. Those versions correspond to combinations of the
two label techniques (correcting/setting), with five distinct data structures
for the set of candidate labels and four different operators used for ordering
the labels. For the computational experiments reported in this paper, we
considerer the set of test problems used in [22] plus some larger size instances.
Full information about the instances used in this work is available in the
following internet access [29]. The computational results showed that all of
the largest size instances can be solved in relatively short computing time.

All the details about this computational experience are given in the section
5 of this paper. Before that, the generalization of the labelling algorithm is
discussed in section 3 while in section 4, some theoretical results are presented
and the correctness of the algorithm is proved. The section 2 contains the
mathematical background needed through out the paper and, the final section
of the paper summarizes the conclusions.
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2. Definitions and basic results

A network is denoted by G = (N, A, ¢), where N = {1,...,n} is the set of
nodes (or vertices) and A C N x N is the set of oriented arcs. Let k be the
number of criteria, then the vectorial function ¢ attributes a k dimensional
vector cost to each arc:

c: A — RF
(i,5) +— c(i,j) =cij=(cl,,...,c}).

A path p, from the vertex ¢ to j, is an alternating sequence of nodes and
arcs of the form p = (v, a1, vy, ..., a,,v,), where:

ey e N,V e{0,...,r};
e vy =1 and v, = J;
o ;= (v_1,v0) € A,V e{l,...,r}.

By convention, (vg) is considered as a null path (r = 0).

The set of all paths from ¢ to j is denoted by P;; and Pg represents the
set of all paths in the network, that is, Pg = Ui,je./\/ Pij. A cycle is a path
with non repeated vertices except the initial and terminal ones which are
coincident; that is, vg = v,.

With no loss of generality, we consider that N has an initial node s and
a terminal node ¢ such that Py, # 0, Ps; # 0 and P;; # 0, for any ¢ €
N —{s,t}. In order to simplify the notation, P will be used instead of Pi;.

Multiple arcs (arcs between the same pair of nodes) are not allowed. As a
consequence, p can be denoted only by the sequence of its nodes, (vg, v1, ..., ;).

A vectorial objective function f is defined over the set all the paths on the
network, as follows:

f:Pg — R
p f(p):(fl(p)v"'afk(p))n

where fe(p) = >3 j)ep ¢ Ve {l,. .. k}.
The concatenation operator, <, joins two paths p = (v,...,v,,) and ¢ =
(uo, . .., up,) such that v, = wug. Then, pdq = (vo, ..., v, =ug,..., Uup,).
Now, let us recall that, in order to solve the MSPP, one looks for the set of
non-dominated (ND) paths from s to ¢, mathematically described as follows:

Definition 2.1. Let p and q be two paths on the network with the same ini-
tial and terminal node. One says that p dominates q or q s dominated by p
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(p <p q) if and only if

f(p) # f(q) and f(p) <gx f(q) (fe(p) < felq), £ =1,2,... k).

Definition 2.2. Let p be a path in P;;, 1,5 € N. If there is no path q € P;
such that g <p p, then p 1s called non-dominated, efficient or Pareto optimal
path. The set of ND paths from i to j is denoted by @m and D will be used
for Dg.

Now, let us remind that for the single case (k = 1), the shortest path prob-
lem (SPP) can be easily solved when the optimality principle holds, meaning
that every shortest path is formed by shortest sub-paths. A necessary and
sufficient condition for the SPP to verify the optimality principle is that the
network has no cycles with negative cost, [1].

For the multi-objective case, the optimality principle corresponds to saying
that every ND path is formed by ND sub-paths. However, for the optimality
principle to be verified in this case, only the following sufficient condition is
known: for each criterion, the network has no cycle with negative cost (see
[21] for a proof and [31] for a counterexample for the reciprocal condition).

3. The labelling algorithm

3.1. Mono-objective shortest path. The labelling algorithm for the
mono-objective shortest path problem has been intensively studied and its
simplicity and efficiency are considered as strong advantages relatively to
other algorithms (see [12]). A general description of the algorithm is given
next.
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Algorithm 3.1 (Mono-objective Labelling Algorithm).

{p;: Dbest path from s to i found at this moment}
{m;: label of i, that is, f(p})}

{X: set of "unscanned" nodes}

X — {s}; s — 0; m; — 00,Vi € N — {s};
while X # () do
m; «<— the label of some node 1 € X
for all (i,j) € A do
if m; + Cij < T
then Ty < T + Cij
p; = pi< (i, j)
end _for all
end_while

In few words, the algorithm scans the vertices of a subset X C A in order
to update the labels assigned to their successors. For ¢ € X, with label 7;, the
procedure computes m; + ¢; j for each j such that (i,j5) € A If m; +¢;; < 7;,
then 7; is updated and the vertex j joins the set X.

The label 7; corresponds to the value of the shortest path found, up to the
present, from the source s to the vertex i. Hence, one strategy for selecting
the vertex of X to be scanned is to pick the one with the less value for the
label. This is named in the literature as label setting technique since if the
optimality principle holds then each vertex is scanned at most one time. The
proof for this, lays on the monotonic property exhibited by the objective
function, that is, f(p{(i,j)) > f(p); for a complete proof, see [1]. Let us
remind that using this technique one may find the shortest path from s to ¢
without having to compute the shortest tree rooted at s.

Alternatively, one may select the vertex to scan just following, for instance,
a FIFO policy (first in, first out). In this case, the same vertex may be
selected more than once and, therefore, the procedure stops only when the
tree constituted by the shortest paths from s to i € A, is obtained. Using
this technique, known in the literature as the label correcting algorithm, one
needs to compute the shortest tree rooted at s.
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3.2. Data structures for the set of candidates. Now, let us note that
the structure adopted for the set X plays a crucial role in the implementation
of both versions (setting or correcting) for the labelling algorithm.

In fact, at each iteration, the label setting approach requires the ordering
of X in order to pick the node with the smallest label. Several types of
data structure have been investigated in literature, for the mono-objective
and multi-objective shortest path problem. In this work, we consider the
following ones:

e List [1]: each element points to the next one in a sequential non-
decreasing order for the labels. The node with minimum label is di-
rectly accessed but the insertion of a new element forces the searching
for its correct position in the list. For removing an element from X,
it is very convenient to use a double list structure where in the second
list the elements of X are linked by the reverse order.

e Dial [13, 14]: the nodes in X are grouped accordingly to the value
of the labels; each group is represented by a list or double list. An
auxiliary vector v is used to index the groups, that is, v(¢) points
to the list of elements with a label equal to ¢. Considering M =
1 + max{c;; : (i,7) € A}, at most M components of v are not null
at each iteration. So, v is defined as a M-dimensional vector where
v({) refers to the elements with a label equal to ¢ in module M. An
auxiliary integer variable ”first” is also needed to indicate the index
of the list with the minimum label for the nodes in X.

e Heap [1]: each element (the father) points to two other elements (its
m in X, with labels greater than or equal to the father. Thus, the
set X is partially ordered and the minimum label corresponds to the
root of the heap. The insertion of new elements is accomplished in
O(logy(#X)) operations, but the deletion needs O(#X) operations
because one has to find first the element to remove and X is not
totally ordered. The removing task can be simplified if an auxiliary
n-dimensional vector v is used, where v (i) points to the position in
the heap corresponding to the node 2.

In Figure 1, we give an example for each one of the mentioned data struc-
tures while, in Table 1, the respective worst case complexity is presented for
the basic operations involving the elements of X.
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Ficure 1. Example of the data structures for X =
{1, 2,3,4, 5} where ™ = 12,7‘(’2 = 10,7’(’3 = 11,7‘(’4 = 15,7’(’5 = 12.

For the label correcting version of the algorithm, we use a FIFO (First
In, First Out) policy for selecting the nodes from X which is represented
by a queue where new nodes are added to the tail and the selected node
is removed from the head. We also adopted a slightly modification of this
structure, proposed by Pape [27, 28], where a new node is inserted at the
head, rather than at the tail, if the corresponding label is less than the label
for the node currently positioned at the head of the queue.

3.3. Generalization for the multi-objective case. When one wants to
generalize the labelling algorithm for the MSPP, some key aspects must be
taken into account. Firstly, let us remark that, now, the concept of best path
from s to t is not appropriate since we may have several ”best” paths from s
to any vertex. So, for each 7 € N, we define a set II; containing all the paths
from s to ¢ for which, up to the moment, there is no other path dominating
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X find remove insert new remove memory
minimum  minimum element element space
not ordered | O(#X) O(1) O(1) O(#X) #X
List (simple) O(1) O(1) O(#X) O(#X) #X
List (double) O(1) O(1) O(#X) O(1) 2(#X)
Heap (simple) | O(1)  O(logy(#X)) O(logy(#X))  O(#X) #X
Heap (double) | O(1)  O(logy(#X)) Ollog,(#X)) Ology(#X))  2(#X)
Dial (simple) | O(M) O(1) O(1) O(#X/M) #X+M
Dial (double) O(M) O(1) O(1) O(1) 2(#X + M)

TABLE 1. Worst case complexity order for basic set operations.

it. We call 1I; the set of temporarily non-dominated paths from s to ¢ which
has to be updated whenever a new s-i path joins it.

A second key aspect is related to the possibility of having, contrarily to the
single-objective case, several labels associated to the same vertex. Therefore,
in the labelling algorithm for the multi-objective shortest path problem, the
set X will consist of unscanned labels rather than nodes, as it was the case
for the single-objective case. If we consider a straightforward generalization
of the labelling algorithm, one follows a label selection policy, that is, at each
iteration, a single unscanned label is picked from X and the corresponding
path from s to i € N is expanded by adding up the arcs (i, j) € A. An alter-
native studied in the literature consists of following a node selection policy
by selecting a node and simultaneously considering all non-dominated labels
associated to the node. In this paper, we only consider the label selection
policy since the node selection policy requires a greater implementation effort
and, in general, is less efficient [5, 18, 30].

When proceeding to the generalization of the Algorithm 3.1 for the multi-
objective case, the stop condition is another aspect that requires particular
attention. In fact, since the number of ND paths from s to any destination ¢ €
N is not known in advance, the algorithm stops only when X = (), regardless
the label technique (setting/correcting) and the selection policy (label /node)
being used. This means that the resolution of the multi-objective shortest
path problem, from a source s to a destination ¢, requires the computation
of all ND paths from s to each vertex i € V.

The Algorithm 3.2 shows a sketch of the multi-objective labelling algo-
rithm, where the logical function DT'(q,11;), performs a dominance test on



12 J.M. PATXAO AND J.L. SANTOS

q € Ps,; relatively to the temporary ND paths in II;. Hence, DT'(q,11;) =
TRUE if and only if there is a path w € II; for which w <p ¢.

Finally, let us remind that for the label setting version of the algorithm,
the computation of the minimum label in X is required but, this can not be
accomplished by using the operator <p which is not a total order relation
in IR*, [16]. This question will be addressed in the next section.

Algorithm 3.2 (Multi-objective Labelling Algorithm).

{Il;: set of temporarily ND paths from s to i}

{X: set of paths corresponding to "unscanned" labels}

X — {(s)}; g — {(s)}; II; «— 0,Vi e N — {s};
while X # () do
p < a path of X
1 < the terminal node of p
X — X\{p}
for all (i,j) € A do
if DT (p< (i, j),11;) = FALSE
then ¢ «— p{(i, j)
Il — (I; U{q}) —{uellj: q <p u}
X — X U{q}
end_for all
end_while

4. Determining the minimum label in X

Let us recall that the label setting version of the algorithm is based upon the
condition that the label selected, at each iteration, for the scanning procedure
will become definitively non-dominated (ND). Next, we will show that this
can be guaranteed if one considers an operator R defined over the set Pg and
holding two properties.

So, given an operator R establishing a relation between paths linking the
same pair of nodes, one may define an auxiliary function hgr : P — IR and
the following binary relations:

o <pC Pz‘,j X Pm‘, such that p<rRq& hR(p) < hR(q);
o <pC P;; x Pij, such that p <p ¢ < hr(p) < hr(q);
The Theorem 4.1, stated next, proves the correctness of the label setting
algorithm when <y and <p hold the following properties:
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Property 1:[dominance] p <p ¢ = p <gr q,Vp,q € Pi;.
Property 2:[monotonic| p <g p{(j,¢),¥p € Pi;,V(j,¢) € A(j).

Theorem 4.1. Let <p and <pg be the relations defined over P; ;(i,j € N)
with an operator R, holding the dominance and monotonic properties. If

p € X s a path selected for scanning by the label setting such that p <g
q, Vq € X, then p is a (definitive) ND path.

Proof: Suppose that p € Ps; is a dominated path, then there is a path
w € Py, such that w <p p. On the other hand, since p € X, the path w
only can be generated after the selection of p, for scanning. This means that
w is obtained by an extension of one of the paths in X. That is, w = w;Jws,
with w; € X. Therefore, wy <p w <p p contradicting the hypothesis that
p<rq,Vq€X. u

There are several operators that can be defined over P for which the prop-
erties 1 and 2 are verified. That is the case, for instance, of the lexicographic
order operator used in [18, 20, 21] which can be easily accomplished as fol-
lows:

P <iex ¢ f(p) = f(q) or 3w € {1,... Kk} : fu(p) < fo(q) and fy(p) = fy(q),Vy <=

and p <ier ¢ < f(p) # f(q) and p <iex q-
The auxiliary function associated with this operator is given in the next

table where the order operators tested in this work are also presented. For
hiex, B =max{fi(q): 1 <l <k,q€ Pg, and ¢ has no cycles}.

R H lex ‘ sum ‘ norm ‘ max ‘
hie | Xt felp) x BY I SSL folp) | 2o (filp))? | masi<ocid fo(p)}

Now, note that the value for the parameter M used in the implementation
of a Dial structure for the set of labels depends on the operator that is
being used. In fact, for an operator R that parameter should be defined as
Mp = max{hr(p{{i,j)) — hr(p) : i € N,p € Py, (i,7) € A}. Hence, the
next table summarizes the upper-bound values associated to each operator,
with M, = max{c{; : (i,j) € Aand 1 < ¢ < k}:

R || lex | sum | norm | max |
Mp || (BF = 1) x Mo+ 1k x Mo +1]2x M.x (X5, fe(p)) + kM2 | M, +1|

The upper bounds obtained for ” R = lex” and ” R = norm” are too large to
be computationally practicable. Hence, we opted for taking M., = M.+ 1
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while we did not consider the operator "R = norm” when using a Dial
structure for the label setting algorithm.

Having in mind the expressions for the auxiliary functions considered above,
it is clear that if ¢f; > 0,V(i,7) € A and £ € {1,...,k}, then hp(p{ (4, £)) >
hr(p),Vp € P;; and V(j,¢) € A(j). Therefore, as stated in Lemma 4.3, in
those conditions the monotonicity property is valid for R € {lex, sum, norm, max}.
However, that is not sufficient for guaranteeing the dominance property for
"R = max” as expressed by the following result whose proof is skipped.

Lemma 4.2. If cf,j > 0,Y(i,j) € Aand ¢ € {1,... k}, then <sum, <norm
and <je; hold property 1.

Lemma 4.3. If cﬁj > 0,Y(i,j) € A and £ € {1,...,k}, then property 2 is
’U€T’iﬁ6d fOT gsum; Sma:c; Snorm and Sle:c-

Recalling the relation <., note that if p and ¢ are two paths, between
the same pair of nodes, with costs f(p) = (3,5) and f(q) = (4,5), p <p ¢
but A (p) =5 = hmae(q) regardless the costs for arcs. This example shows
that the non-negativity for the costs is not a sufficient condition to guarantee
the dominance property for the ” R = max” operator. But, as stated in the
Lemma 4.4, that will be a sufficient condition for the validity of the following
properties:

Property 3:[weak dominance] p <p ¢ = p <grq,Vp,q € Pi;.

Property 4:[strictly monotonic] p <gr p{(j,€),Vp € Pi;,V(j,0) € A(j).

Lemma 4.4. If cﬁj > 0,Y(i,j) € A and ¢ € {1,... k}, then <g and <g

(R € {lex, max, sum,norm} ) satisfy properties 8 and 4, respectively.
Finally, the Theorem 4.5 proves the correctness of the label setting algo-
rithm when the properties 3 and 4 hold for the sets of paths P; j,7,j € N.

Theorem 4.5. Let <p and <p be the relations defined over P;; with an
operator R, holding the weak dominance and strictly monotonic properties.
If p € X 1s a path selected for scanning by the label setting such that p <pg
q,Yq € X, then p is a (definitive) ND path.

Proof: Suppose that p € Pg; is a dominated path, then there is a path
w € Py, such that w <p p. On the other hand, since p € X, the path w
only can be generated after the selection of p, for scanning. This means that
w is obtained by an extension of one of the paths in X. That is, w = w;Jws,
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Versions Data structure R operator
lex max norm sum
List (simple/double) | X X X X
SETTING Dial (simple/double) | X X — X
Heap (simple/double) | X X X X
X X

CORRECTING FIFO
DEQUE

TABLE 2. The 27 tested versions for the labelling.

X X

with wy € X. Therefore, p <p w; < w contradicting the hypothesis that
w <p p because in this case w <g p. u

A last word in this section to remind that, when using a DEQUE structure
for the label correcting version of the algorithm, one may use the operators
R € {lex, max, sum,norm} for deciding if the new label will be added at the
head or at the tail of the DEQUE.

5. Computational results

In this section, we report the computational experiments carried out in
order to evaluate the performance of the labelling algorithm by testing the
different combinations summarized in the Table 2, making up a total number
of 27 code implementations (22 for the setting version and 5 for the correcting
version).

The test instances, shortly described in Table 3, were generated for three
different types of network (Random, Complete, and Grid) with the costs
for the arcs randomly generated in [1, 1000], using a uniform distribution.
For each type of network, we considered variations on the number of nodes
and on the number of criteria, producing 12 classes of instances each one of
them involving several classes accordingly to the values considered for the
parameters (nodes and criteria). Altogether, we considered a total number
of 180 groups of instances, 112 classified as "small size” instances and 68
corresponding to large size test problems.

The computational experience was conducted in two stages. In the first
stage, we used the small size instances for eliminating the low performance
codes. In the second stage, we aimed at identifying the most efficient codes
for solving the large size instances.

Now, let us refer that an empirical statistical analysis done by the authors
[32] led to the conclusion that a minimum number of 50 instances should
be taken as a representative set of computational test cases for assessing the
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Class Network type Network parameters range Groups
RandN-small Random ne{ix250:1€N,1<:<20};d=3; k=3 20
RandK-small Random n=1000; d=3; ke {i:icIN,2<i<20} 19
CompN-small  Complete ne{ixb:ieN,1<i<20};d=n—-1;k=3 20
CompK-small ~ Complete n=25d=n—-1;ke{i:ieN,2<i<20} 19
GridN-small ~ Square Grid ne{i2:icIN,5<i<20};d~4; k=3 16
GridK-small ~ Square Grid n=49; d~4; k=c{i:iecN,2 <i <20} 19
RandN-large Random ne{ix1000:i€N,1<i<20};d=6;k=6 20
RandK-large Random n=>5000;d=6; ke {i:ieIN,2<i<9} 8
CompN-large Complete ne{ix10:ieN,1<i<14};d=n—-1;k=6 14
CompK-large Complete n=100;d=n—-1;ke{i:ie€N,2<i <9} 8

GridN-large  Square Grid ne{i:icIN,5<i<13};d~4; k=6 9
GridK-large  Square Grid n=100; d~4; k=€ {i:ie€ N,2 <i<10} 9

n = number of nodes; d = number of arcs/n; k = number of criteria

TABLE 3. Set of test instances with the arc costs ran-
domly generated in [1,1000], using an uniform distribu-
tion.

performance of the MSPP algorithms on a specific type of network with the
same size and number of criteria. Hence, we generated 50 different cases for
each sub-group of instances, making up a total number of 9050 test problems
which are available in the following public database:
http://www.mat.uc.pt/~zeluis/INVESTIG/MSPP/mspp.htm

The Table 4 reports the computational performance of the different ver-
sions for the labelling algorithm. The last column of the Table 4 shows the
average computational time required by the label correcting version with a
FIFO policy for solving the instances included in each class of test problems.
Remember that, for each class of test problems, we considered a range of
different size instances but, for the sake of simplicity, only total average time
is shown in the table. The variation of the CPU time, in seconds, with n and
k, is given in the Table 5. For the other versions, the entries correspond to
multipliers on the time spent by the FIFO version. That is, for RandN-small
instances, the Label Setting version ”List” with simple link data structure
and the "lexicographic” operator requires, in average, almost 48 times as
much the FIFO version does. On the other hand, the Label Setting version
”Dial” with double link data structure and the "max” operator is, in average,
faster than the FIFO version for CompN-Small instances.

From Table 4, it is clear that FIFO proved to be the most efficient ver-
sion since the majority of the values shown in the table are greater than
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ratio average
Class List Heap Dial DEQUE CPU
h (s) (A () (] () (d) FIFO

Pier || 47.998 44.257|2.195 2.409|1.284 1.368| 1.143

RandN-  hporpm, || 32.687 34.548|1.678 1.934 — — | 1.122
-small  Agyy || 34.776 36.917|1.661 1.937|1.179 1.260| 1.085 0.016

Pmaz || 23.589 24.506 | 1.636 1.890(1.125 1.237| 1.075

Pies || 24.854 24.05411.645 1.746|1.255 1.280| 1.094

RandK- Ay, || 14.012 14.515|1.373 1.496 — — | 1.089
-small  Agy, || 14.395 14.943|1.359 1.492|1.154 1.180| 1.066 0.286

Pae | 11.121 11.862|1.369 1.499(1.134 1.172| 1.089

Pies 1.820 1.559|1.370 1.349|1.194 1.173| 1.246

CompN- hporm | 1.239  1.236(1.061 1.158 — — | 0.903
-small  Agy, || 1.308  1.31310.950 1.173|1.002 0.919| 1.165 0.046

Pmae | 1.184  1.157|1.115 1.123[0.953 0.886| 0.947

Pies 2.036 2.003|1.230 1.251|1.172 1.167| 1.073

CompK- hporp, | 1.697  1.700|1.131 1.206 — — | 1.019
-small  hgy, | 1.754  1.735]1.128 1.209(1.069 1.070| 1.012 0.652

Pmae | 1.587 1.647|1.130 1.182[1.035 1.043| 1.015

e || 4.183  3.879|1.840 2.172]2.001 1.754| 1.603

GridN-  Dhporm | 2.471  2.371(1.084 1.332 — — | 1.059
-small  hgyn | 2.443  2.568|1.203 1.307[1.196 1.269| 1.095 0.190

Pae | 2.167  2.162|1.143 1.208 [ 1.113 1.187| 1.062

Pies 1.901 1.887|1.362 1.449|1.213 1.274| 1.271

GridK-  hyomn | 1.603  1.637]1.212 1.194 — — | 1.050
-small  hgy, | 1.623  1.574|1.187 1.222]1.186 1.180| 1.124 0.086

Pmaz | 1.526  1.549|1.229 1.301[1.124 1.202| 1.171

(s) - simple link data structure; (d) - double link data structure

TABLE 4. Small size instances - average CPU time ratios

relatively to the FIFO version.

1. In terms of computational efficiency, the other Label Correcting version
(DEQUE) comes next, being even faster than FIFO for the CompN-small

instances.
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n k
1000 2000 3000 4000 5000 4 8 12 16 20
0.003 0.007 0.016 0.026 0.043 | 0.057 0.047 0.194 0.506 1.062
RandN-small RandK-small
n k
20 40 60 80 100 4 8 12 16 20
0.001 0.008 0.032 0.087 0.182 | 0.005 0.062 0.301 1.039 3.102
CompN-small CompK-small
n k
81 169 256 324 400 4 8 12 16 20
0.002 0.034 0.204 0.559 1.328 | 0.001 0.022 0.068 0.144 0.309
GridN-small GridK-small

TABLE 5. average CPU time consumed by the FIFO ver-
sion for the small size instances.

The label setting algorithm is in general less efficient in terms of CPU
time consuming than the label correcting one. The worst performance for
each class of instances is by far achieved when using a List data structure to
represent the set X, regardless the operator. Therefore, this version is not
considered in the second stage of the computational experience.

Concerning to the R operators, one can see that the lexicographic operator
produces, for each class of instances, the worst results either for the label cor-
recting (DEQUE) version or any of the label setting versions. Consequently,
this operator is not used in the second phase computational experiments.

Now, relatively to the Heap and the Dial versions, one can not find a
significant difference between the corresponding performances and it seems
reasonable to test them with the larger size instances. Finally, let us men-
tion that, for those versions, after excluding the lexicographic operator, the
single link data structure versions proves slightly better than the double link
structure, for the vast majority of the cases. Hence, we decided to consider
only the single link data structure to carry out the further computational
testing reducing the number of versions from 27 to 9.

Table 6 presents the results obtained with the reduced set of versions for the
large size test problems. The table is organized likewise the Table 4, that is,
the last column shows the computational time required by the FIFO version
for solving the instances (Table 7 reports the variation of the CPU time, in
seconds, with n and k); the other entries in the table are multipliers of that
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ratio av. CPU
Class h || Heap Dial | DEQUE FIFO
RandN- A, | 1.184 — | 1.010
-large  Agum | 1.190 1.087| 1.010 33.473
homaz |1 1.126 1.035| 1.002
RandK- A, || 1.197 — | 0.987
-large  hgum | 1.218 1.061| 0.989 14.438
hnaz | 1.145 1.006| 0.984
CompN- hporm || 1.113 — | 0.988
-large  hAgum | 1.154 1.133 ] 0.986 44.812
hpaz |1 1.109 1.141| 1.066
CompK- h,orm || 1.064 — | 0.980
-large  hgum || 1.093 1.071] 0.980| 126.516
hnaz | 1.045 1.027| 0.974
GridN-  Ayorm || 1.493 — | 1.109
-large  hAgum | 1.578 1.454 | 1.218 18.915
hpaz | 1.716 1.640| 1.488
GrigK-  hporm || 1.561 — | 1.110
-large  Agym | 1.603 1.502 | 1.104 12.532
hpaz | 1.797 1.726| 1.504

TABLE 6. Large size instances - average CPU time ratios
relatively to the FIFO version.

computational time. From those values, one can conclude that all the codes
have a similar performance but, the label correcting versions remain as the
most efficient ones. In particular, the FIFO algorithm is consistently quite
competitive and the label correcting with a DEQUE structure and R = max
produced very good results for the random and the complete networks.

Concerning to the operators, let us refer that "max” performs better that
"sum” and "norm”, for the random and complete networks; the contrary
occurs for the grid networks. Relatively to the data structures for the label
setting algorithm, it is clear that the Dial structure proves slightly better
than the Heap structure.

A final comment on the relationship between the computational times re-
quired for solving the test problem and the total number of non-dominated
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n k
5000 10000 15000 20000 3 5 7 9
9.428 29.151 51.800 75.919 | 0.451 4.516 18.697 49.224
RandN-large RandK-large
n k
50 80 110 140 3 5 7 9
0.613  7.752 51.355 300.740 | 0.212 5.916 95.638 594.135
CompN-large CompK-large
n k
49 81 121 169 3 5 7 9
0.007 0.218 5.048 131.848 | 0.004 0.229 3.543 27.850
GridN-large GridK-large

TABLE 7. average CPU time consumed by the FIFO ver-
sion for the large size instances.

paths from s to ¢t. In the Table 8, we show relevant information relative to
a subset of the instances, concerning to the average number of ND s-t paths
and the average number of ND labels, for each group of 50 instances. Note
that, despite being interested only in the computation of the ND s-t paths
(ND row), one has to compute all of the ND paths from s to every node in
the network (rot N D). From Table 8, one can see that N D is much larger for
the grid networks than for the other type of networks but as it has be seen
(Table 5 and Table 7), there is not a clear relationship between the computing
time and the number of non-dominated paths from s to ¢t. The same applies
for rot N D, where one may have a much larger number of paths with a sig-
nificantly shorter CPU time (RandN-Large versus CompK-large). As far as
our experience shows, one may expect that the computational time increases
with ND and rotND but we can not say much about the corresponding
rates.

6. Conclusion

In this paper, we described and tested 27 variants of the labelling algorithm
for the multi-objective shortest path problem (MSPP). Those different im-
plementations result from considering the two label techniques (setting and
correcting), with several combinations for data structure used for the set of
unscanned labels and for the ordering operators on the set of paths.
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n 1000 2000 3000 4000 5000 5000 10000 15000 20000
ND 5.70 6.12 6.42 7.28 7.34 | T71.42 82.50 84.80 100.08
rotND | 5997 12756 21287 28483 36559 | 351698 820018 1308723 1812431
class RandN-small RandN-large
n 20 40 60 80 100 50 80 110 140
ND |14.46 27.74 37.14 48.60 58.12 | 265.24 509.86  811.92 1170.34
rotND | 276 1126 2349 4047 5898 | 13119 41422 87206 152551
class CompN-small CompN-large
n 81 169 256 324 400 49 81 121 169
ND |85.28 289.04 547.26 869.64 1095.40 | 329.20 1545.72 6183.24 17622.75
rotND | 1661 10457 28385 52576 84244 2500 14043 68714 245812
class GridN-small GridN-large
k 4 8 12 16 20 3 5 7 9
ND 8.42  23.52 41.02 59.52 75.30 | 16.60 50.72 95.74 154.84
rotND | 9009 22527 37534 53381 69549 | 81937 242029 479822 789156
class RandK-small RandK-large
k 4 8 12 16 20 3 5 7 9
ND |37.64 170.80 392.08 690.26 1067.68 | 58.12 369.12 1173.00 2665.04
rotND | 888 4150 9574 17115 26450 5898 36859 116461 271254
class CompK-small CompK-large
k 4 8 12 16 20 3 5 7 9
ND ]99.68 608.48 1024.44 1372.12 1906.40 | 130.02 1363.92 6139.22 15037.04
rotND | 1033 3999 6525 9013 12384 2888 16905 53248 108550
class GridK-small GridK-large

TABLE 8. Average number of non-dominated s-t paths
(ND) and average number of non-dominated labels

(rotN D) for the instances.
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The computational experience was carried out making use of a large and
representative set of test problems, consisting of around 9000 instances for
MSPP, available at a public site. As far as we know, this is the first compre-

hensive computational study on algorithms for the MSPP, since it involves

three types of network (random, complete and grid) and considers a reason-
able range for the number of criteria on large size networks.

The computational results show that the labelling algorithm is able to solve
large size instances of the MSPP, in a reasonable computing time. The label
correcting version, with a FIFO policy for selecting the labels, proved to
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be consistently efficient. For some test instances, the using of a DEQUE
structure for the label correcting produced the fastest performance.

Those results are further confirmed in a twin paper [22] where the best
versions for the labelling algorithm are compared with a new algorithm com-
bining the labelling procedure with a deviation path technique. There, the
superior comparative performance of the label correcting algorithm is proved
when the computation of the full set of ND paths from s to t is required.
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