COMPLEX HIGH ORDER TODA AND VOLTERRA LATTICES

D. BARRIOS ROLANÍA AND A. BRANQUINHO

Abstract

Given a solution of a high order Toda lattice we construct a one parameter family of new solutions. In our method, we use a set of Bäcklund transformations in such a way that each new generalized Toda solution is related to a generalized Volterra solution.

Keywords: Toda lattice, Volterra lattice, sequences of polynomials, Bäcklund transformation.
AMS Subject Classification (2000): Primary 37F05; Secondary 33C45.

1. Introduction

In [7] was studied the construction of a solution of the Toda lattice

$$
\left.\begin{array}{rl}
\dot{\alpha}_{n}(t) & =\lambda_{n+1}^{2}(t)-\lambda_{n}^{2}(t) \tag{1}\\
\dot{\lambda}_{n+1}(t) & =\frac{\lambda_{n+1}(t)}{2}\left[\alpha_{n+1}(t)-\alpha_{n}(t)\right]
\end{array}\right\}, \quad n \in \mathbb{Z}
$$

from another given solution, considering sequences $\left\{\alpha_{n}(t), \lambda_{n}(t)\right\}, n \in \mathbb{Z}$, of real functions (here and in what following, the dot means differentiation with respect to $t \in \mathbb{R}$). Both solutions of (1) were linked to each other by a Bäcklund transformation (or Miura transformation)

$$
\begin{gather*}
\lambda_{n+1}^{2}(t)=\gamma_{2 n}^{2}(t) \gamma_{2 n+1}^{2}(t), \quad \alpha_{n}(t)=\gamma_{2 n-1}^{2}(t)+\gamma_{2 n}^{2}(t)+C, \quad n \in \mathbb{Z} \tag{2a}\\
\widetilde{\lambda}_{n+1}^{2}(t)=\gamma_{2 n+1}^{2}(t) \gamma_{2 n+2}^{2}(t), \quad \widetilde{\alpha}_{n}(t)=\gamma_{2 n}^{2}(t)+\gamma_{2 n+1}^{2}(t)+C, \quad n \in \mathbb{Z} \tag{2b}
\end{gather*}
$$

with $C=0$, where $\left\{\gamma_{n}(t)\right\}$ is a solution of the Volterra lattice

$$
\begin{equation*}
\dot{\gamma}_{n+1}(t)=\gamma_{n+1}(t)\left(\gamma_{n+2}(t)-\gamma_{n}(t)\right), \quad n \in \mathbb{Z} . \tag{3}
\end{equation*}
$$

In [3] the authors generalize this analysis to the case of Toda lattices where $\alpha_{n}(t)$ and $\lambda_{n}(t)$ are complex functions of $t \in \mathbb{R}$. A semi-infinite lattice, i.e., (1) with $n \in \mathbb{N}=\{1,2, \ldots\}$, was studied. Moreover, for each solution

Received January 9, 2008.
The work of D. Barrios Rolanía was supported in part by Dirección General de Investigación, Ministerio de Educación y Ciencia, under grant MTM2006-13000-C03-02, and by Universidad Politécnica de Madrid and Comunidad Autónoma de Madrid, under Grant CCG06-UPM/MTM539. The work of A. Branquinho was supported by CMUC/FCT.
of the Toda lattice, a family of new solutions was obtained for this lattice, each one associated with a different solution of the Volterra lattice (3) by a Bäcklund transformation like (2a)-(2b), where it is possible that $C \neq 0$.

In this paper, we generalize the analysis given in [7] and [3] to the kind of Toda and Volterra lattices studied in [1] and [2]. For this purpose we consider the family $\{J(t)\}, t \in \mathbb{R}$, of tridiagonal infinite matrices given by

$$
J(t)=\left(\begin{array}{cccc}
\alpha_{1}(t) & \lambda_{2}(t) & & \tag{4}\\
\lambda_{2}(t) & \alpha_{2}(t) & \lambda_{3}(t) & \\
& \lambda_{3}(t) & \alpha_{3}(t) & \ddots \\
& & \ddots & \ddots
\end{array}\right), t \in \mathbb{R}
$$

where $\left\{\alpha_{n}(t)\right\},\left\{\lambda_{n}(t)\right\}$ are two sequences of complex functions with real variable $t \in \mathbb{R}$.

In all the following we assume $\lambda_{n}(t) \neq 0, n \in \mathbb{N}, t \in \mathbb{R}$. In the sequel we assume $p \in \mathbb{N}$ fixed. Here and in the following, for each $m=0,1, \ldots$ and for any matrix $M(t)$, we denote by $M_{i, j}^{m}(t), i, j=0,1, \ldots$, the entry in the $(i+1)$-th row and $(j+1)$-th column of matrix $(M(t))^{m}$. In particular, $M_{i, j}^{0}(t)=\delta_{i j}$ are the entries of the identity matrix $I=(M(t))^{0}$. Also, we replace $M_{i, j}^{1}(t)$ by $M_{i, j}(t)$. Also, we denote by $J_{n}(t)$ the finite submatrix formed by the first n rows and columns of $J(t)$.
Definition 1. We say that $\{J(t)\}, t \in \mathbb{R}$, is a solution of the high order Toda lattice, or a generalized Toda solution, if we have

$$
\left.\begin{array}{rl}
\dot{J}_{n, n}(t) & =J_{n, n+1}(t) J_{n, n+1}^{p}(t)-J_{n-1, n}(t) J_{n-1, n}^{p}(t) \\
\dot{J}_{n, n+1}(t) & =\frac{1}{2} J_{n, n+1}(t)\left[J_{n+1, n+1}^{p}(t)-J_{n, n}^{p}(t)\right]
\end{array}\right\}, \quad n=0,1, \ldots .
$$

In the same way, consider the family $\{\Gamma(t)\}, t \in \mathbb{R}$, of infinite matrices,

$$
\Gamma(t)=\left(\begin{array}{cccc}
0 & \gamma_{2}(t) & & \tag{6}\\
\gamma_{2}(t) & 0 & \gamma_{3}(t) & \\
& \gamma_{3}(t) & 0 & \ddots \\
& & \ddots & \ddots
\end{array}\right), t \in \mathbb{R}
$$

Definition 2. We say that $\{\Gamma(t)\}, t \in \mathbb{R}$, is a solution of the high order Volterra lattice, or a generalized Volterra solution, if we have

$$
\begin{equation*}
\dot{\Gamma}_{n-1, n}(t)=\frac{1}{2} \Gamma_{n-1, n}(t)\left[\left(\Gamma^{2}(t)+C I\right)_{n, n}^{p}-\left(\Gamma^{2}(t)+C I\right)_{n-1, n-1}^{p}\right], n \in \mathbb{N} \tag{7}
\end{equation*}
$$

for some $C \in \mathbb{C}$.

Note that, for $p=1$ and $n \in \mathbb{N}$, (5) and (7) coincide, respectively, with (1) and (3).

The main result of our work is the following.
Theorem 1. Let $\{J(t)\}, t \in \mathbb{R}$, be a generalized Toda solution. Let $C \in \mathbb{C}$ be such that

$$
\begin{equation*}
\operatorname{det}\left(J_{n}(t)-C I_{n}\right) \neq 0 \tag{8}
\end{equation*}
$$

for each $n \in \mathbb{N}$ and for all $t \in \mathbb{R}$. Then there exists $\{\Gamma(t)\}, t \in \mathbb{R}$, generalized Volterra solution, and there exists another generalized Toda solution $\{\widetilde{J}(t)\}, t \in \mathbb{R}$, with

$$
\widetilde{J}(t)=\left(\begin{array}{cccc}
\widetilde{\alpha}_{1}(t) & \widetilde{\lambda}_{2}(t) & & \\
\widetilde{\lambda}_{2}(t) & \widetilde{\alpha}_{2}(t) & \widetilde{\lambda}_{3}(t) & \\
& \widetilde{\lambda}_{3}(t) & \widetilde{\alpha}_{3}(t) & \ddots \\
& & \ddots & \ddots
\end{array}\right), \quad t \in \mathbb{R}
$$

such that (2a)-(2b) hold.
Moreover, for each C in the above conditions, we have that $\left\{\widetilde{\lambda}_{n+1}(t)\right\},\left\{\widetilde{\alpha}_{n}(t)\right\}$, $\left\{\gamma_{n}^{2}(t)\right\}, n \in \mathbb{N}$, are the unique sequences verifying (2a) and (2b).

The main tool in the proof of Theorem 1 is the sequence of monic polynomials $\left\{P_{n}(t, z)\right\}, n \in \mathbb{N}$, associated with the matrix $J(t)$ for each $t \in \mathbb{R}$ (see (4)). These polynomials are generated by the three-term recurrence relation

$$
\left.\begin{array}{l}
P_{n+1}(t, z)=\left(z-\alpha_{n+1}(t)\right) P_{n}(t, z)-\lambda_{n+1}^{2}(t) P_{n-1}(t, z), \quad n=0,1, \ldots \tag{9}\\
P_{-1}(t, z) \equiv 0, \quad P_{0}(t, z) \equiv 1
\end{array}\right\}
$$

In the following result we determinate a necessary and sufficient condition over $\left\{P_{n}(t, z)\right\}, n \in \mathbb{N}$, in order to the coefficients of (9) define a generalized Toda solution.

Theorem 2. With the above notation, $\{J(t)\}, t \in \mathbb{R}$, is a generalized Toda solution if and only if

$$
\begin{equation*}
\dot{P}_{n}(t, z)=-\sum_{j=1}^{p} J_{n, n-j}^{p}(t) \lambda_{n-j+2}(t) \cdots \lambda_{n+1}(t) P_{n-j}(t, z), \quad t \in \mathbb{R}, \tag{10}
\end{equation*}
$$

for each $n \in \mathbb{N}$ and all $z \in \mathbb{C}$.

Let

$$
W(z)=\sum_{k \geq 0} \frac{w_{k}}{z^{k+1}}
$$

be a formal power series at $z=\infty$ and let $f_{n}(z)=P_{n}^{(1)}(z) / P_{n}(z)$ be the n-diagonal Padé approximant of $W(z), n \in \mathbb{N}$. It is well known that the sequences of polynomials $\left\{P_{n}(z)\right\}$ and $\left\{P_{n}^{(1)}(z)\right\}$ verify the same three-term recurrence relation, whose coefficients define a tridiagonal matrix J. Moreover, we have

$$
w_{k}=\left\langle J^{k} e_{0}, e_{0}\right\rangle=e_{0}^{T} J^{k} e_{0}, \quad k=0,1, \ldots, \quad e_{0}=(1,0, \ldots)^{T},
$$

and, in a formal sense,

$$
W(z)=\left\langle(z I-J)^{-1} e_{0}, e_{0}\right\rangle
$$

for z in the resolvent set of J. In [2] was established that, when the entries of J are bounded and depend on $t \in \mathbb{R}$, then $\{J(t)\}$ is a generalized Toda solution if and only if

$$
\begin{equation*}
\dot{w}_{k}(t)=w_{k}(t) w_{p}(t)-w_{k+p}(t), \quad k \in \mathbb{N}, \tag{11}
\end{equation*}
$$

holds. From this and Theorem 2 we have the following consequence.
Corollary 1. Let $\left\{P_{n}(t, z)\right\}$ be the sequence of monic polynomials defined by (9). Assume that, for each $t \in \mathbb{R}$, there exists $M(t) \in \mathbb{R}_{+}$such that

$$
\sup _{n \in \mathbb{N}}\left\{\left|\alpha_{n}(t)\right|,\left|\lambda_{n}(t)\right|\right\} \leq M(t)
$$

Then $\left\{P_{n}(t, z)\right\}$ verify (10) if and only if the sequence of moments associated with $W(z),\left\{w_{n}\right\}$, verify (11).

We present the proof of Theorem 2 in Section 2. In Section 3 we analyze the Bäcklund transformation (2a)-(2b) under the perspective of sequences of polynomials generated by a three term recurrence relation. The rest of the paper, Section 4, is devoted to prove Theorem 1.

2. Proof of Theorem 2

Firstly, we shall show that (10) is a necessary condition. Assume that $\{J(t)\}, t \in \mathbb{R}$, is a generalized Toda solution. The system (5) was described in [1] as representation in Lax pair

$$
\begin{equation*}
\dot{J}(t)=[J(t), A(t)] \tag{12}
\end{equation*}
$$

where $[J(t), A(t)]=J(t) A(t)-A(t) J(t)$ is the commutator of $J(t)$ and $A(t)$, being for all $t \in \mathbb{R}$

$$
A(t)=\frac{1}{2}\left(\begin{array}{cccccc}
0 & -J_{0,1}^{p}(t) & \cdots & -J_{0, p}^{p}(t) & 0 & \tag{13}\\
J_{0,1}^{p}(t) & 0 & -J_{1,2}^{p}(t) & \cdots & -J_{1, p+1}^{p}(t) & \ddots \\
\vdots & \ddots & \ddots & \ddots & & \ddots \\
J_{0, p}^{p}(t) & & & & & \\
0 & J_{1, p+1}^{p}(t) & & & & \\
& \ddots & \ddots & & &
\end{array}\right),
$$

i.e., $A(t)$ is a skew-symmetric $(2 p+1)$-diagonal matrix whose low triangular part coincides with $(J(t))^{p}$. Thus, the structure of $A(t)$ depends on the fixed number $p \in \mathbb{N}$.

If we define

$$
\widehat{p}_{n}(t, z):=\frac{P_{n}(t, z)}{\lambda_{2}(t) \cdots \lambda_{n+1}(t)}, \quad n \in \mathbb{N}, \quad\left(\widehat{p}_{0}(t, z) \equiv 1, \widehat{p}_{-1}(t, z) \equiv 0\right)
$$

then, since (9), it is easy to prove that for each $t \in \mathbb{R}$ the sequence $\left\{\widehat{p}_{n}(t, z)\right\}$, $n=0,1, \ldots$, verifies

$$
\begin{equation*}
\lambda_{n+1}(t) \widehat{p}_{n-1}(t, z)+\left(\alpha_{n+1}(t)-z\right) \widehat{p}_{n}(t, z)+\lambda_{n+2}(t) \widehat{p}_{n+1}(t, z)=0 . \tag{11}
\end{equation*}
$$

We are going to prove

$$
\begin{equation*}
\dot{\hat{p}}_{n}(t, z)=-\sum_{j=1}^{p} J_{n, n-j}^{p}(t) \widehat{p}_{n-j}(t, z)+\frac{\left(J_{0,0}^{p}(t)-J_{n, n}^{p}(t)\right) \widehat{p}_{n}(t, z)}{2} . \tag{15}
\end{equation*}
$$

For this purpose, we can rewrite (14) as

$$
\begin{equation*}
(J(t)-z I) \mathcal{P}(t, z)=(0,0, \ldots)^{T} \tag{16}
\end{equation*}
$$

where we understand $\mathcal{P}(t, z):=\left(\widehat{p}_{0}(t, z), \widehat{p}_{1}(t, z), \ldots\right)^{T}$ as a sequence. Taking derivatives in (16), and taking into account (12) and again (16), we obtain

$$
\begin{align*}
\dot{J}(t) \mathcal{P}(t, z)+ & (J(t)-z I) \dot{\mathcal{P}}(t, z) \\
& =(J(t) A(t)-A(t) J(t)) \mathcal{P}(t, z)+(J(t)-z I) \dot{\mathcal{P}}(t, z) \\
& =(J(t)-z I)(A(t) \mathcal{P}(t, z)+\dot{\mathcal{P}}(t, z))=0 . \tag{17}
\end{align*}
$$

Taking $n=0,1, \ldots$ successively in (14) we can see that the only solutions of $(J(t)-z I) X=(0,0, \ldots)^{T}$ are the sequences $X=\mu \mathcal{P}(t, z), \mu=\mu(t) \in \mathbb{C}$. Therefore, because of (17), we have

$$
\begin{equation*}
A(t) \mathcal{P}(t, z)+\dot{\mathcal{P}}(t, z)=\mu \mathcal{P}(t, z) \tag{18}
\end{equation*}
$$

for some $\mu \in \mathbb{C}$. We understand (18), in a formal sense, as a set of relations. In particular, from the first of these relations we deduce

$$
\begin{equation*}
\mu=\mu \widehat{p}_{0}(t, z)=-\frac{1}{2} \sum_{j=1}^{p} J_{0, j}^{p}(t) \widehat{p}_{j}(t, z) \tag{19}
\end{equation*}
$$

(see (13)). From the $(n+1)$-th row of (18) we obtain for all $n=0,1, \ldots$

$$
\begin{align*}
& \dot{\hat{p}}_{n}(t, z) \\
& \quad=-\frac{1}{2} \sum_{j=1}^{p} J_{n, n-j}^{p}(t) \widehat{p}_{n-j}(t, z)+\frac{1}{2} \sum_{j=1}^{p} J_{n, n+j}^{p}(t) \widehat{p}_{n+j}(t, z)+\mu \widehat{p}_{n}(t, z) . \tag{20}
\end{align*}
$$

Moreover, since (16) we have

$$
\left(J^{p}(t)-z^{p} I\right) \mathcal{P}(t, z)=(0,0, \ldots)^{T}
$$

or, what is the same, for all $n=0,1, \ldots$

$$
\begin{array}{r}
\sum_{j=1}^{p} J_{n, n-j}^{p}(t) \widehat{p}_{n-j}(t, z)+J_{n, n}^{p}(t) \widehat{p}_{n}(t, z)+\sum_{j=1}^{p} J_{n, n+j}^{p}(t) \widehat{p}_{n+j}(t, z) \\
=z^{p} \widehat{p}_{n}(t, z) \tag{21}
\end{array}
$$

where $J_{n, k}^{p}(t)=0$ for $k<0$. Due to (20) and (21),

$$
\begin{equation*}
\dot{\hat{p}}_{n}(t, z)=-\sum_{j=1}^{p} J_{n, n-j}^{p}(t) \widehat{p}_{n-j}(t, z)+\mu \widehat{p}_{n}(t, z)+\frac{1}{2}\left(z^{p}-J_{n, n}^{p}(t)\right) \widehat{p}_{n}(t, z) . \tag{22}
\end{equation*}
$$

On the other hand, taking $n=0$ in (21), and from (19) we obtain

$$
\mu=-\frac{1}{2}\left(z^{p}-J_{0,0}^{p}(t)\right)
$$

and replacing this expression in (22) we arrive to (15).
Now, using (5),

$$
\dot{\lambda}_{i}(t)=\frac{1}{2} \lambda_{i}(t)\left(J_{i-1, i-1}^{p}(t)-J_{i-2, i-2}^{p}(t)\right), \quad i \in \mathbb{N} .
$$

Then,

$$
\frac{d}{d t}\left(\lambda_{2}(t) \cdots \lambda_{n+1}(t)\right)=\frac{1}{2} \lambda_{2}(t) \cdots \lambda_{n+1}(t)\left(J_{n, n}^{p}(t)-J_{0,0}^{p}(t)\right) .
$$

Substituting this expression and (15) in

$$
\dot{P}_{n}(t, z)=\frac{d}{d t}\left(\lambda_{2}(t) \cdots \lambda_{n+1}(t)\right) \widehat{p}_{n}(t, z)+\lambda_{2}(t) \cdots \lambda_{n+1}(t) \dot{\widehat{p}}_{n}(t, z)
$$

we arrive to (10).
Conversely, we shall to prove that (10) is a sufficient condition to obtain a solution of the high order Toda lattice. Let $\left\{P_{n}(t, z)\right\}$ be the sequence of polynomials given by (9) and assume that (10) is verified. We want to prove that the sequence $\left\{\alpha_{n}(t), \lambda_{n}^{2}(t)\right\}$, given in (9), defines a matrix $J(t)$ such that (5) is verified.

Taking derivatives with respect to t in (9),

$$
\begin{aligned}
\dot{P}_{n+1}(t, z)=-\dot{\alpha}_{n+1}(t) P_{n}(& t, z)+\left(z-\alpha_{n+1}(t)\right) \dot{P}_{n}(t, z) \\
& -2 \lambda_{n+1}(t) \dot{\lambda}_{n+1}(t) P_{n-1}(t, z)-\lambda_{n+1}^{2}(t) \dot{P}_{n-1}(t, z) .
\end{aligned}
$$

From this and (10),

$$
\begin{align*}
& -\sum_{j=1}^{p} J_{n+1, n-j+1}^{p}(t) \lambda_{n-j+3}(t) \cdots \lambda_{n+2}(t) P_{n-j+1}(t, z) \\
& =-\left(z-\alpha_{n+1}(t)\right) \sum_{j=0}^{p-1} J_{n, n-j-1}^{p}(t) \lambda_{n-j+1}(t) \cdots \lambda_{n+1}(t) P_{n-j-1}(t, z) \\
& \quad-\dot{\alpha}_{n+1}(t) P_{n}(t, z)-2 \lambda_{n+1}(t) \dot{\lambda}_{n+1}(t) P_{n-1}(t, z) \\
& \quad+\quad \lambda_{n+1}^{2}(t) \sum_{j=1}^{p} J_{n-1, n-j-1}^{p}(t) \lambda_{n-j+1}(t) \cdots \lambda_{n}(t) P_{n-j-1}(t, z) \tag{23}
\end{align*}
$$

Comparing the coefficients of z^{n} in (23),

$$
\begin{equation*}
-J_{n+1, n}^{p}(t) \lambda_{n+2}(t)=-\dot{\alpha}_{n+1}(t)-J_{n, n-1}^{p}(t) \lambda_{n+1}(t), \quad n \in \mathbb{N} . \tag{24}
\end{equation*}
$$

Moreover, $J_{m, m+1}(t)=\lambda_{m+2}(t), J_{m, m}(t)=\alpha_{m+1}(t), m=0,1, \ldots$, being $(J(t))^{p}$ a symmetric matrix. Thus, (24) is the first part of (5).

Now, comparing the coefficients of z^{n-1} in (23),

$$
\begin{aligned}
&-J_{n+1, n}^{p}(t) \lambda_{n+2}(t) \gamma_{n, n-1}(t)-J_{n+1, n-1}^{p}(t) \lambda_{n+1}(t) \lambda_{n+2}(t) \\
&=-\dot{\alpha}_{n+1}(t) \gamma_{n, n-1}(t)+ J_{n, n-1}^{p}(t) \alpha_{n+1}(t) \lambda_{n+1}(t)-J_{n, n-2}^{p}(t) \lambda_{n}(t) \lambda_{n+1}(t) \\
&-2 \lambda_{n+1}(t) \dot{\lambda}_{n+1}(t)-J_{n, n-1}^{p}(t) \lambda_{n+1}(t) \gamma_{n-1, n-2}(t),
\end{aligned}
$$

where $\gamma_{m, m-1}(t)$ is for each m the coefficient of z^{m-1} in $P_{m}(t, z)$. Taking into account (24) and take common factor $\lambda_{n+1}(t)$,

$$
\begin{align*}
-J_{n+1, n-1}^{p}(t) \lambda_{n+2}(t)= & J_{n, n-1}^{p}(t)\left(\gamma_{n, n-1}(t)-\gamma_{n-1, n-2}(t)\right) \\
& +\alpha_{n+1}(t) J_{n, n-1}^{p}(t)-\lambda_{n}(t) J_{n, n-2}^{p}(t)-2 \dot{\lambda}_{n+1}(t) \tag{25}
\end{align*}
$$

On the other hand, from (9) it is easy to deduce that

$$
\gamma_{m, m-1}(t)=-\sum_{j=1}^{m} \alpha_{j}(t), \quad m=n-1, n
$$

Then, substituting this expression in (25) we obtain

$$
\begin{align*}
2 \dot{\lambda}_{n+1}(t)=- & \alpha_{n}(t) J_{n, n-1}^{p}(t) \\
& +\alpha_{n+1}(t) J_{n, n-1}^{p}(t)-\lambda_{n}(t) J_{n, n-2}^{p}(t)+\lambda_{n+2}(t) J_{n+1, n-1}^{p}(t) \tag{26}
\end{align*}
$$

Moreover, $J_{n-1, n}^{p+1}(t)$ is obtained by multiplying the n-th row of $(J(t))^{p}$ and the $(n+1)$-th column of $J(t)$, i.e.,

$$
\begin{equation*}
J_{n-1, n}^{p+1}(t)=\lambda_{n+1}(t) J_{n-1, n-1}^{p}(t)+\alpha_{n+1}(t) J_{n-1, n}^{p}(t)+\lambda_{n+2}(t) J_{n-1, n+1}^{p}(t) \tag{27}
\end{equation*}
$$

Also, because of the symmetry of matrix $(J(t))^{p+1}$, we have that $J_{n-1, n}^{p+1}(t)=$ $J_{n, n-1}^{p+1}(t)$ is obtained by multiplying the $(n+1)$-th row of $(J(t))^{p}$ and the n-th column of $J(t)$, this is,

$$
\begin{equation*}
J_{n-1, n}^{p+1}(t)=\lambda_{n}(t) J_{n, n-2}^{p}(t)+\alpha_{n}(t) J_{n, n-1}^{p}(t)+\lambda_{n+1}(t) J_{n, n}^{p}(t) \tag{28}
\end{equation*}
$$

Comparing (27) and (28),

$$
\begin{aligned}
& \alpha_{n+1}(t) J_{n-1, n}^{p}(t)+\lambda_{n+2}(t) J_{n-1, n+1}^{p}(t) \\
& \quad=\lambda_{n}(t) J_{n, n-2}^{p}(t)+\alpha_{n}(t) J_{n, n-1}^{p}(t)+\lambda_{n+1}(t)\left[J_{n, n}^{p}(t)-J_{n-1, n-1}^{p}(t)\right]
\end{aligned}
$$

From this and (26) we arrive to

$$
2 \dot{\lambda}_{n+1}(t)=\lambda_{n+1}(t)\left[J_{n, n}^{p}(t)-J_{n-1, n-1}^{p}(t)\right]
$$

which is the second part of (5).

3. Bäcklund transformation and sequences of polynomials

Given a family of tridiagonal matrices $\{J(t)\}, t \in \mathbb{R}$, as in (4), we consider the sequence $\left\{P_{n}(t, z)\right\}$ of polynomials defined in (9). The well-known Favard's Theorem states that, if $\lambda_{n}(t) \neq 0$ for $n=2,3, \ldots$, then the sequence $\left\{P_{n}(t, z)\right\}$ is orthogonal with respect to some quasi-definite moment functional.
Let $C \in \mathbb{C}$ be such that $P_{n}(t, C) \neq 0, n \in \mathbb{N}, t \in \mathbb{R}$. We consider, also, the sequence of monic polynomials $\left\{Q_{n}^{(C)}(t, z)\right\}$ defined by

$$
\begin{equation*}
Q_{n}^{(C)}(t, z)=\frac{P_{n+1}(t, z)-\frac{P_{n+1}(t, C)}{P_{n}(t, C)} P_{n}(t, z)}{z-C}, n=0,1, \ldots, \quad t \in \mathbb{R} \tag{29}
\end{equation*}
$$

In [5] was proved that, if $\left\{P_{n}(t, z)\right\}$ is the sequence of orthogonal polynomials with respect to a quasi-definite functional, then $\left\{Q_{n}^{(C)}(t, z)\right\}$ is also orthogonal with respect to another quasi-definite functional and verify, as consequence, a three-terms recurrence relation. Moreover, the relationship between the coefficients of both recurrence relations was established. In our case, this fact holds true, because we are assuming $\lambda_{n}(t) \neq 0, n=2,3, \ldots, t \in \mathbb{R}$. We summarize the situation in the following auxiliary result (cf. [5, Theorems 7.1, 4.1, 4.2]).

Lemma 1. The polynomials $\left\{Q_{n}^{(C)}(t, z)\right\}$ satisfies the three-term recurrence relation

$$
\left.\begin{array}{l}
Q_{n}^{(C)}(t, z)=\left(z-\widetilde{\alpha}_{n}(t)\right) Q_{n-1}^{(C)}(t, z)-\widetilde{\lambda}_{n}^{2}(t) Q_{n-2}^{(C)}(t, z), \quad n \in \mathbb{N} \\
Q_{-1}^{(C)} \equiv 0, \quad Q_{0}^{(C)} \equiv 1
\end{array}\right\}
$$

being

$$
\left.\begin{array}{l}
\widetilde{\alpha}_{n}(t)=\frac{P_{n+1}(t, C)}{P_{n}(t, C)}+\alpha_{n+1}(t)-\frac{P_{n}(t, C)}{P_{n-1}(t, C)} \tag{30}\\
\widetilde{\lambda}_{n}^{2}(t)=\lambda_{n}^{2}(t) \frac{P_{n-2}(t, C) P_{n}(t, C)}{P_{n-1}^{2}(t, C)}
\end{array}\right\}, n \in \mathbb{N}, t \in \mathbb{R}
$$

In a similar way as in [5, Theorem 9.1, p. 46], we define the sequence of complex functions $\left\{\gamma_{n}(t)\right\}, n \in \mathbb{N}$, as

$$
\begin{equation*}
\gamma_{1}(t)=0, \quad \gamma_{2 n}^{2}(t)=-\frac{P_{n}(t, C)}{P_{n-1}(t, C)}, \quad \gamma_{2 n+1}^{2}(t)=-\lambda_{n+1}^{2}(t) \frac{P_{n-1}(t, C)}{P_{n}(t, C)} . \tag{31}
\end{equation*}
$$

Note that we only define $\gamma_{n}^{2}(t), n \in \mathbb{N}$. In fact, it is possible to find more than one sequence $\left\{\gamma_{n}(t)\right\}$ in the above conditions.
We remark that $\left\{\gamma_{n}(t)\right\}, n \in \mathbb{N}$, depends on C. However, we don't make explicit this dependence for brevity.
The sequence $\left\{\gamma_{n}^{2}(t)\right\}$ is associated with $\left\{S_{n}^{(C)}(t, z)\right\}, n \in \mathbb{N}$, which is another sequence of polynomials verifying the recurrence relation

$$
\left.\begin{array}{l}
S_{n}^{(C)}(t, z)=z S_{n-1}^{(C)}(t, z)-\gamma_{n}^{2}(t) S_{n-2}^{(C)}(t, z), \quad n \in \mathbb{N} \\
S_{-1}^{(C)} \equiv 0, \quad S_{0}^{(C)} \equiv 1
\end{array}\right\}
$$

From (30) and (31) we immediately deduce (2a) and (2b). In other words, the coefficients of recurrence relations defining $\left\{P_{n}(t, z)\right\}$ and $\left\{Q_{n}^{(C)}(t, z)\right\}$ are linked by a Bäcklund transformation associated with the coefficients $\left\{\gamma_{n}^{2}(t)\right\}$ of the recurrence relation for $\left\{S_{n}^{(C)}(t, z)\right\}$.

4. Proof of Theorem 1

We shall dedicate the rest of the work to prove Theorem 1. Therefore, we take a generalized Toda solution $\{J(t)\}, t \in \mathbb{R}$, and $C \in \mathbb{C}$ verifying (8). Given the sequence $\left\{P_{n}(t, z)\right\}, n \in \mathbb{N}$, defined in (9), it is well know that

$$
P_{n}(t, z)=\operatorname{det}\left(z I_{n}-J_{n}(t)\right), \quad n \in \mathbb{N}, \quad t \in \mathbb{R} .
$$

Then, from (8) we have $P_{n}(t, C) \neq 0, n \in \mathbb{N}, t \in \mathbb{R}$, and, consequently, we can define the sequence of monic polynomials $\left\{Q_{n}^{(C)}(t, z)\right\}$ as in (29).

Now, we are going to prove that $\left\{\widetilde{\alpha}_{n}(t)\right\},\left\{\widetilde{\lambda}_{n}(t)\right\},\left\{\gamma_{n}^{2}(t)\right\}$ defined in (30) and (31) are the unique sequences verifying (2a) and (2b). Define

$$
J^{(1)}(t)=\left(\begin{array}{cccc}
\alpha_{1}(t) & \lambda_{2}^{2}(t) & & \tag{32}\\
1 & \alpha_{2}(t) & \lambda_{3}^{2}(t) & \\
& 1 & \alpha_{3}(t) & \ddots \\
& & \ddots & \ddots
\end{array}\right)
$$

It is well known, and easy to prove, that

$$
\operatorname{det}\left(J_{n}^{(1)}(t)-C I_{n}\right)=\operatorname{det}\left(J_{n}(t)-C I_{n}\right), \quad t \in \mathbb{R}
$$

for any $n \in \mathbb{N}$. Thus, since (8) we know that it is possible to obtain a lower triangular infinite matrix $L(t)$ and an upper triangular infinite matrix $U(t)$ such that

$$
\begin{equation*}
J^{(1)}(t)-C I=L(t) U(t) \tag{33}
\end{equation*}
$$

(see [6, Theorem 1, p. 35]). Moreover, taking the value 1 in all the diagonal entries of $U(t)$, the matrices $L(t)$ and $U(t)$ are uniquely determined in (33). But it is obvious that (2a) can be expressed as (33) for

$$
L(t)=\left(\begin{array}{ccc}
\gamma_{2}^{2}(t) & & \tag{34}\\
1 & \gamma_{4}^{2}(t) & \\
& \ddots & \ddots
\end{array}\right), \quad U(t)=\left(\begin{array}{cccc}
1 & \gamma_{3}^{2}(t) & & \\
& 1 & \gamma_{5}^{2}(t) & \\
& & \ddots & \ddots
\end{array}\right)
$$

Thus, the sequence $\left\{\gamma_{n}^{2}(t)\right\}, n \in \mathbb{N}$, is uniquely determined by (2a) and, consequently, $\left\{\widetilde{\lambda}_{n}(t)\right\},\left\{\widetilde{\alpha}_{n}(t)\right\}, n \in \mathbb{N}$, are the unique sequences given in $(2 \mathrm{~b})$.
To complete the proof of Theorem 1 we need to prove that the families of matrices $\{\widetilde{J}(t)\}$, with entries defined by $(2 \mathrm{~b})$,

$$
\widetilde{J}(t):=\left(\begin{array}{cccc}
\widetilde{\alpha}_{1}(t) & \widetilde{\lambda}_{2}(t) & & \\
\widetilde{\lambda}_{2}(t) & \widetilde{\alpha}_{2}(t) & \widetilde{\lambda}_{3}(t) & \\
& \widetilde{\lambda}_{3}(t) & \widetilde{\alpha}_{3}(t) & \ddots \\
& & \ddots & \ddots
\end{array}\right), t \in \mathbb{R},
$$

and $\{\Gamma(t)\}, t \in \mathbb{R}$, defined as in (6), are solutions of, the high order Toda lattice and of the high order Volterra lattice, respectively.

Taking into account (2a) and (2b) we can see

$$
\Gamma^{2}(t)+C I=\left(\begin{array}{cccccc}
\alpha_{1}(t) & 0 & \lambda_{2}(t) & 0 & & \tag{35}\\
0 & \widetilde{\alpha}_{1}(t) & 0 & \widetilde{\lambda}_{2}(t) & 0 & \\
\lambda_{2}(t) & 0 & \alpha_{2}(t) & 0 & \lambda_{3}(t) & \ddots \\
0 & \widetilde{\lambda}_{2}(t) & 0 & \widetilde{\alpha}_{3}(t) & \ddots & \ddots \\
& \ddots & \ddots & \ddots & &
\end{array}\right), t \in \mathbb{R}
$$

The matrix $\Gamma^{2}(t)+C I$ is the key for understanding the connection between the initial generalized Toda solution $\{J(t)\}$ and the new solution $\{\widetilde{J}(t)\}$ obtained in Theorem 1. In fact, $\Gamma^{2}(t)+C I$ is a bridge between the matrices $J(t)$ and $\widetilde{J}(t)$. In the same way, for each $m \in \mathbb{N}$ the matrix $\left(\Gamma^{2}(t)+C I\right)^{m}$ interlaces $(J(t))^{m}$ and $(\widetilde{J}(t))^{m}$, as we show in the following result.

Lemma 2. For each $m \in \mathbb{N}$ and $j, k=0,1, \ldots$,

$$
\left(\Gamma^{2}(t)+C I\right)_{j, k}^{m}= \begin{cases}0 & , j+k \text { odd } \tag{36}\\ J_{\frac{i}{2}, \frac{k}{2}}^{m}(t) & , j, k \text { even } \\ J_{\frac{i-1}{2}, \frac{k-1}{2}}^{2}(t) & , j, k \text { odd }\end{cases}
$$

Proof: We proceed by induction. (36) is obvious for $m=1$ (see (35)). Let us assume that (36) holds for $m \in \mathbb{N}$. The entry $\left(\Gamma^{2}(t)+C I\right)_{j, k}^{m+1}$ of $\left(\Gamma^{2}(t)+C I\right)^{m+1}$ is obtained multiplying the $(j+1)$-th row of $\left(\Gamma^{2}(t)+C I\right)^{m}$ by the $(k+1)$-th column of $\Gamma^{2}(t)+C I$. Then, if $j+k$ is odd, we can see that this product is zero (see (35) and (36)). On the contrary, when j and k are even (odd, respectively), then there are only entries of $J(t)^{m}$ and $J(t)$ $\left(\widetilde{J}(t)^{m}\right.$ and $\widetilde{J}(t)$, respectively) in the product and the result follows.

For checking (7), firstly we study the evolution of $\left\{\gamma_{2 n}(t)\right\}, n \in \mathbb{N}$. Taking derivatives in (31),

$$
\begin{equation*}
\dot{\gamma}_{2 n}(t)=\frac{1}{2} \gamma_{2 n}(t)\left(\frac{\dot{P}_{n}(t, C)}{P_{n}(t, C)}-\frac{\dot{P}_{n-1}(t, C)}{P_{n-1}(t, C)}\right), n \in \mathbb{N} . \tag{37}
\end{equation*}
$$

On the other hand, from (10) we deduce

$$
\begin{equation*}
\frac{\dot{P}_{n}(t, C)}{P_{n}(t, C)}=-\sum_{j=1}^{p} J_{n, n-j}^{p}(t) \frac{\widehat{p}_{n-j}(t, C)}{\widehat{p}_{n}(t, C)}, \quad n \in \mathbb{N} . \tag{38}
\end{equation*}
$$

In the next lemma we see that the above expression can be written in terms of diagonal and sub-diagonal entries of matrices $(J(t))^{i}, i=0,1, \ldots$.

Lemma 3. For any $m, n \in \mathbb{N}$ we have

$$
\begin{equation*}
-\sum_{j=1}^{m} J_{n, n-j}^{m}(t) \frac{\widehat{p}_{n-j}(t, C)}{\widehat{p}_{n}(t, C)}=\gamma_{2 n+1}^{2}(t) B_{n, n}^{(m)}(t)+\lambda_{n+1}(t) B_{n, n-1}^{(m)}(t), \tag{39}
\end{equation*}
$$

being

$$
\begin{equation*}
B^{(m)}(t):=C^{m-1} I+C^{m-2} J(t)+\cdots+(J(t))^{m-1} \tag{40}
\end{equation*}
$$

Proof: Let $n, m \in \mathbb{N}$ be fixed. Let us define

$$
\begin{equation*}
S(n, m, t):=-\sum_{j=1}^{m} J_{n, n-j}^{m}(t) \frac{\widehat{p}_{n-j}(t, C)}{\widehat{p}_{n}(t, C)}, \quad t \in \mathbb{R} . \tag{41}
\end{equation*}
$$

Using (31),

$$
\begin{equation*}
S(n, 1, t)=-J_{n, n-1}(t) \frac{\widehat{p}_{n-1}(t, C)}{\widehat{p}_{n}(t, C)}=\gamma_{2 n+1}^{2}(t) . \tag{42}
\end{equation*}
$$

Moreover, multiplying the $(i+1)$-th row of $(J(t))^{m}$ and the $(j+1)$-th column of $J(t)$ we obtain for all $i, j=0,1, \ldots$,

$$
\begin{equation*}
J_{i, j}^{m+1}(t)=J_{i, j-1}^{m}(t) \lambda_{j+1}(t)+J_{i, j}^{m}(t) \alpha_{j+1}(t)+J_{i, j+1}^{m}(t) \lambda_{j+2}(t) . \tag{43}
\end{equation*}
$$

Therefore, substituting i by n and j by $n-j$ in (43),

$$
\begin{align*}
& S(n, m+1, t) \\
& \begin{aligned}
&=-\sum_{j=1}^{m-1} J_{n, n-j-1}^{m}(t) \lambda_{n-j+1}(t) \frac{\widehat{p}_{n-j}(t, C)}{\widehat{p}_{n}(t, C)}-\sum_{j=1}^{m} J_{n, n-j}^{m}(t) \alpha_{n-j+1}(t) \frac{\widehat{p}_{n-j}(t, C)}{\widehat{p}_{n}(t, C)} \\
& \quad-\sum_{j=1}^{m+1} J_{n, n-j+1}^{m}(t) \lambda_{n-j+2}(t) \frac{\widehat{p}_{n-j}(t, C)}{\widehat{p}_{n}(t, C)},
\end{aligned}
\end{align*}
$$

where we used the fact that, since $(J(t))^{m}$ is a $(2 m+1)$-diagonal matrix, in the first term we have $J_{n, n-j-1}^{m}(t)=0$ for $j=m, m+1$ and, in the second term, we have $J_{n, n-j}^{m}(t)=0$ for $j=m+1$. Computing the right hand side of (44),

$$
\begin{aligned}
& S(n, m+1, t)=-J_{n, n-1}^{m}(t) \frac{\alpha_{n}(t) \widehat{p}_{n-1}(t, C)+\lambda_{n}(t) \widehat{p}_{n-2}(t, C)}{\widehat{p}_{n}(t, C)} \\
& \quad-J_{n, n}^{m}(t) \lambda_{n+1}(t) \frac{\widehat{p}_{n-1}(t, C)}{\widehat{p}_{n}(t, C)}-\sum_{j=2}^{m} J_{n, n-j}^{m}(t) \\
& \quad \times \frac{\lambda_{n-j+2}(t) \widehat{p}_{n-j+1}(t, C)+\alpha_{n-j+1}(t) \widehat{p}_{n-j}(t, C)+\lambda_{n-j+1}(t) \widehat{p}_{n-j-1}(t, C)}{\widehat{p}_{n}(t, C)} .
\end{aligned}
$$

Using (14) in the last relation,

$$
\begin{aligned}
S(n, m+1, t)=- & J_{n, n-1}^{m}(t) \frac{C \widehat{p}_{n-1}(t, C)-\lambda_{n+1}(t) \widehat{p}_{n}(t, C)}{\widehat{p}_{n}(t, C)} \\
& -J_{n, n}^{m}(t) \lambda_{n+1}(t) \frac{\widehat{p}_{n-1}(t, C)}{\widehat{p}_{n}(t, C)}-\sum_{j=2}^{m} J_{n, n-j}^{m}(t) \frac{C \widehat{p}_{n-j}(t, C)}{\widehat{p}_{n}(t, C)} .
\end{aligned}
$$

Thus,

$$
\begin{equation*}
S(n, m+1, t)=C S(n, m, t)+\lambda_{n+1}(t) J_{n, n-1}^{m}(t)+\gamma_{2 n+1}^{2} J_{n, n}^{m}(t), \quad m \in \mathbb{N} . \tag{45}
\end{equation*}
$$

From this and (42) we arrive to (39). To see this fact, proceed by induction. Assume that (39) holds for a certain $m \in \mathbb{N}$, i.e.,

$$
S(n, m, t)=\gamma_{2 n+1}^{2}(t) B_{n, n}^{(m)}(t)+\lambda_{n+1}(t) B_{n, n-1}^{(m)}(t) .
$$

Due to (45),

$$
\begin{aligned}
& S(n, m+1, t) \\
& \quad=\gamma_{2 n+1}^{2} C B_{n, n}^{(m)}(t)+\lambda_{n+1}(t) C B_{n, n-1}^{(m)}(t)+\lambda_{n+1}(t) J_{n, n-1}^{m}(t)+\gamma_{2 n+1}^{2} J_{n, n}^{m}(t) \\
& \quad=\gamma_{2 n+1}^{2}\left(C B_{n, n}^{(m)}(t)+J_{n, n}^{m}(t)\right)+\lambda_{n+1}(t)\left(C B_{n, n-1}^{(m)}(t)+J_{n, n-1}^{m}(t)\right) .
\end{aligned}
$$

Note that, by (40),

$$
B^{(m+1)}(t)=C B^{(m)}(t)+(J(t))^{m} .
$$

Then, (39) is verified.
The next lemma describes the relation between the ratios given in the left hand side of (38) and the matrix $\left(\Gamma^{2}(t)+C I\right)^{p}$.
Lemma 4. For any $m, n \in \mathbb{N}$ we have

$$
\begin{aligned}
& \sum_{j=1}^{m}\left(\Gamma^{2}(t)+C I\right)_{2 n-2,2 n-2 j-2}^{m} \frac{\widehat{p}_{n-j-1}(t, C)}{\widehat{p}_{n-1}(t, C)} \\
&-\sum_{j=1}^{m}\left(\Gamma^{2}(t)+C I\right)_{2 n, 2 n-2 j}^{m} \frac{\widehat{p}_{n-j}(t, C)}{\widehat{p}_{n}(t, C)} \\
&=\left(\Gamma^{2}(t)+C I\right)_{2 n-1,2 n-1}^{m}-\left(\Gamma^{2}(t)+C I\right)_{2 n-2,2 n-2}^{m}
\end{aligned}
$$

Proof: We use the notation given in (41). Taking into account Lemma 2, we want to prove

$$
\begin{equation*}
S(n, m, t)-S(n-1, m, t)=\widetilde{J}_{n-1, n-1}^{m}(t)-J_{n-1, n-1}^{m}(t), \quad n, m \in \mathbb{N} . \tag{46}
\end{equation*}
$$

We proceed by induction on m.
For $m=1,(46)$ is reduced to

$$
\gamma_{2 n+1}^{2}(t)-\gamma_{2 n-1}^{2}(t)=\widetilde{\alpha}_{1}(t)-\alpha_{1}(t)
$$

and this is true because of (2a) and (2b).
Suppose that (46) holds for $m \in \mathbb{N}$. Then, using (45),

$$
\begin{align*}
& \quad S(n, m+1, t)-S(n-1, m+1, t)=C\left(\widetilde{J}_{n-1, n-1}^{m}(t)-J_{n-1, n-1}^{m}(t)\right) \\
& +\lambda_{n+1}(t) J_{n, n-1}^{m}(t)+\gamma_{2 n+1}^{2} J_{n, n}^{m}(t)-\lambda_{n}(t) J_{n-1, n-2}^{m}(t)-\gamma_{2 n-1}^{2} J_{n-1, n-1}^{m}(t) \tag{47}
\end{align*}
$$

Moreover, taking $i=j=n-1$ in (43), obtaining there $\lambda_{n}(t) J_{n-1, n-2}^{m}(t)$, and substituting in (47),

$$
\begin{align*}
S(n, m+1, & t)-S(n-1, m+1, t)=-J_{n-1, n-1}^{m+1}(t)+C \widetilde{J}_{n-1, n-1}^{m}(t) \\
& +\gamma_{2 n}^{2}(t) J_{n-1, n-1}^{m}(t)+2 \lambda_{n+1}(t) J_{n, n-1}^{m}(t)+\gamma_{2 n+1}^{2}(t) J_{n, n}^{m}(t) \tag{48}
\end{align*}
$$

On the other hand, if we define

$$
\widetilde{J}^{(1)}(t)=\left(\begin{array}{cccc}
\widetilde{\alpha}_{1}(t) & \widetilde{\lambda}_{2}^{2}(t) & & \\
1 & \widetilde{\alpha}_{2}(t) & \widetilde{\lambda}_{3}^{2}(t) & \\
& 1 & \widetilde{\alpha}_{3}(t) & \ddots \\
& & \ddots & \ddots
\end{array}\right)
$$

and $L(t), U(t)$ are the matrices defined in (34), then in a formal sense we can verify (cf. [4])

$$
\begin{equation*}
\widetilde{J}^{(1)}(t)-C I=U(t) L(t) \tag{49}
\end{equation*}
$$

This is, we understand (49) as a set of relations given by the rows of these matrices.
Given the diagonal matrices $A(t):=\operatorname{diag}\left\{1, \lambda_{2}(t), \lambda_{2}(t) \lambda_{3}(t), \ldots\right\}$ and $\widetilde{A}(t):=\operatorname{diag}\left\{1, \widetilde{\lambda}_{2}(t), \widetilde{\lambda}_{2}(t) \widetilde{\lambda}_{3}(t), \ldots\right\}, t \in \mathbb{R}$ it is easy to show

$$
J(t)=A(t) J^{(1)}(t) A(t)^{-1}, \quad \widetilde{J}(t)=\widetilde{A}(t) \widetilde{J}^{(1)}(t) \widetilde{A}(t)^{-1}
$$

(see (32)) where we represent by $A(t)^{-1}$ (respectively $\left.\widetilde{A}(t)^{-1}\right)$ the diagonal matrix whose entries are $1, \lambda_{2}(t)^{-1}, \lambda_{2}(t)^{-1} \lambda_{3}(t)^{-1}, \ldots$ (respectively $1, \widetilde{\lambda}_{2}(t)^{-1}$, $\left.\widetilde{\lambda}_{2}(t)^{-1} \widetilde{\lambda}_{3}(t)^{-1}, \ldots\right)$. Thus, for all $k=0,1, \ldots$

$$
\begin{equation*}
(J(t))^{k} A(t)=A(t)\left(J^{(1)}(t)\right)^{k}, \quad(\widetilde{J}(t))^{k} \widetilde{A}(t)=\widetilde{A}(t)\left(\widetilde{J}^{(1)}(t)\right)^{k} \tag{50}
\end{equation*}
$$

Moreover, from (33) and (49) we have

$$
J^{(1)}(t) L(t)=(L(t) U(t)+C I) L(t)=L(t)(U(t) L(t)+C I)=L(t) \widetilde{J}^{(1)}(t)
$$

and, in general, it is easy to see that

$$
\left(J^{(1)}(t)\right)^{k} L(t)=L(t)\left(\widetilde{J}^{(1)}(t)\right)^{k}, \quad k \in \mathbb{N} .
$$

From this and (50),

$$
\begin{aligned}
& (J(t))^{k}\left(A(t) L(t) \widetilde{A}(t)^{-1}\right)=\left(A(t)\left(J^{(1)}(t)\right)^{k}\right) L(t) \widetilde{A}(t)^{-1} \& \\
= & A(t)\left(L(t)\left(\widetilde{J}^{(1)}(t)\right)^{k}\right) \widetilde{A}(t)^{-1}=\left(A(t) L(t) \widetilde{A}(t)^{-1}\right)(\widetilde{J}(t))^{k} \quad, \quad k \in \mathbb{N},
\end{aligned}
$$

and so, taking $R(t):=A(t) L(t) \widetilde{A}(t)^{-1}$ we have proved the relations

$$
\begin{equation*}
(J(t))^{k} R(t)=R(t)(\widetilde{J}(t))^{k}, \quad k=0,1, \ldots, \quad t \in \mathbb{R} \tag{51}
\end{equation*}
$$

between the powers of $J(t)$ and $\widetilde{J}(t)$. Therefore, since

$$
R(t)=\left(\begin{array}{cccc}
\gamma_{2}^{2}(t) & 0 & & \\
\lambda_{2}(t) & \frac{\lambda_{2}(t) \gamma_{4}^{2}(t)}{\widetilde{\lambda}_{2}(t)} & \ddots & \\
0 & \frac{\lambda_{2}(t) \lambda_{3}(t)}{\widetilde{\lambda}_{2}(t)} & \frac{\lambda_{2}(t) \lambda_{3}(t) \gamma_{6}^{2}(t)}{\widetilde{\lambda}_{2}(t) \widetilde{\lambda}_{3}(t)} & \\
& \ddots & \ddots & \ddots
\end{array}\right)
$$

it is possible to find the relationship between the entries of the matrices given in (51). For $k=m$, the entry of the $(i+1)$-th row and the $(j+1)$-th column is obtained by multiplying the corresponding row and column of each matrix, i.e.,

$$
\begin{align*}
& \left((J(t))^{m} R(t)\right)_{i, j} \\
& \quad=J_{i, j}^{m}(t) \frac{\lambda_{2}(t) \cdots \lambda_{j+1}(t)}{\widetilde{\lambda}_{2}(t) \cdots \widetilde{\lambda}_{j+1}(t)} \gamma_{2 j+2}^{2}(t)+J_{i, j+1}^{m}(t) \frac{\lambda_{2}(t) \cdots \lambda_{j+2}(t)}{\widetilde{\lambda}_{2}(t) \cdots \widetilde{\lambda}_{j+1}(t)}, \quad t \in \mathbb{R} \tag{52}
\end{align*}
$$

and, in a similar way,

$$
\begin{align*}
& \left(R(t)(\widetilde{J}(t))^{m}\right)_{i, j} \\
& \quad=\widetilde{J}_{i-1, j}^{m}(t) \frac{\lambda_{2}(t) \cdots \lambda_{i+1}(t)}{\widetilde{\lambda}_{2}(t) \cdots \widetilde{\lambda}_{i}(t)}+\widetilde{J}_{i, j}^{m}(t) \frac{\lambda_{2}(t) \cdots \lambda_{i+1}(t)}{\widetilde{\lambda}_{2}(t) \cdots \widetilde{\lambda}_{i+1}(t)} \gamma_{2 i+2}^{2}(t), \quad t \in \mathbb{R} \tag{53}
\end{align*}
$$

In particular, taking $i=j=n-1$ in (52) and (53), from (51) we obtain

$$
\begin{align*}
& \quad J_{n-1, n-1}^{m}(t) \gamma_{2 n}^{2}(t)+J_{n-1, n}^{m}(t) \lambda_{n+1}(t) \\
& \quad=\widetilde{J}_{n-2, n-1}^{m}(t) \widetilde{\lambda}_{n}(t)+\widetilde{J}(t)_{n-1, n-1}^{m} \gamma_{2 n}^{2}(t) \tag{54}
\end{align*}
$$

and, taking $i=n, j=n-1$,

$$
\begin{aligned}
& J_{n, n-1}^{m}(t) \gamma_{2 n}^{2}(t)+J_{n, n}^{m}(t) \lambda_{n+1}(t) \\
&=\widetilde{J}_{n-1, n-1}^{m}(t) \widetilde{\lambda}_{n+1}(t)+\widetilde{J}_{n, n-1}^{m}(t) \frac{\lambda_{n+1}(t)}{\widetilde{\lambda}_{n+1}(t)} \gamma_{2 n+2}^{2}(t)
\end{aligned}
$$

Multiplying by $\lambda_{n+1}(t) \widetilde{\lambda}_{n+1}^{2}(t)$ the last equality, taking into account (2a) and (2b), and simplifying the obtained result,

$$
\begin{align*}
& J_{n, n-1}^{m}(t) \lambda_{n+1}(t)+J_{n, n}^{m}(t) \gamma_{2 n+1}^{2}(t) \\
& \quad=\widetilde{J}_{n-1, n-1}^{m}(t) \gamma_{2 n+1}^{2}(t)+\widetilde{J}_{n, n-1}^{m}(t) \widetilde{\lambda}_{n+1}(t) \tag{55}
\end{align*}
$$

Adding (54) and (55),

$$
\begin{aligned}
& J_{n-1, n-1}^{m}(t) \gamma_{2 n}^{2}(t)+2 J_{n-1, n}^{m}(t) \lambda_{n+1}(t)+J_{n, n}^{m}(t) \gamma_{2 n+1}^{2}(t) \\
& \quad=\widetilde{J}_{n-2, n-1}^{m}(t) \widetilde{\lambda}_{n}+\left(\widetilde{\alpha}_{n}(t)-C\right) \widetilde{J}_{n-1, n-1}^{m}(t)+\widetilde{J}_{n, n-1}^{m}(t) \widetilde{\lambda}_{n+1}(t) .
\end{aligned}
$$

From this and

$$
\widetilde{J}_{n-1, n-1}^{m+1}(t)=\widetilde{J}_{n-1, n-2}^{m}(t) \widetilde{\lambda}_{n}(t)+\widetilde{J}_{n-1, n-1}^{m}(t) \widetilde{\alpha}_{n}(t)+\widetilde{J}_{n-1, n}^{m}(t) \widetilde{\lambda}_{n+1}(t)
$$

(see (43)) we arrive to

$$
\begin{aligned}
C \widetilde{J}_{n-1, n-1}^{m}(t)+J_{n-1, n-1}^{m}(t) \gamma_{2 n}^{2}(t)+2 J_{n-1, n}^{m}(t) \lambda_{n+1}(t)+J_{n, n}^{m}(t) & \gamma_{2 n+1}^{2}(t) \\
& =\widetilde{J}_{n-1, n-1}^{m+1}(t)
\end{aligned}
$$

which, substituted in the right hand side of (48), conduces to

$$
S(n, m+1, t)-S(n-1, m+1, t)=\widetilde{J}_{n-1, n-1}^{m+1}(t)-J_{n-1, n-1}^{m+1}(t),
$$

as we needed to prove.
Due to lemmas 2 and 4, (37) and (38), we know that (7) is verified for any odd number $n \in \mathbb{N}$. Moreover, taking derivatives in $\lambda_{n+1}^{2}(t)=\gamma_{2 n}^{2}(t) \gamma_{2 n+1}^{2}(t)$
(see (5) and (2a)),

$$
\begin{aligned}
& 2 \lambda_{n+1}(t) \dot{\lambda}_{n+1}(t)=\lambda_{n+1}^{2}(t)\left(J_{n, n}^{p}(t)-J_{n-1, n-1}^{p}(t)\right) \\
&=\gamma_{2 n}^{2}(t) \gamma_{2 n+1}^{2}(t)\left[\left(\Gamma^{2}(t)+C I\right)_{2 n-1,2 n-1}^{p}-\right.\left.\left(\Gamma^{2}(t)+C I\right)_{2 n-2,2 n-2}^{p}\right] \\
&+2 \gamma_{2 n}^{2}(t) \gamma_{2 n+1}(t) \dot{\gamma}_{2 n+1}(t)
\end{aligned}
$$

Then, dividing by $\lambda_{n+1}^{2}(t)=\gamma_{2 n}^{2}(t) \gamma_{2 n+1}^{2}(t)$, we obtain

$$
\begin{aligned}
& 2 \frac{\dot{\gamma}_{2 n+1}(t)}{\gamma_{2 n+1}(t)}=J_{n, n}^{p}(t)-J_{n-1, n-1}^{p}(t)-\left(\Gamma^{2}(t)+C I\right)_{2 n-1,2 n-1}^{p} \\
& \quad+\left(\Gamma^{2}(t)+C I\right)_{2 n-2,2 n-2}^{p}=\left(\Gamma^{2}(t)+C I\right)_{2 n, 2 n}^{p}-\left(\Gamma^{2}(t)+C I\right)_{2 n-1,2 n-1}^{p}
\end{aligned}
$$

this is, (7) holds also when n is an even number. Thus, we conclude that $\Gamma(t)$ is a generalized Volterra solution.

Finally, we need to prove that $\widetilde{J}(t)$ is a generalized Toda solution. For this purpose, we want to verify (5) when we substitute J by \widetilde{J}. Firstly, we take into consideration the first part of (30), i.e.,

$$
\widetilde{\alpha}_{n}(t)=\alpha_{n+1}(t)-\gamma_{2 n+2}^{2}(t)+\gamma_{2 n}^{2}(t)
$$

Then, since (5) and (7),

$$
\begin{aligned}
\dot{\widetilde{\alpha}}_{n}(t)= & \dot{\widetilde{J}}_{n-1, n-1}(t)=\dot{\alpha}_{n+1}(t)-2 \gamma_{2 n+2}(t) \dot{\gamma}_{2 n+2}(t)+2 \gamma_{2 n}(t) \dot{\gamma}_{2 n}(t) \\
= & {\left[J_{n, n+1}(t) J_{n, n+1}^{p}(t)-J_{n-1, n}(t) J_{n-1, n}^{p}(t)\right] } \\
& -\Gamma_{2 n, 2 n+1}^{2}(t)\left[\left(\Gamma^{2}(t)+C I\right)_{2 n+1,2 n+1}^{p}-\left(\Gamma^{2}(t)+C I\right)_{2 n, 2 n}^{p}\right] \\
& +\Gamma_{2 n-2,2 n-1}^{2}(t)\left[\left(\Gamma^{2}(t)+C I\right)_{2 n-1,2 n-1}^{p}-\left(\Gamma^{2}(t)+C I\right)_{2 n-2,2 n-2}^{p}\right]
\end{aligned}
$$

Therefore, by Lemma 2,

$$
\begin{aligned}
& \dot{\widetilde{\alpha}}_{n}(t)=\left[\lambda_{n+2}(t) J_{n, n+1}^{p}(t)+\gamma_{2 n+2}^{2}(t) J_{n, n}^{p}(t)\right] \\
&-\left[\lambda_{n+1}(t) J_{n-1, n}^{p}(t)+\gamma_{2 n}^{2}(t) J_{n-1, n-1}^{p}(t)\right] \\
&+\left[-\gamma_{2 n+2}^{2}(t) \widetilde{J}_{n, n}^{p}(t)+\gamma_{2 n}^{2}(t) \widetilde{J}_{n-1, n-1}^{p}(t)\right]
\end{aligned}
$$

Using (54) (with $m=p$),

$$
\begin{aligned}
& \dot{\widetilde{\alpha}}_{n}(t)=\left[\widetilde{J}_{n-1, n}^{p}(t) \widetilde{\lambda}_{n+1}(t)+\widetilde{J}_{n, n}^{p}(t) \gamma_{2 n+2}^{2}(t)\right] \\
& -\left[\widetilde{J}_{n-2, n-1}^{p}(t) \widetilde{\lambda}_{n}(t)+\widetilde{J}_{n-1, n-1}^{p}(t) \gamma_{2 n}^{2}(t)\right]-\widetilde{J}_{n, n}^{p}(t) \gamma_{2 n+2}^{2}(t)+\widetilde{J}_{n-1, n-1}^{p}(t) \gamma_{2 n}^{2}(t) \\
& \quad=\widetilde{J}_{n-1, n}^{p}(t) \widetilde{\lambda}_{n+1}(t)-\widetilde{J}_{n-2, n-1}^{p}(t) \widetilde{\lambda}_{n}(t),
\end{aligned}
$$

which is the first relation in (5).
On the other hand, taking derivatives in $\widetilde{\lambda}_{n+1}^{2}(t)=\gamma_{2 n+1}^{2}(t) \gamma_{2 n+2}^{2}(t)$ and dividing the obtained result by $\widetilde{\lambda}_{n+1}^{2}(t)$ we arrive to

$$
\begin{equation*}
\frac{\dot{\vec{\lambda}}_{n+1}(t)}{\widetilde{\lambda}_{n+1}(t)}=\frac{\dot{\gamma}_{2 n+1}(t)}{\gamma_{2 n+1}(t)}+\frac{\dot{\gamma}_{2 n+2}(t)}{\gamma_{2 n+2}(t)} \tag{56}
\end{equation*}
$$

Taking into account (7) (substituting there n by $2 n$ and $2 n+1$, successively), from (56) we obtain

$$
\begin{aligned}
\frac{\dot{\tilde{\lambda}}_{n+1}(t)}{\widetilde{\lambda}_{n+1}(t)}= & \frac{\dot{\Gamma}_{2 n-1,2 n}(t)}{\Gamma_{2 n-1,2 n}(t)}+\frac{\dot{\Gamma}_{2 n, 2 n+1}(t)}{\Gamma_{2 n, 2 n+1}(t)} \\
= & \frac{1}{2}\left[\left(\Gamma^{2}(t)+C I\right)_{2 n, 2 n}^{p}-\left(\Gamma^{2}(t)+C I\right)_{2 n-1,2 n-1}^{p}\right] \\
& \quad+\frac{1}{2}\left[\left(\Gamma^{2}(t)+C I\right)_{2 n+1,2 n+1}^{p}-\left(\Gamma^{2}(t)+C I\right)_{2 n, 2 n}^{p}\right] \\
& =\frac{1}{2}\left[\left(\Gamma^{2}(t)+C I\right)_{2 n+1,2 n+1}^{p}-\left(\Gamma^{2}(t)+C I\right)_{2 n-1,2 n-1}^{p}\right] .
\end{aligned}
$$

From this and (36),

$$
\dot{\widetilde{\lambda}}_{n+1}(t)=\frac{1}{2} \widetilde{\lambda}_{n+1}(t)\left(\widetilde{J}_{n, n}^{p}-\widetilde{J}_{n-1, n-1}^{p}\right),
$$

what is the second relation of (5).

References

[1] A.I. Aptekarev, A. Branquinho, F. Marcellán, Toda-type differential equations for the recurrence coefficients of orthogonal polynomials and Freud transformation, J. Comput. Appl. Math. 78 (1997), pp. 139-160.
[2] A.I. Aptekarev, A. Branquinho, Padé approximants and complex high order Toda lattices, J. Comput. Appl. Math. 155 (2003), pp. 231-237.
[3] D. Barrios Rolanía, R. Hernández Heredero, On the relation between the complex Toda and Volterra lattices (preprint).
[4] M. I. Bueno, F. Marcellán, Darboux transformation and perturbation of linear functionals, Linear Algebra and its Applications 384 (2004), pp. 215-242
[5] Chihara, T. S., An Introduction to Orthogonal Polynomials, Gordon and Breach Science Pub., New York, 1978.
[6] Gantmacher, F. R., The Theory of Matrices Vol. 1, AMS Chelsea Pub., Am. Math. Soc., Providence, 2000.
[7] F. Gesztesy, H. Holden, B. Simon, Z. Zhao, On the Toda and Kac-van Moerbeke systems, Trans. Am. Math. Soc. 339 (2) (1993), pp. 849-868.
D. Barrios Rolanía

Facultad de Informática, Universidad Politécnica de Madrid, 28660 Boadilla del Monte, Madrid, Spain.
E-mail address: dbarrios@fi.upm.es
A. Branquinho

CMUC, Department of Mathematics, University of Coimbra, Largo D. Dinis, 3001-454 Coimbra, Portugal.
E-mail address: ajplb@mat.uc.pt
URL: http://www.mat.uc.pt/~ajplb

