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1. Introduction

1) Let (a, [; ]a) be a finite dimensional Lie algebra over a field IK of char-
acteristic zero. Let (at, [; ]at

) be a Lie algebra over the ring IKt ≡ IK[[t]] of
formal power series in the indeterminate t which is a deformation algebra [5]
of (a, [; ]a), i.e., as a IKt−module at is a[[t]] and (at, [; ]at

) is (a, [; ]a) modulo
t. Let u be another indeterminate. Let (at,u, [; ]at,u

), at,u = at[[u]], be the
Lie algebra obtained by extension of the ring of scalars IK[[t]] −→ IKt[[u]]
(IKt,u ≡ IKt[[u]] ≡ IK[[t, u]]) from the Lie algebra (at, [; ]at

). Let ~ be a third
indeterminate and consider the ring IKt,u[[~]]. Let (at[[~]], [; ]at[[~]]) be the Lie
algebra over IKt[[~]] defined as before in case of the indeterminate u.
r1 ∈ a∧a will be a given nondegenerate solution of the Yang Baxter Equa-

tion (YBE), i.e. [r1, r1]a = 0, on the Lie algebra (a, [; ]a). By nondegenerate
we mean rang (r1) = dim a.

The symbol rt =
∑

l≥1 rl · t
(l−1) ∈ at ∧ at, rl ∈ a ∧ a, l ∈ N, will denote a

nondegenerate solution of YBE on the Lie algebra (at, [; ]at
).
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The symbol rt,u =
∑

l≥1 rt,l · u
(l−1) ∈ at[[u]] ∧ at[[u]], rt,l ∈ at ∧ at, l ∈ N,

and rt,1 = rt will denote a nondegenerate solution of YBE on the Lie algebra
(at,u, [; ]at,u

) over the ring IKt[[u]].
As rt ∈ at ∧ at is a solution of YBE on (at, [; ]at

) it defines the correspond-
ing Poisson cohomology spaces Hk

P,rt
(at). As rt is nondegenerate, let µrt

:
Λ(at) −→ Λ(a∗t ) be the corresponding isomorphism. Let µrt

(rt) = βt ∈ a
∗
t ∧a

∗
t

be the corresponding 2-cocycle in the Chevalley cohomology of (at, [; ]at
) with

the trivial action of at on Kt and H l(at) be the corresponding cohomolog-
ical modules. Let µrt

: H l
P,rt

(at) −→ H l(at) be the induced mapping on
cohomology spaces. Similar meanings have the symbols µrt,u

, µr1
.

2) r ∈ (a ⊕ a
∗) ⊗ (a ⊕ a

∗) will denote the canonical element. Then
r = (ei, 0)⊗(0, ei) in any pair of dual basis. The symbol dc will denote the co-
boundary of the Chevalley cohomology of any Lie algebra with values in the

adjoint representation. The symbol
(
at,u ⊕ a

∗
rt,u
, [; ]at,u⊕a∗rt,u

, εat,u⊕a∗rt,u
= dc(t, u)r

)

will denote the quasitriangular double Lie bialgebra of the nondegenerate tri-
angular Lie bialgebra

(
at,u, [; ]at,u

, εat,u
= dc(t)rt,u

)
. The element r is a solution

of the YBE on (at,u, [; ]at,u
), and defines the symmetric element Ω = r + σ(r)

where σ is the cycle (12). Ω is adat,u⊕a∗rt,u
-invariant and it satisfies the usual

infinitesimal tress relations.
3) We fix a Lie associator Φ = exp P (~t12, ~t23) over IK, [6, 7].

4)
(
U(at,u ⊕ a

∗
rt,u

),∆
rt,u

0

)
will denote the universal enveloping algebra of

the Lie algebra (at,u⊕ a
∗
rt,u
, [; ]at,u⊕a∗rt,u

). We do not specify its product, unit or

antipode.
A theorem in [6] allow us to prove the existence of a quasitriangular

quasi-Hopf algebra
(
U(at,u ⊕ a

∗
rt,u

)[[~]],∆
rt,u

0 ,Φrt,u
, R

rt,u

0 = e
~

2Ω
)

over the ring

IKt,u[[~]]. See theorem 2.1 bellow.
Etingof-Kazhdan theory of quantization of Lie bialgebras [7] allows us to

obtain an element Jrt,u
∈ (U(at,u⊕a

∗
rt,u

)⊗U(at,u⊕a
∗
rt,u

))[[~]], verifying Jrt,u
=

1⊗ 1 + 1
2r~ modulo ~2 such that when twisting [5] the above quasitriangular

Quasi-Hopf algebra via the element J−1
rt,u

we obtain a quasitriangular Hopf

algebra (U(at,u ⊕ a
∗
rt,u

)[[~]],∆rt,u, Rrt,u) over the ring IKt,u[[h]]. We also write
this algebra as A(at,u⊕a∗rt,u

)[[~]],Ω,J−1
rt,u
.

5) From a theorem by Etingof-Kazhdan we can obtain an element J̃rt,u
=

(π̃t,u ⊗ π̃t,u)Jrt,u
∈ (Uat,u ⊗ Uat,u)[[~]] verifying the condition J̃rt,u

= 1 ⊗ 1 +
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1
2
rt,u~ modulo ~2 such that when twisting via the element J̃−1

rt,u
the trivial

triangular Hopf algebra
(
Uat,u[[~]],∆at,u

, Rat,u
= 1 ⊗ 1

)
over the ring IKt,u[[~]]

one obtains a triangular Hopf algebra
(
Uat,u[[~]], ∆̃at,u

, R̃at,u

)
over the ring

IKt,u[[~]]. We will denote this algebra as A
at,u[[~]],J̃−1

rt,u
. The element J̃rt,u

is

an Invariant Star Product on the nondegenerate triangular Lie bialgebra(
at,u, [; ]at,u

, εat,u
= dc(t)rt,u

)
over the ring IKt,u, see [1, 4, 11].

6) Now, it has a meaning to put u = ~ in every element appearing
in the definition of the quasitriangular quasi-Hopf algebra, quasitriangu-
lar Hopf algebra, or triangular Hopf algebra over IKt,u[[~]] considered in 4)
and 5) above. In this way, we obtain, respectively, i) a quasitriangular

quasi-Hopf algebra
(
U(at,~ ⊕ a

∗
rt,~

)[[~]],∆
rt,~

0 ,Φrt,~
, R

rt,~

0 = e
~

2Ω
)

over the ring

IKt[[~]]; ii) a quasitriangular Hopf algebra
(
U(at,~ ⊕ a

∗
rt,~

)[[~]],∆rt,~, Rrt,~

)

over the ring IKt[[~]]; it can be obtained by a twist via the element Jrt,~
∈(

U(at,~ ⊕ a
∗
rt,~

) ⊗ U(at,~ ⊕ a
∗
rt,~

)
)

[[~]] from the one obtained in i); and iii) a

triangular Hopf algebra
(
at,~, ∆̃at,~

, R̃at,~

)
over the ring at[[~]]. We say that

this algebra is a quantization of the pair (at, rt). It can be obtained by a
twist via the element J̃−1

rt,~
∈ (Uat,~ ⊗ Uat,~)[[~]] from the trivial triangular

Hopf algebra
(
Uat,~[[~]],∆at,~

, Rat,~
= 1 ⊗ 1

)
over the ring IKt[[~]].

7) The adjoint representation of a Lie group G with Lie algebra (a, [; ]a)
and IK = R induces a representation on the Chevalley complex H∗(a) that
is trivial. This classical theorem inspired us for considering the Lie algebra
isomorphisms in Section 5 that allow us to obtain, in Sections 6 and 7, the
equivalence of Invariant Star Products. This equivalence allows us to obtain
the corresponding isomorphisms for Hopf algebras.

No proofs of these results are given here. They will appear in a forthcoming
article. References [15] and [14] are related with the subject of this paper.

2. Quantization of the quasitriangular Lie bialgebra (at,u⊕
a
∗
rt,u
, [; ]at,u⊕a∗rt,u

, εat,u⊕a∗rt,u
= dc(t, u)r) over the ring IKt,u

1) Pentagon, hexagon properties of associators [6, 7] and the ad-invariance
of Ω allow us [6] to obtain the following:
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Theorem 2.1. Let
(
at,u, [; ]at,u

, εat,u
= dc(t)rt,u

)
and(

at,u ⊕ a
∗
rt,u
, [; ]at,u⊕a∗rt,u

, εat,u⊕a∗rt,u
= dc(t, u)r

)
be as in 2) of Section 1. Con-

sider the IKt,u[[~]]− module U(at,u ⊕ a
∗
rt,u

)[[~]]. The set

(
U(at,u ⊕ a

∗
rt,u

)[[~]],∆
rt,u

0 ,Φrt,u
, R

rt,u

0 = e
~

2Ω
)

is then a quasitriangular quasi-Hopf algebra over IKt,u[[~]].

We do not specify the corresponding antipode. Its existence follows from
Theorem 1.6 in [5] and specific forms for it may be obtained from Propositions
1.1 and 1.3 in [5]. We also do not specify product, unity or counity.

Definition 2.2. We say that the quasitriangular quasi-Hopf algebra over
IKt,u[[~]] of Theorem 2.1 is a quantization of the pair (at,u ⊕ a

∗
rt,u
,Ω) or that

this pair is the classical limit of the quasitriangular quasi-Hopf algebra.

2) Part 2) of the following theorem can be proved analogously to the
corresponding one in [7] Part I. We only need to remark that Kt,u is a Q-
algebra and that the symmetric algebras of the Kt,u-modules at,u, a

∗
rt,u

, (at,u⊕

a
∗
rt,u

) are isomorphic to the corresponding algebras of symmetric tensors [2].

Then we apply Corollary 3 of Theorem 1 of §2.8, Chapter III, of [3].

Theorem 2.3. Let
(
at,u, [; ]at,u

, εat,u
= dc(t)rt,u

)
and(

at,u ⊕ a
∗
rt,u
, [; ]at,u⊕a∗rt,u

, εat,u⊕a∗rt,u
= dc(t, u)r

)
be as in the above theorem. Let

M(t, u)± be the at,u ⊕ a
∗
rt,u

-modules with one generator 1± and defined as

follows: M(t, u)+ = Ua
∗
rt,u

· 1+; Uat,u · 1+ = 0 and M(t, u)− = Uat,u · 1−;
Ua

∗
rt,u

· 1− = 0. Then

1) The equalities i±(1±) = 1± ⊗ 1± define unique at,u ⊕ a
∗
rt,u

-module mor-

phisms i± : M(t, u)± −→M(t, u)± ⊗IKt,u
M(t, u)±.

2) The equality φrt,u
(1) = 1+ ⊗ 1− defines a unique at,u ⊕ a

∗
rt,u

-module

morphism φrt,u
: U(ar ⊕ a

∗
rt,u

) −→ M(t, u)+ ⊗M(t, u)−. Moreoverφrt,u
is an

isomorphism.
3) There exists an element Jrt,u

∈ (U(at,u ⊕ a
∗
rt,u

)[[~]])⊗̂2 such that, when

twisting via J−1
rt,u

the quasitriangular quasi-Hopf algebra considered in Theo-

rem 2.1, one obtains a quasitriangular Hopf algebra, (U(at,u⊕a
∗
rt,u

)[[~]],∆rt,u, Rrt,u),

over the ring IKt,u[[~]]. The element Jrt,u
is given by

Jrt,u
= (φ−1

rt,u
⊗ φ−1

rt,u
)(Φ−1

1,2,34 ◦ Φ2,3,4 ◦ σ23 ◦ e
~

2Ω23 ◦ Φ−1
2,3,4◦
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Φ1,2,34 ◦ (i+ ⊗ i−)(φt,u(1))),

and

∆rt,u(b) = J−1
rt,u

·rt,u
∆

rt,u

0 (b) ·rt,u
Jrt,u

; Rrt,u = σ(J−1
rt,u

) ·rt,u
e

~

2Ω ·rt,u
Jrt,u

.

We also have Jrt,u
= 1 ⊗ 1 + 1

2r~ mod ~2 and Rrt,u = 1 ⊗ 1 + r~ mod ~2.

The isomorphism Φrt,u
verifies the following equality

Φrt,u
·rt,u

(∆
rt,u

0 ⊗ id)(Jrt,u
) ·rt,u

(Jrt,u
⊗ 1) = (1 ⊗ ∆

rt,u

0 )(Jrt,u
) ·rt,u

(1 ⊗ Jrt,u
).

The products in these expressions are those of the enveloping algebra

U
(
(at,u ⊕ a

∗
rt,u

) ⊗IKt,u
IKt,u[[~]]

)
≡ U(at,u ⊕ a

∗
rt,u

) ⊗IKt,u
IKt,u[[~]] defined by ex-

tension of scalars IKt,u −→ IKt,u[[~]]. This quasitriangular Hopf algebra over
IKt,u[[~]] will be denoted by A(at,u⊕a∗rt,u

)[[~]],Ω,J−1
rt,u
.

Definition 2.4. We say that the quasitriangular Hopf algebra over IKt,u[[~]]
considered in 3) of Theorem 2.3 is a quantization of the pair (at,u ⊕ a

∗
rt,u
, r)

or that the pair (at,u⊕a
∗
rt,u
, r) is the classical limit of the quasitriangular Hopf

algebra over IKt,u[[~]].

Fix an ordered basis {ea} in at,u, and its dual basis {ea} in a
∗
rt,u
. Then we

may construct ordered bases in at,u ⊕ a
∗
rt,u
, Uat,u, Ua

∗
rt,u

and U(at,u ⊕ a
∗
rt,u

)⊗2.

Lemma 2.5. The element Jrt,u
∈ U(at,u ⊕ a

∗
rt,u

)⊗
2

[[~]] considered in theorem

2.3, 3) has the form

Jrt,u
= 1 ⊗ 1 +

1

2
r ~ +

∑

k≥2

(
r

i1j1
t,u . . . r

il(k)jl(k)

t,u Qi1,...,il(k),j1,...,jl(k),k

)
~k,

where Qi1,...,il(k),j1,...,jl(k),k ∈ U(at,u⊕a
∗
rt,u

)⊗2 are linear combinations of elements
in the ordered basis fixed above. The coefficients of these linear combinations
are IK-linear combinations of elements determined by the structure constants
of the Lie algebra (at,u, [; ]at,u

). The element rt,u is present in every element of
the ordered basis through the product in U(at,u ⊕ a

∗
rt,u

), but it does not occur
in the coefficients defining Qi1,...,il(k),j1,...,jl(k),k.

3. Quantization of the nondegenerate triangular Lie bial-

gebra
(
at,u, [; ]at,u, εat,u = dc(t)rt,u

)

As in [8, 7], we define the mapping χrt,u
: a

∗
rt,u

−→ at,u by χrt,u
(ξ) =

(ξ ⊗ 1)rt,u.
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Proposition 3.1. The mapping π̃t,u : at,u⊕a
∗
rt,u

−→ at,u, defined by π̃t,u(x; ξ) =

x + χrt,u
(ξ), is a Lie-bialgebra-morphism. That is, a Lie-algebra morphism

verifying dc(t)rt,u◦ π̃t,u = (π̃t,u⊗ π̃t,u)◦dc(t, u)r. Moreover (π̃t,u⊗ π̃t,u)r = rt,u.
The symbol π̃t,u will also denote the unique algebra morphism π̃t,u : U(at,u ⊕
a
∗
rt,u

) −→ Uat defined by the Lie algebra morphism π̃t,u.

Theorem 3.2. Consider the quasitriangular double Lie bialgebra
(at,u ⊕ a

∗
rt,u
, [; ]at,u⊕a∗rt,u

, εat,u⊕a∗rt,u
= dc(t, u) r) over Kt,u. Let (Uat,u,∆at,u

) be the

usual Hopf universal enveloping algebra. Let(
U(at,u ⊕ a

∗
rt,u

)[[~]],∆
rt,u

0 ,Φrt,u
, R

rt,u

0 = e
~

2Ω
)

be the quasitriangular quasi-Hopf algebra, considered in Theorem 2.1, whose
classical limit is the pair (at,u ⊕ a

∗
rt,u
,Ω). Then we have (π̃t,u ⊗ π̃t,u) ◦ ∆

rt,u

0 =

∆at,u
◦ π̃t,u. Defining Φ̃rt,u

= (π̃t,u⊗ π̃t,u⊗ π̃t,u)Φrt,u
and Rat,u

= (π̃t,u⊗ π̃t,u)R
rt,u

0 ,

we get Φ̃rt,u
= 1 ⊗ 1 and Rat,u

= 1 ⊗ 1. In this way, we obtain the (trivial)

triangular Hopf algebra (Uat,u[[~]],∆at,u
, Φ̃rt,u

= 1 ⊗ 1 ⊗ 1, Rat,u
= 1 ⊗ 1) over

the ring Kt,u[[~]]. We call this algebra a quantization of the pair (at,u, 0), see
[5].

From Proposition 3.1, Theorem 3.2 and 3) of Theorem 2.3 we obtain

Corollary 3.3. Write J̃rt,u
= (π̃t,u ⊗ π̃t,u)Jrt,u

∈ (Uat,u ⊗ U(at,u)[[~]]. Then

1) J̃rt,u
= 1 ⊗ 1 + 1

2rt,u~ + · · ·

2) (∆at,u
⊗ 1)J̃rt,u

· (J̃rt,u
⊗ 1) = (1 ⊗ ∆at,u

)J̃rt,u
· (1 ⊗ J̃rt,u

).

3) R̃at,u
= (π̃t,u ⊗ π̃t,u)R

rt,u = σ(J̃−1
rt,u

) · (1 ⊗ 1) · J̃rt,u
= 1 ⊗ 1 + rt,u~ + · · ·

The products in these expressions coincide with the products of the envelop-
ing algebra Uat,u[[~]] ≡ Uat[[u, ~]]. The set (Uat,u[[~]], ∆̃at,u

, R̃at,u
), denoted by

A
at,u[[~]],J̃−1

rt,u
, is a triangular Hopf algebra over IKt,u[[~]]. This algebra can be

obtained by a twist via the element J̃−1
rt,u

from the trivial triangular Hopf alge-

bra (Uat,u∆at,u
, Rat,u

= 1⊗ 1) considered in Theorem 3.2. It is a quantization
of the pair (at,u; rt,u).

From Lemma 2.5 we obtain

Lemma 3.4. The element J̃rt,u
has the form

J̃rt,u
= 1 ⊗ 1 +

1

2
rt,u~ +

∑

k≥2

(
r

i1j1
t,u . . . r

il(k)jl(k)

t,u Mi1,...,il(k),j1,...,jl(k),k

)
~k,
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where Mi1,...,il(k),j1,...,jl(k),k is a linear combination of elements in the ordered
basis chosen in Uat,u and whose coefficients are IK-linear combinations of
elements (polynomials) determined by the structure constants of the Lie al-
gebra (at,u, [; ]at,u

). The element rt,u does not appear in Mi1,...,il(k),j1,...,jl(k),k ∈

(Uat,u)
⊗2
.

We now define Invariant Star Products.

Definition 3.5. [1, 4, 12] An Invariant Star Product on a nondegenerate
triangular Lie bialgebra (at,u, [; ]at,u

, εat,u
= dc(t)rt,u) over the ring Kt,u is any

element F (t, u) =
∑∞

0 Fk(t, u)·~
k ∈ (Uat,u⊗Uat,u)[[~]] verifying the following

equalities:

1) F (t, u) = 1 ⊗ 1 mod~;
2) F (t, u) − σ(F (t, u)) = rt,u ~ mod~2;
3) (∆at,u

⊗ 1)F (t, u) · (F (t, u) ⊗ 1) = (1 ⊗ ∆at,u
)F (t, u) · (1 ⊗ F (t, u)).

The products in 3) coincide with the products of the enveloping algebra
Uat,u[[~]] ≡ Uat[[u, ~]], that is, they coincide with the IK[[u, ~]] linear exten-
sion of the product of the enveloping algebra Uat.

Then we have

Proposition 3.6. The element J̃rt,u
∈ (Uat,u)

⊗2[[~]], considered in Corol-
lary 3.3, is an Invariant Star Product on the nondegenerate triangular Lie
bialgebra (at,u, [; ]at,u

, εat,u
= dc(t)rt,u) over the ring Kt,u.

Definition 3.7. [1, 4, 12] An Invariant Star Product on a nondegenerate
triangular Lie bialgebra (at, [; ]at

, εat
= dc(t)rt) over the ring Kt is any element

F (t) =
∑∞

0 Fk(t) · ~k ∈ (Uat ⊗ Uat) [[~]] verifying the following equalities:

1) F (t) = 1 ⊗ 1 mod~;
2) F (t) − σ(F (t)) = rt ~ mod~2;
3) (∆at

⊗ 1)F (t) · (F (t) ⊗ 1) = (1 ⊗ ∆at
)F (t) · (1 ⊗ F (t)).

The products in 3) coincide with the products of the enveloping algebra
U(at ⊗IKt

IK[[t, ~]]), that is, they coincide with the IK[[~]] linear extension of
the product of the enveloping algebra Uat.

Proposition 3.8. Let F (t, u) ∈ (Uat,u ⊗ Uat,u) [[~]] be an Invariant Star
Product on the nondegenerate triangular Lie bialgebra (at,u, [; ]at,u

, εat,u
=

dc(t)rt,u) over the ring Kt,u. Consider the element F (t) ∈ (Uat ⊗ Uat) [[~]]
obtained from F (t, u) by setting u = ~ in all the elements defining F (t, u);
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in particular by setting rt,~ =
∑

l≥1 rt,l~
l ∈ at[[~]] ∧ at[[~]]. Then the ele-

ment F (t) ∈ (Uat ⊗ Uat)[[~]] is an Invariant Star product on the triangular
nondegenerate Lie bialgebra (at, [; ]at

, εat
= dc(t)rt) over the ring Kt.

Obviously we have

Corollary 3.9. Let J̃rt,~
∈ (Uat ⊗ Uat) [[~]] be the element as in Proposi-

tion 3.8 obtained from the element J̃rt,u
∈ (Uat,u ⊗ Uat,u) [[~]] considered in

Corollary 3.3. Then J̃rt,~
is an Invariant Star Product on the triangular non-

degenerate Lie bialgebra (at, [; ]at
, εat

= dc(t)rt) over the ring Kt.

4. An Invariant Star Product F (t) ∈ (Uat ⊗ Uat)[[~]] on

(at, [; ]at, εat = dc(t)rt) determines an element rt,~ ∈ (at ∧

at)[[~]] such that F (t) and J̃rt,~ ∈ (Uat⊗Uat)[[~]] are equiv-

alent

Let F (t) ∈ Uat[[~]]⊗̂Uat[[~]] be an Invariant Star Product on the nondegen-
erate triangular Lie bialgebra (at, [; ]at

, εat
= dc(t) rt) over IKt. Let Aat[[~]],F−1(t)

be the triangular Hopf QUE algebra obtained by a twist via F−1(t) from the
trivial triangular Hopf QUE algebra (Uat[[~]],∆at

, Rat
= 1 ⊗ 1) . Then, this

algebra is a quantization of the pair (at, rt).
The following proposition does not depend on any specific context of quan-

tization but only on: i) the notion of deformation of associative algebras; ii)
the fact that the Hochschild cohomology of the bialgebra Uat is Hk(Uat) =
Λk

at, k ∈ N, see [2]; iii) the Hochschild cohomological interpretation of
Quantum Yang Baxter equation [12, 13].

Proposition 4.1. [12] Let F (t) =
∑∞

i Fi(t) ~i and F ′(t) =
∑∞

i F ′
i (t) ~i be

Invariant Star Products on (at, [; ]at
, εat

= dc(t) rt). Let Aat[[~]],F−1(t) and
Aat[[~]],F ′−1(t) be as above in this Section. Suppose that F (t) and F ′(t) coincide
up to order k, i.e. Fl(t) = F ′

l (t), l = 1, 2, · · · , k. Then: a) there exist
hk+1 ∈ at ∧ at and Ek+1(t) ∈ Uat such that F ′

k+1(t) − Fk+1(t) = hk+1 +
dHEk+1(t) where dH is the coboundary operator in the Hochschild cohomology
of Uat; b) hk+1 is not only a Hochschild 2-cocycle but also a Poisson 2-
cocycle relatively to the invariant Poisson structure defined by the element
rt ∈ at ∧ at.

Again, the above Hochschild cohomology spaces and proposition 4.1 play a
central role in the proof of next theorem. In the context of quantification in
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[7] this theorem corresponds to a main theorem by Drinfeld in the context of
quantification in [4]. In [12, 13] there is a proof of this Drinfeld theorem. See
the References in [13] for a similar theorem about Star Products on general
symplectic manifolds and on Poisson manifolds.

Theorem 4.2. [14, 15] Fix a Lie associator Φ. Let Aat[[~]],F−1(t) be defined
at the beginning of this section. We have: (a) There exist elements rt,~ =
rt+rt,2~+rt,3~

2+ · · · ∈ (∧2
at)[[~]] and Ert,~ = 1+E

rt,~

1 ~+ · · ·+E
rt,~

n ~n + · · · ∈
Uat[[~]] such that

F (t) = ∆at
((Ert,~)−1) ·t J̃

Φ
rt(~) ·t (Ert,~ ⊗Ert,~);

i.e., F (t) and J̃Φ
rt,~

∈ (Uat ⊗ Uat) [[~]] are equivalent Invariant Star Products
over the nondegenerate triangular Lie bialgebra (at, [; ]at

, εat
= dc(t) rt) over

the ring IKt.

(b) The triangular Hopf QUE algebras Aat[[~]],F−1(t) and A
at[[~]],

(
J̃Φ

rt,~

)
−1 are

isomorphic.

As a consequence we have the following isomorphisms:

Corollary 4.3. Let Φ,Φ′ be two Lie associators. Let Aat[[~]],F−1(t) be given
as in the theorem. Let rt,~, r

′
t,~ ∈ (∧2

at)[[~]] be the elements determined in
the theorem by the pairs (Φ;Aat[[~]],F−1(t)) and (Φ′;Aat[[~]],F−1(t)), respectively.
Then we have

Aat[[~]],F−1(t)
isom
≈ A

at[[~]],
(
J̃Φ

rt,~

)
−1

isom
≈ A

at[[~]],

(
J̃Φ′

r′
t,~

)
−1

5. Some properties of nondegenerate triangular Lie bial-

gebras
(
at,u, [; ]at,u, εat,u = dc(t)rt,u

)
over IKt[[u]]

1) We now develop what we wrote in Section 1, 8) in the Introduction.
We need the following:

Proposition 5.1. Let (at,u, [; ]at,u
, εat,u

= dc(t)rt,u) be a nondegenerate tri-
angular Lie bialgebra over IKt,u. Let ϕ1

t,u : at,u −→ at,u be a Lie algebra
isomorphism. Let r′t,u be the element in at[[u]] ∧ at[[u]] defined as r′t,u =

(ϕ1
t,u ⊗ ϕ1

t,u)rt,u.
a) The set (at,u, [, ]at,u

, ǫ′
at,u

= dc(t)r
′
t,u) is a nondegenerate triangular Lie

bialgebra.
b) The transposed map (ϕ1

t,u)
t : a

∗
r′t,u

−→ a
∗
rt,u

is a Lie algebra isomorphism.
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c) The pair (ϕ1
t,u;ϕ

2
t,u = ((ϕ1

t,u)
t)−1) defines a Lie bialgebra isomorphism

between the Lie bialgebra
(
at ⊕ a

∗
rt,u
, [, ]at⊕a∗rt,u

, εat⊕a∗rt,u
= dc(t, u)r

)
and the Lie

bialgebra

(
at ⊕ a

∗
r′t,u
, [, ]at⊕a

∗

r′
t,u

, εat⊕a
∗

r′
t,u

= dc(t, u)r

)
. Furthermore, this isomor-

phism sends the canonical element r ∈ (a ⊕ a
∗)⊗2 into itself.

Corollary 5.2. a) Under the hypotheses of the proposition let βt,u = µrt,u
(rt,u)

and β ′
r,u = µr′t,u(r

′
t,u) be elements of a

∗
t ∧ a

∗
t [[u]]. Then (ϕ2

t,u ⊗ ϕ2
t,u)βt,u = β ′

t,u.

b) Conversely, let βt,u and β ′
t,u as considered in a). Let ϕ1

t,u : at,u −→ at,u

be a Lie algebra isomorphism and ϕ2
t,u = ((ϕ1

t,u)
t)−1. Suppose that (ϕ2

t,u ⊗

ϕ2
t,u)βt,u = β ′

t,u. Then, (ϕ1
t,u ⊗ ϕ1

t,u)rt,u = r′t,u.

2) In the Lie algebra (at,u, [; ]at,u
) over IKt,u consider the following Lie-

algebra isomorphisms: ϕ1
t,u = exp(t · adXt,u

) where Xt,u = X1,u + X2,ut +

X3,ut
2 + · · · ∈ au[[t]]. Then ϕ2

t,u = exp(−t · adt

Xt,u
) = exp(t · ad∗Xt,u

). Our

interest is in the map ϕ2
t,u ⊗ ϕ2

t,u = exp(ad∗tXt,u
⊗ 1 + 1 ⊗ ad∗tXt,u

).

Proposition 5.3. Let βt,1 = βt and let βt,u = βt,1 + βt,2u + βt,3u
2 + · · · ∈

∧2(a∗t [[u]])), or equivalently βt,u = β1,u + β2,ut + β3,ut
2 + · · · ∈ ∧2(a∗u[[t]]),

be a nondegenerate 2-cocycle on the Lie algebra (at,u, [; ]at,u
). The elements

βt,1, βt,2, · · · ∈ ∧2(a∗t ) are then 2-cocycles on the Lie algebra (at, [; ]at
), with

the trivial action, and βt,1 is nondegenerate. Let Xt,u be as considered before.
Then

exp(ad∗tXt,u
)⊗

2

(βt,u) = exp(ad∗tXt,u
⊗ 1 + 1 ⊗ ad∗tXt,u

)(βt,u) = βt,u + dR(t)γt,u,

where γt,u = t
∑

l≥1 γl,u(t)t
l−1 ∈ ta∗u[[t]] and

γ1,u(t) = (i(Xt,u)βt,u)

γ2,u(t) =

(
1

2!
(i(Xt,u)βt,u) ◦ adXt,u

)

γ3,u(t) =
(
(i(Xt,u)βt,u) ◦ adXt,u

◦ adXt,u

)
, etc

A converse of proposition 5.3 is:

Proposition 5.4. Let βt,u be as considered in proposition 5.3. Let γt,u =
α1,ut + α2,ut

2 + α3,ut
3 + · · · ∈ a

∗
u[[t]]; αl,u ∈ a

∗
u, l = 1, 2, · · · . Define β ′

t,u =
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βt,u+dR(t)γt,u. Then, there exists a unique Xt,u = X1,u+X2,ut+X3,ut
2+· · · ∈

au[[t]] such that exp(ad∗tXt,u
)⊗

2

(βt,u) = β ′
t,u. It is given by

i(X1,u)β1,u = α1,u,

i(X2,u)β1,u + i(X1,u)β2,u +
1

2!
(i(X1)β1) ◦ (i(X1,u)B1,u) = α2,u,

i(X1,u)β3,u + i(X2,u)β2,u + i(X3,u)β1,u +
1

2!

(
(i(X2,u)β1,u) ◦ (i(X1,u)B1,u)

+(i(X1,u)β2,u)◦(i(X1,u)B1,u)+(i(X1,u)β1,u)◦(i(X2,u)B1,u)+(i(X1,u)β1,u)◦(i(X1,u)B2,u)

+(i(X1,u)β1,u) ◦ (i(X1,u)B1,u) ◦ (i(X1,u)B1,u)

)
= α3,u, etc.

where Bl,u ∈ L(au, au ; au), l = 1, 2, · · · are some well determined bilinear
mappings.

As β1,u is invertible the first equation allows us to compute X1,u. Analo-
gously the second equation allows us to obtain X2,u etc. It is easy to obtain
a general form for Xl,u as a function of Xk,u, 1 ≤ k < l.

3) The following property is needed:

Proposition 5.5. Let (at,u, [; ]at,u
, εat,u

= dc(t)rt,u) and (at,u, [; ]at,u
, ε′

at,u
=

dc(t)r
′
t,u) be nondegenerate triangular Lie bialgebras as considered in Section

2.
Let

(
at,u ⊕ art,u

, [; ]at,u⊕art,u
εat,u⊕art,u

= dc(t, u)r
)

and
(
at,u ⊕ ar′t,u, [; ]at,u⊕art,u

, εat,u⊕ar′
t,u

= dc(t, u)r
)

be the corresponding quasitrian-

gular doubles. Let (ϕ1
t,u;ψt,u) : at,u ⊕ a

∗
rt,u

−→ at,u ⊕ a
∗
r′t,u

be a Lie algebra iso-

morphism such that ϕ1
t,u : at,u −→ at,u and ψt,u : a

∗
rt,u

−→ a
∗
r′t,u

are Lie algebra

isomorphisms. Let ϕ̃1
t,u, ψ̃t,u be the extensions of ϕ1

t,u and ψt,u to homomor-

phisms Uat,u −→ Uat,u and Ua
∗
rt,u

−→ Ua
∗
r′t,u
. Let X(t, u) ∈ U(at,u ⊕ a

∗
rt,u

)⊗
2

.

Let φrt,u
and φr′t,u be the Lie algebra-module isomorphisms defined in Theorem

2.3, 2). Then we have

φ−1
r′t,u

[(
(ϕ̃1

t,u; ψ̃t,u)
⊗2

(X(t, u))
)
· (1

r′t,u
+ ⊗ 1

r′t,u
− )

]
=

=
(
(ϕ̃1

t,u; ψ̃t,u) ◦ φ
−1
rt,u

)
(X(t, u) · (1

rt,u

+ ⊗ 1
rt,u

− )).

We can also prove the following:
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Proposition 5.6. Let (at,u, [; ]at,u
, εat,u

= dc(t, u)rt,u) and (at,u, [, ]at,u
, ε′

at,u
=

dc(t, u)r
′
t,u) be nondegenerate triangular Lie bialgebras over IKt,u. Let ϕ1

t,u :

at,u −→ at,u be a Lie algebra isomorphism such that r′t,u = (ϕ1
t,u ⊗ ϕ1

t,u)rt,u
and let (ϕ1

t,u;ϕ
2
t,u) be the Lie bialgebra isomorphism between the corresponding

classical doubles constructed in proposition 5.1. Then, we have

π̃′t,u ◦ (ϕ1
t,u;ϕ

2
t,u) = ϕ1

t,u ◦ π̃t,u,

where π̃′t,u and π̃t,u are defined in Proposition 3.1.

6. A necessary and sufficient condition to be isomorphic

two triangular Hopf algebras A
at[[~]],J̃−1

rt,~
and A

at[[~]],J̃−1
r′
t,~

over IKt[[~]]
If on the expression of Jrt,u

given in theorem 2.3 we take into account

Proposition 5.5 and also the form of a Lie associator Φ = eP (~Ω12,~Ω23) we
arrive to:

Proposition 6.1. Hypotheses are as in Proposition 5.5. Let Jr′t,u and Jrt,u

be the corresponding elements in Theorem 2.3, 3). Suppose moreover that
(ϕ1

t,u;ψt,u) ⊗ (ϕ1
t,u;ψt,u) Ω = Ω. Then Jr′t,u = (ϕ̃1

t,u; ψ̃t,u)
⊗2

Jrt,u
. In particular

this proposition is valid for the Lie bialgebra isomorphism (ϕ1
t,u;ϕ

2
t,u) consid-

ered in propositions 5.3 and 5.4.

4) Using Propositions 5.1, 6.1, 5.6 and Corollary 5.2 we can prove:

Proposition 6.2. a) Let J̃rt,~
and J̃r′t,~

be elements ∈ (Uat)
⊗2[[~]] which are

Invariant Star Products on a nondegenerate triangular Lie bialgebra
(at, [; ]at

, εat
= dc(t)rt) over IKt as in Definition 3.5, and obtained as in

Corollary 3.3 and Corollary 3.9 respectively from the nondegenerate solu-
tions rt,u, r

′
t,u ∈ (at ∧ at)[[u]] of the YBE on the Lie-algebra (at,u, [; ]at,u

) as

in Section 1. Let µrt,u
(rt,u) = βt,u = βt,1 + βt,2u + βt,3u

2 · · · ∈ (a∗t ∧ a
∗
t )[[u]]

and µr′t,u(r
′
t,u) = β ′

t,u = βt,1 + β ′
t,2u + β ′

t,3u
2 · · · ∈ (a∗t ∧ a

∗
t )[[u]]. b) Sup-

pose that the cocycles βt,u and β ′
t,u belong to the same cohomological class

in H(at,u) ≡ H2(at)[[u]], i.e., β ′
t,u = βt,u + dR(t)γt,u for some 1-cochain

γt,u = γt,1u + γt,2u
2 + γt,3u

3 · · · ∈ a
∗
t [[u]]. Then, J̃rt,~

and J̃r′t,~
are equiva-

lent Invariant Star Products.

To prove the converse we need the following lemma:
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Lemma 6.3. Suppose that in Proposition 6.2

βt,u = βt,1 + βt,2u+ βt,3u
2 + · · · + βt,R−1u

R−2 + βt,Ru
R−1 + . . .

β ′
t,u = βt,1 + βt,2u+ βt,3u

2 + · · · + βt,R−1u
R−2 + (βt,R + dRαt,(R−1))u

R−1 + . . .

where αt,(R−1) is an element in a
∗
t , that is, a 1−cochain on the Lie algebra

(at, [; ]at
) over the ring IKt. This means that β ′

t,u and βt,u are equal except in

the term of order R− 1. Then, J̃rt,~ and J̃r′t,~ are equivalent,

J̃r′t,~
= ∆at

(E)−1 ·t J̃rt,~
·t (E ⊗E),

and the element E = 1 + Et,1~ + Et,2~
2 + · · · + Et,(R−1)~

R−1 + · · · ∈ Uat[[~]]
which defines this equivalence verifies

Et,1 = 0, Et,2, . . . , Et,(R−2) = 0, Et,(R−1) = χrt
(αt,(R−1)) = µ−1

rt
(αt,(R−1)).

Lemma 6.3 and Hochschild cohomology properties allow us to prove

Proposition 6.4. Let J̃rt,~
and J̃r′t,~

as considered in Theorem 6.2. Suppose

that J̃rt,~
and J̃r′t,~

are equivalent. Then β ′
t,u and βt,u belong to the same

cohomological class, i.e., β ′
t,u = βt,u + dR(t)γt,u for some 1-cochain γt,u · · · ∈

a
∗
t [[u]].

Combining the last two theorems we obtain the following result, similar in
Etingof-Kazhdan quantization theory to the one by Drinfeld in [4]:

Proposition 6.5. Let J̃rt,~
and J̃r′t,~

be elements in (Uat)
⊗2[[~]] which are In-

variant Star Products on a nondegenerate triangular Lie bialgebra (at, [, ]at
, εat

=
dc(t)rt) over IKt as in Theorem 6.2. Then J̃rt,~

and J̃r′t,~
are equivalent In-

variant Star Products if, and only if, µrt,u
(rt,u) = βt,u and µr′t,u(r

′
t,u) = β ′

t,u

belong to the same cohomological class in H2(at)[[u]]. In other words, J̃rt,~

and J̃r′t,~
are equivalent Invariant Star Products if, and only if, there exists a

1-cochain γt,u ∈ a
∗
t,u such that β ′

t,u = βt,u + dR(t)γt,u.

Theorem 6.5 and Remark 2) in page 841 of [6] allow us to obtain

Proposition 6.6. Two triangular Hopf algebras A
at[[~]],J̃−1

rt,~

and A
at[[~]],J̃−1

r′
t,~

over IKt[[~]] defined as in Corollary 3.9 and Section 4 are isomorphic if, and
only if, there exists an isomorphism of Lie algebras λt : at[[~]] −→ at[[~]]
over IKt[[~]] such that (λ2

t ⊗λ2
t )βt,~ and β ′

t,~ belong to the same cohomological
class.
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5) From the above results and Remark 2) in page 841 of [6] we may also
prove:

Proposition 6.7. Let A
at,~⊕a∗rt,~

,Ω,J−1
rt,~

and A
at,~⊕a

∗

r′
t,~

,Ω,J−1

r′
t,~

be quasitriangu-

lar Hopf QUE algebras over IKt[[~]] which are quantizations, as in The-
orem 2.3 after putting u = ~, of the quasitriangular Lie bialgebra (at ⊕
a
∗
rt
, [, ]at⊕a∗rt

, εat⊕a∗rt,u
= dc(t)r) over the ring IKt. Suppose that the cocycles

µrt,u
(rt,u) = βt,u and µr′t,u(r

′
t,u) as in Proposition 6.2 define the same coho-

mological class in H2(at)[[u]]. Then the quasitriangular Hopf QUE algebras
A

at,~⊕a∗rt,~
,Ω,J−1

rt,~
and A

at,~⊕a
∗

r′
t,~

Ω,J−1

r′
t,~

over the ring IKt[[~]] are isomorphic.

7. Isomorphic triangular Hopf algebras over IK[[~]] of type

A
a~,J̃r~,~

We start from a deformation algebra (a~, [; ]a~
) of the Lie algebra (a, [; ]a)

over the field IK and from an element r~ =
∑

l≥1 rl~
l−1 ∈ a~∧a~ which is non-

degenerate (r1 is invertible) and a solution of the YBE ([r~, r~]a~
= 0) on the

Lie algebra (a~, [; ]a~
) over IK[[~]]. We call the set (a~, [; ]a~

, r~) a nondegener-
ate triangular Lie bialgebra deformation of the nondegenerate triangular Lie
bialgebra (a, [, ]a, r1) over IK. These elements are just the elements (at, [; ]at

),
rt =

∑
l≥1 rlt

l−1 ∈ at ∧ at, [rt, rt]at
= 0 considered before setting t = ~. Con-

sider two elements rt,u and r′t,u as in Section 6. We set u = ~ and obtain
rt,~ and r′t,~, as in that section, and the corresponding propositions there.
We set moreover t = ~ and we get r~,~, r

′
~,~ ∈ a~ ∧ a~. The corresponding

elements J̃−1
r~,~
, J̃−1

r~,~
∈ Ua~⊗̂Ua~ will also be called Invariant Star Products

on the deformation algebra (a~, [; ]a~
). From Proposition 6 we obtain

Proposition 7.1. Let J̃r~,~
and J̃r′

~,~
∈ Ua~⊗̂Ua~ be the above Invariant Star

Products on a nondegenerate triangular Lie bialgebra deformation (a~, [, ]a~
, εa~

=
dc(~)r~) of the nondegenerate triangular Lie bialgebra (a, [, ]a, εa = dcr1) over
IK. Then J̃r~,~

and J̃r′
~,~

are equivalent Invariant Star Products if, and only if,

µr~,~
(r~,~) = β~,~ and µr′

~,~
(r′~,~) = β ′

~,~ belong to the same cohomological class

in H2
R(a~)[[~]]. In other words, J̃r~,~

and J̃r′
~,~

are equivalent Invariant Star

Products on (a~, [; ]a~
) if, and only if, there exists a 1-cochain γ~,~ ∈ a

∗
~,~ such

that β ′
~,~ = β~,~ + dR(~)γ~,~.

As a consequence we obtain
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Corollary 7.2. The triangular Quantized Universal Enveloping algebras A
ah,J̃r

~,~

and A
ah,J̃r′

~,~

over IK[[~]] are isomorphic, if and only if, the elements β~,~ and

β ′
~,~ ∈ (a∗~ ∧ a

∗
~)[[~]] are in the same cohomological class in H2

R(a~)[[~]].

Also, we obtain

Corollary 7.3. Suppose that the deformation algebra (a~, [; ]a~
) is a trivial

one, that is, it is the one obtained just by extension of scalars IK −→ IK[[~]].
Suppose also that r~ = r1 and r~,~ = r1 + r2~ + r3~

2 + · · · . Write it as r0,~.

Similarly suppose r′~ = r1 and r′~,~ = r1 + r′2~ + r′3~
2 + · · · and write it as

r′0,~. Let β0,~ = β1 + β2~ + β3~
2 + · · · and β ′

0,~ = β1 + β ′
2~ + β ′

3~
2 + · · · be

the corresponding elements in (a∗ ∧ a
∗)[[~]]. The triangular Hopf Quantized

Universal enveloping algebras A
ah,J̃r0,~

and A
ah,J̃r′

0,~

are isomorphic if, and only

if, βk and β ′
k are, for any k = 2, 3, 4, · · · , in the same cohomological class in

H2(a). In the particular case when IK is the field R, what we get is that the set
of equivalent classes of quantizations (usual term) of the Lie group G with
Lie algebra (a, [, ]a) and endowed with a left invariant symplectic structure
β1 ∈ a

∗ ∧ a
∗ is in a bijective correspondence with the set β1 + ~H2(a)[[~]]. A

theorem given by Drinfeld in the setting of the quantization in [4].
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