MATRIX SYLVESTER EQUATIONS IN THE THEORY OF ORTHOGONAL POLYNOMIALS ON THE UNIT CIRCLE

A. BRANQUINHO AND M.N. REBOCHO

Abstract

In this paper we characterize sequences of polynomials on the unit circle, orthogonal with respect to a Hermitian linear functional such that its corresponding Carathéodory function satisfies a Riccati differential equation with polynomial coefficients, in terms of matrix Sylvester differential equations. Furthermore, under certain conditions, we give a representation of such sequences in terms of semi-classical orthogonal polynomials on the unit circle. For the particular case of semi-classical orthogonal polynomials on the unit circle, a characterization in terms of first order differential systems is established.

Keywords: Carathéodory function, matrix Riccati differential equations, matrix Sylvester differential equations, semi-classical functionals, measures on the unit circle.
AMS Subject Classification (2000): 33C45, 39B42.

1. Introduction

A regular Hermitian linear functional defined in the linear space of Laurent polynomials with complex coefficients is said to be Laguerre-Hahn if the corresponding Carathéodory function, F, satisfies a Riccati differential equation with polynomial coefficients

$$
\begin{equation*}
z A F^{\prime}=B F^{2}+C F+D, A \not \equiv 0 \tag{1}
\end{equation*}
$$

The corresponding sequence of orthogonal polynomials is said to be Laguerre--Hahn. We shall refer to the set of all such functionals (respectively, sequences of orthogonal polynomials) as the Laguerre-Hahn class on the unit circle (see [3]).
We remark that, analogously to the real line (see [10, 13, 14] for a study of the Laguerre-Hahn class on the set of functionals defined in the linear space of real polynomials), the Laguerre-Hahn class on the unit circle includes the Laguerre-Hahn affine class on the unit circle, which corresponds to the case

[^0]$B=0$ in (1), and the semi-classical class on the unit circle, which corresponds to the case $B=0$ and C, D specific polynomials depending on A, B in (1) (see $[2,4]$). Other examples of Laguerre-Hahn sequences can be found in [3].

In this paper we give a characterization of Laguerre-Hahn orthogonal polynomials on the unit circle in terms of matrix Sylvester differential equations. Let u be a Hermitian Laguerre-Hahn functional such that the corresponding Carathéodory function satisfies (1). We establish the equivalence between (1) and the following matrix Sylvester differential equations for $Y_{n}=\left[\begin{array}{cc}\phi_{n} & -\Omega_{n} \\ \phi_{n}^{*} & \Omega_{n}^{*}\end{array}\right]$ and $\mathcal{Q}_{n}=\left[\begin{array}{ll}-Q_{n} & Q_{n}^{*}\end{array}\right]^{T}$, where T denotes the transpose matrix,

$$
\left\{\begin{array}{l}
z A Y_{n}^{\prime}=\mathcal{B}_{n} Y_{n}-Y_{n} \mathcal{C} \tag{2}\\
z A \mathcal{Q}_{n}^{\prime}=\left(\mathcal{B}_{n}+(B F+C / 2) I\right) \mathcal{Q}_{n}, n \in \mathbb{N}
\end{array}\right.
$$

where $\left\{\phi_{n}\right\},\left\{\Omega_{n}\right\},\left\{Q_{n}\right\}$ are, respectively, the sequence of orthogonal polynomials with respect to u, the corresponding sequence of polynomials of the second kind, and the sequence of functions of the second kind; \mathcal{B}_{n} and \mathcal{C} are matrices of order two with polynomial elements (see Theorem 4). As a consequence of the referred equivalence, a characterization for semi-classical orthogonal polynomials on the unit circle in terms of first order differential systems is obtained (see Theorem 5). Moreover, the equivalence between (1) and (2) allow us to give $\left\{Y_{n}\right\}$ in terms of the solutions of two linear differential systems, $z A \mathcal{L}^{\prime}=\mathcal{C} \mathcal{L}$ and $z A \mathcal{P}_{n}^{\prime}=\mathcal{B}_{n} \mathcal{P}_{n}$, as $Y_{n}=\mathcal{P}_{n} \mathcal{L}^{-1}, \forall n \geq 1$ (see Theorem 6). Furthermore, under certain conditions, we obtain $\left\{Y_{n}\right\}$ defined in terms of sequences of semi-classical orthogonal polynomials on the unit circle (see Theorem 8).

This paper is organized as follows. In section 2 we give the definitions and state the basic results which will be used in the forthcoming sections. In section 3 we establish a characterization theorem for functionals in the Laguerre-Hahn class: we establish the equivalence between (1) and the matrix Sylvester differential equations (2). In section 4 we establish a characterization for semi-classical orthogonal polynomials on the unit circle in terms of first order differential systems. In section 5 we solve the system of matrix Sylvester differential equations obtained in section 3. Furthermore, taking into account the characterization of semi-classical orthogonal polynomials on
the unit circle previously obtained, we determine a representation for its solution in terms of sequences of semi-classical orthogonal polynomials on the unit circle. Finally, in section 6, an example is presented.

2. Preliminary results

Let $\Lambda=\operatorname{span}\left\{z^{k}: k \in \mathbb{Z}\right\}$ be the space of Laurent polynomials with complex coefficients. Given a linear functional $u: \Lambda \rightarrow \mathbb{C}$ and the sequence of moments $\left(c_{n}\right)_{n \in \mathbb{Z}}$ of $u, c_{n}=\left\langle u, \xi^{-n}\right\rangle, n \in \mathbb{Z}, c_{0}=1$, define the minors of the Toeplitz matrix $\Delta=\left(c_{n}\right)_{n \in \mathbb{N}}$, by

$$
\Delta_{-1}=1, \Delta_{0}=c_{0}, \Delta_{k}=\left|\begin{array}{ccc}
c_{0} & \cdots & c_{k} \\
\vdots & & \vdots \\
c_{-k} & \cdots & c_{0}
\end{array}\right|, k \in \mathbb{N}
$$

The linear functional u is Hermitian if $c_{-n}=\bar{c}_{n}, \forall n \in \mathbb{N}$, and regular (positive definite) if $\Delta_{n} \neq 0\left(\Delta_{n}>0\right), \forall n \in \mathbb{N}$.
In this work we shall consider linear functionals that are Hermitian and positive definite. We will use the notation \mathcal{R}^{+}to denote this set of functionals.
It is known that if $u \in \mathcal{R}^{+}$, then u has an integral representation defined in terms of a probability measure, μ, with infinite support on the unit circle $\mathbb{T}=\left\{e^{i \theta}: \theta \in[0,2 \pi[\}\right.$, i.e.,

$$
\left\langle u, e^{i n \theta}\right\rangle=\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{i n \theta} d \mu(\theta), n \in \mathbb{Z}
$$

The corresponding sequence of orthogonal polynomials, called orthogonal polynomials on the unit circle (with respect to μ), is then defined by

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \phi_{n}\left(e^{i \theta}\right) \bar{\phi}_{m}\left(e^{-i \theta}\right) d \mu(\theta)=h_{n} \delta_{n, m}, h_{n} \neq 0, n, m \in \mathbb{N}
$$

If each ϕ_{n} is monic, then $\left\{\phi_{n}\right\}$ will be called a monic orthogonal polynomial sequence, and will be denoted by MOPS.
Given a measure μ, the function F defined by

$$
\begin{equation*}
F(z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{e^{i \theta}+z}{e^{i \theta}-z} d \mu(\theta) \tag{3}
\end{equation*}
$$

is a Carathéodory function, i.e., is an analytic function on $\mathbb{D}=\{z \in \mathbb{C}:|z|<$ $1\}$ such that $F(0)=1$ and $\Re e(F)>0$ for $|z|<1$. The converse result also
holds, since any Carathéodory function has a representation (3) for a unique probability measure μ on \mathbb{T} (see, for example, [16]).

Given a sequence of monic polynomials $\left\{\phi_{n}\right\}$ orthogonal with respect to μ, the associated polynomials of the second kind are given by

$$
\Omega_{0}(z)=1, \Omega_{n}(z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{e^{i \theta}+z}{e^{i \theta}-z}\left(\phi_{n}\left(e^{i \theta}\right)-\phi_{n}(z)\right) d \mu(\theta), \forall n \in \mathbb{N}
$$

and the functions of the second kind associated with $\left\{\phi_{n}\right\}$ are given by

$$
Q_{n}(z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{e^{i \theta}+z}{e^{i \theta}-z} \phi_{n}\left(e^{i \theta}\right) d \mu(\theta), n=0,1, \ldots
$$

Following the ideas of [9], if we define

$$
Y_{n}=\left[\begin{array}{cc}
\phi_{n} & -\Omega_{n} \tag{4}\\
\phi_{n}^{*} & \Omega_{n}^{*}
\end{array}\right], \mathcal{Q}_{n}=\left[\begin{array}{c}
-Q_{n} \\
Q_{n}^{*}
\end{array}\right], \forall n \in \mathbb{N}
$$

with $p^{*}(z)=z^{n} \bar{p}(1 / z)$, where n is the degree of the polynomial p, and $Q_{n}^{*}(z)=z^{n} \bar{Q}(1 / z)$, then the recurrence relations satisfied by $\left\{\phi_{n}\right\}$ and $\left\{\Omega_{n}\right\}$ can be written in the matrix form as given in the following theorem.
Theorem 1 (cf. [7, 8, 15]). Let F be a Carathéodory function, $\left\{\phi_{n}\right\},\left\{\Omega_{n}\right\}$, $\left\{Q_{n}\right\}$, respectively, the corresponding MOPS on the unit circle, the sequence of associated polynomials of the second kind, and the sequence of the functions of the second kind. Let $\left\{Y_{n}\right\}$ and $\left\{\mathcal{Q}_{n}\right\}$ be the sequences defined in (4). Then, the following relations hold, $\forall n \in \mathbb{N}$,

$$
\begin{gather*}
Y_{n}=\mathcal{A}_{n} Y_{n-1}, \quad \mathcal{A}_{n}=\left[\begin{array}{cc}
z & a_{n} \\
\bar{a}_{n} z & 1
\end{array}\right], \tag{5}\\
\mathcal{Q}_{n}=Y_{n}\left[\begin{array}{c}
F \\
-1
\end{array}\right] \tag{6}
\end{gather*}
$$

with $a_{n}=\phi_{n}(0), Y_{0}=\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right], \quad \mathcal{Q}_{0}=\left[\begin{array}{l}-F \\ -F\end{array}\right]$.
Moreover, $\forall n \in \mathbb{N}$,

$$
\begin{align*}
& \phi_{n}^{*}(z) \Omega_{n}(z)+\phi_{n}(z) \Omega_{n}^{*}(z)=2 h_{n} z^{n} \tag{7}\\
& \phi_{n}^{*}(z) Q_{n}(z)+\phi_{n}(z) Q_{n}^{*}(z)=2 h_{n} z^{n} \tag{8}
\end{align*}
$$

with $h_{n}=\prod_{k=1}^{n}\left(1-\left|a_{k}\right|^{2}\right)$.
Let $H_{0}(z)=\sum_{j=0}^{+\infty} b_{j} z^{j},|z|<1, \quad H_{\infty}(z)=\sum_{j=0}^{+\infty} b_{j} z^{-j},|z|>1$. We will write $H_{0}(z)=\mathcal{O}\left(z^{k}\right)$ or $H_{\infty}(z)=\mathcal{O}\left(z^{-k}\right)$ if $b_{0}=\cdots=b_{k-1}=0, k \in \mathbb{N}$.

Corollary 1. Let $\left\{\phi_{n}\right\}$ be a MOPS on the unit circle and $\left\{Q_{n}\right\}$ be the corresponding sequence of functions of the second kind. Then, $\forall n \in \mathbb{N}$,

$$
\begin{aligned}
& Q_{n}(z)=2 h_{n} z^{n}+\mathcal{O}\left(z^{n+1}\right),|z|<1 \\
& Q_{n}(z)=2 a_{n+1} h_{n} z^{-1}+\mathcal{O}\left(z^{-2}\right),|z|>1
\end{aligned}
$$

with $a_{n+1}=\phi_{n+1}(0), h_{n}=\prod_{k=1}^{n}\left(1-\left|a_{k}\right|^{2}\right)$.
Corollary 2. Let $\left\{\phi_{n}\right\}$ be a MOPS on the unit circle and $\left\{\Omega_{n}\right\}$ be the corresponding sequence of associated polynomials of the second kind. Then, the following holds:
a) If there exists $k \in \mathbb{N}$ such that $\phi_{k}(\alpha)=\Omega_{k}(\alpha)=0$, then $\alpha=0$;
b) If there exists $k \in \mathbb{N}$ such that $\phi_{k}(\alpha)=Q_{k}(\alpha)=0$, then $\alpha=0$.

Theorem 2 (Geronimus, [6]). Given a sequence of complex numbers $\left(a_{n}\right)$ satisfying $\left|a_{n}\right|<1, \forall n \in \mathbb{N}$, let $\left\{\phi_{n}\right\}$ and $\left\{\Omega_{n}\right\}$ be the sequences of polynomials defined by the recurrence relation (5), and let F be the corresponding Carathéodory function. Then, the sequence defined for $n \geq 1$, by

$$
\frac{\Omega_{n}^{*}(z)}{\phi_{n}^{*}(z)}=1+\sqrt{-2 \bar{a}_{1} z}-\frac{\left.\frac{\bar{a}_{2}}{\bar{a}_{1}} z\left(1-\left|a_{1}\right|^{2}\right) \right\rvert\,}{\left\lvert\, \frac{\bar{a}_{1} z}{1+\frac{\bar{a}_{2}}{\bar{a}_{1}} z}\right.}-\cdots-\frac{\frac{\bar{a}_{n+1}}{\bar{a}_{n}} z\left(1-\left|a_{n}\right|^{2}\right)}{1+\frac{\bar{a}_{n+1}}{\bar{a}_{n}} z},
$$

converges uniformly to F, on compact subsets of \mathbb{D}.
Definition 1 (cf. [17]). Let μ be a measure given by $d \mu=w d \theta+\sum_{k=1}^{N} \lambda_{k} \delta_{k}$, $K \in \mathbb{N} . \mu$ is semi-classical if there exist polynomials A, C such that the absolutely continuous part of μ, w, satisfies

$$
\begin{equation*}
\frac{w^{\prime}(z)}{w(z)}=\frac{C(z)}{z A(z)} \tag{9}
\end{equation*}
$$

The corresponding sequence of orthogonal polynomials is called semi-classical.

Lemma 1 (cf. [2, 4]). A measure μ defined by $d \mu=w d \theta+\sum_{k=1}^{N} \lambda_{k} \delta_{k}$ is semi-classical and its absolutely continuous part satisfies (9), if and only if the corresponding Carathéodory function F satisfies

$$
z A(z) F^{\prime}(z)=C(z) F(z)+C_{3}(z)
$$

with $C_{3}(z)=-z A^{\prime}(z)-2 \sum_{k=2}^{\operatorname{deg}(A)} \frac{A^{(k)}(z)}{k!} \int_{0}^{2 \pi} 2 e^{i \theta}\left(e^{i \theta}-z\right)^{k-2} d \mu(\theta)$.

3. Characterization in terms of matrix Sylvester differential equations

Hereafter, I denotes the identity matrix of order two.
Theorem 3. Let F be a Carathéodory function and $\left\{Y_{n}\right\}$ and $\left\{\mathcal{Q}_{n}\right\}$ the corresponding sequences defined by (4). The following statements are equivalent: a) F satisfies the differential equation with polynomial coefficients

$$
\begin{equation*}
z A F^{\prime}=B F^{2}+C F+D \tag{10}
\end{equation*}
$$

b) $\left\{Y_{n}\right\}$ and $\left\{\mathcal{Q}_{n}\right\}$ satisfy the Sylvester differential equations

$$
\begin{align*}
& z A Y_{n}^{\prime}=\mathcal{B}_{n} Y_{n}-Y_{n} \mathcal{C} \tag{11}\\
& z A \mathcal{Q}_{n}^{\prime}=\left(\mathcal{B}_{n}+(B F+C / 2) I\right) \mathcal{Q}_{n}, n \in \mathbb{N} \tag{12}
\end{align*}
$$

where \mathcal{B}_{n} are matrices of bounded degree polynomials,

$$
\mathcal{B}_{n}=\left[\begin{array}{cc}
l_{n}^{1} & -\Theta_{n}^{1} \tag{13}\\
-\Theta_{n}^{2} & l_{n}^{2}
\end{array}\right],
$$

and

$$
\mathcal{C}=\left[\begin{array}{cc}
C / 2 & -D \tag{14}\\
B & -C / 2
\end{array}\right]
$$

Proof: $a) \Rightarrow b$).
Let F satisfy (10). Firstly we obtain (11). This will be done dividing the proof in two parts: in the first part we deduce the equations

$$
\left\{\begin{array}{l}
z A \Omega_{n}^{\prime}=\left(l_{n}^{1}+C / 2\right) \Omega_{n}-D \phi_{n}+\Theta_{n}^{1} \Omega_{n}^{*} \tag{15}\\
z A \phi_{n}^{\prime}=\left(l_{n}^{1}-C / 2\right) \phi_{n}+B \Omega_{n}-\Theta_{n}^{1} \phi_{n}^{*}
\end{array}\right.
$$

and in the second part we deduce the equations

$$
\left\{\begin{array}{l}
z A\left(\Omega_{n}^{*}\right)^{\prime}=\left(l_{n}^{2}+C / 2\right) \Omega_{n}^{*}+D \phi_{n}^{*}+\Theta_{n}^{2} \Omega_{n} \tag{16}\\
z A\left(\phi_{n}^{*}\right)^{\prime}=\left(l_{n}^{2}-C / 2\right) \phi_{n}^{*}-B \Omega_{n}^{*}-\Theta_{n}^{2} \phi_{n}
\end{array}\right.
$$

with polynomials $l_{n}^{1}, l_{n}^{2}, \Theta_{n}^{1}, \Theta_{n}^{2}$ whose degrees do not depend on n. Then we will write these two systems of equations in the matrix form (11), with \mathcal{B}_{n} and \mathcal{C} given by (13) and (14), respectively.

Part 1. If we substitute $F=\frac{Q_{n}}{\phi_{n}}-\frac{\Omega_{n}}{\phi_{n}}\left(\right.$ cf. (6)) in $z A F^{\prime}=B F^{2}+C F+D$ we obtain

$$
z A\left(\frac{Q_{n}}{\phi_{n}}-\frac{\Omega_{n}}{\phi_{n}}\right)^{\prime}=B\left(\frac{Q_{n}}{\phi_{n}}-\frac{\Omega_{n}}{\phi_{n}}\right)^{2}+C\left(\frac{Q_{n}}{\phi_{n}}-\frac{\Omega_{n}}{\phi_{n}}\right)+D
$$

i.e.,

$$
\begin{aligned}
z A\left(\frac{Q_{n}}{\phi_{n}}\right)^{\prime}-B \frac{Q_{n}}{\phi_{n}}\left(\frac{Q_{n}}{\phi_{n}}-2 \frac{\Omega_{n}}{\phi_{n}}\right) & -C \frac{Q_{n}}{\phi_{n}} \\
& =z A\left(\frac{\Omega_{n}}{\phi_{n}}\right)^{\prime}+B\left(\frac{\Omega_{n}}{\phi_{n}}\right)^{2}-C\left(\frac{\Omega_{n}}{\phi_{n}}\right)+D
\end{aligned}
$$

Therefore we have

$$
\begin{equation*}
\left\{z A\left(\frac{\Omega_{n}}{\phi_{n}}\right)^{\prime}+B\left(\frac{\Omega_{n}}{\phi_{n}}\right)^{2}-C\left(\frac{\Omega_{n}}{\phi_{n}}\right)+D\right\} \phi_{n}^{2}=\tilde{\Theta}_{n} \tag{17}
\end{equation*}
$$

with

$$
\tilde{\Theta}_{n}=\left\{z A\left(\frac{Q_{n}}{\phi_{n}}\right)^{\prime}-B \frac{Q_{n}}{\phi_{n}}\left(\frac{Q_{n}}{\phi_{n}}-2 \frac{\Omega_{n}}{\phi_{n}}\right)-C \frac{Q_{n}}{\phi_{n}}\right\} \phi_{n}^{2} .
$$

From (17) it follows that $\tilde{\Theta}_{n}$ is a polynomial. From the asymptotic expansion of Q_{n} in $|z|<1$ (see Corollary 1), and since the left side of (17) is a polynomial, we get

$$
\tilde{\Theta}_{n}(z)=z^{n} \tilde{\Theta}_{n}^{1}(z)
$$

with $\tilde{\Theta}_{n}^{1}$ a polynomial. From the asymptotic expansion of Q_{n} in $|z|>1$ (see Corollary 1) it follows that $\tilde{\Theta}_{n}^{1}$ has bounded degree,

$$
\operatorname{deg}\left(\tilde{\Theta}_{n}^{1}\right)=\max \{\operatorname{deg}(z A)-2, \operatorname{deg}(B)-1, \operatorname{deg}(C)-1\}, \forall n \in \mathbb{N}
$$

Thus, (17) becomes

$$
\left\{z A\left(\frac{\Omega_{n}}{\phi_{n}}\right)^{\prime}+B\left(\frac{\Omega_{n}}{\phi_{n}}\right)^{2}-C\left(\frac{\Omega_{n}}{\phi_{n}}\right)+D\right\} \phi_{n}^{2}=z^{n} \tilde{\Theta}_{n}^{1} .
$$

Using (7) in previous equation we obtain

$$
\left\{z A\left(\frac{\Omega_{n}}{\phi_{n}}\right)^{\prime}+B\left(\frac{\Omega_{n}}{\phi_{n}}\right)^{2}-C\left(\frac{\Omega_{n}}{\phi_{n}}\right)+D\right\} \phi_{n}^{2}=\Theta_{n}^{1}\left(\phi_{n} \Omega_{n}^{*}+\Omega_{n} \phi_{n}^{*}\right)
$$

where $\Theta_{n}^{1}=\tilde{\Theta}_{n}^{1} /\left(2 h_{n}\right)$.

Consequently, $\forall n \in \mathbb{N}$,

$$
\left\{z A \Omega_{n}^{\prime}-\frac{C}{2} \Omega_{n}+D \phi_{n}-\Theta_{n}^{1} \Omega_{n}^{*}\right\} \phi_{n}=\left\{z A \phi_{n}^{\prime}+\frac{C}{2} \phi_{n}-B \Omega_{n}+\Theta_{n}^{1} \phi_{n}^{*}\right\} \Omega_{n}
$$

We distinguish the following cases (see Corollary 2):
a) ϕ_{n} and Ω_{n} have no common roots, $\forall n \in \mathbb{N}$, i.e., $\phi_{n}(0) \neq 0, \forall n \in \mathbb{N}$;
b) there exists a finite number of indexes $k \in \mathbb{N}$ such that ϕ_{k} and Ω_{k} have common roots, i.e., $\phi_{k}(0)=\Omega_{k}(0)=0$ for a finite number of k 's;
c) there exists $n_{0}>1$ such that $\phi_{n}(0)=0, \forall n \geq n_{0}$.

Case a) If ϕ_{n} and Ω_{n} have no common roots, $\forall n \in \mathbb{N}$, then we conclude that there exists a polynomial l_{n}^{1} such that

$$
\left\{\begin{array}{l}
z A \phi_{n}^{\prime}+\frac{C}{2} \phi_{n}-B \Omega_{n}+\Theta_{n}^{1} \phi_{n}^{*}=l_{n}^{1} \phi_{n} \tag{18}\\
z A \Omega_{n}^{\prime}-\frac{C}{2} \Omega_{n}+D \phi_{n}-\Theta_{n}^{1} \Omega_{n}^{*}=l_{n}^{1} \Omega_{n}, \forall n \in \mathbb{N}
\end{array}\right.
$$

and we obtain (15). Moreover, l_{n}^{1} has bounded degree,

$$
\operatorname{deg}\left(l_{n}^{1}\right)=\max \{\operatorname{deg}(z A)-1, \operatorname{deg}(C), \operatorname{deg}(B)\}, \forall n \in \mathbb{N}
$$

Case b) We first assume that $\phi_{1}(0) \neq 0, \ldots, \phi_{k-1}(0) \neq 0$, and k is the first index such that $\phi_{k}(0)=0$. So, ϕ_{n} and Ω_{n} have no common roots for $n=1, \ldots, k-1$. From case a), equations (18) hold for $n=1, \ldots, k-1$. Now we write (18) to $k-1$ and multiply by z, to obtain

$$
\left\{\begin{array}{l}
z^{2} A \phi_{k-1}^{\prime}+\frac{C}{2} z \phi_{k-1}-B z \Omega_{k-1}+z \Theta_{k-1}^{1} \phi_{k-1}^{*}=l_{k-1}^{1} z \phi_{k-1} \\
z^{2} A \Omega_{k-1}^{\prime}-\frac{C}{2} z \Omega_{k-1}+D z \phi_{k-1}-z \Theta_{k-1}^{1} \Omega_{k-1}^{*}=l_{n}^{1} z \Omega_{k-1}
\end{array}\right.
$$

By substituting

$$
\phi_{k}(z)=k \phi_{k-1}(z), \phi_{k}^{*}(z)=\phi_{k-1}^{*}(z), z \phi_{k-1}^{\prime}(z)=\phi_{k}^{\prime}(z)-\phi_{k-1}(z)
$$

and

$$
\Omega_{k}(z)=z \Omega_{k-1}(z), \Omega_{k}^{*}(z)=\Omega_{k-1}^{*}(z), z \Omega_{k-1}^{\prime}(z)=\Omega_{k}^{\prime}(z)-\Omega_{k-1}(z)
$$

in previous equations, it follows that

$$
\left\{\begin{array}{l}
z A \phi_{k}^{\prime}+\frac{C}{2} \phi_{k}-B \Omega_{k}+z \Theta_{k-1}^{1} \phi_{k}^{*}=\left(l_{k-1}^{1}+A\right) \phi_{k} \\
z A \Omega_{k}^{\prime}-\frac{C}{2} \Omega_{k}+D \phi_{k}-z \Theta_{k-1}^{1} \Omega_{k}^{*}=l_{n}^{1} \Omega_{k}
\end{array}\right.
$$

and we obtain (15) to $n=k$ with $l_{k}^{1}=l_{k-1}^{1}+A$ and $\Theta_{k}^{1}=z \Theta_{k-1}^{1}$.

Furthermore, if $\phi_{k+1}(0)=\cdots=\phi_{k+k_{0}}(0)=0, \phi_{k+k_{0}+1}(0) \neq 0$ to some $k_{0} \in \mathbb{N}$, then, using the same method as before, the differential relations (15) are obtained for $n=k+1, \ldots, k+k_{0}$, with

$$
l_{n}^{1}=l_{k-1}^{1}+(n-k+1) A, \quad \Theta_{n}^{1}=z^{n-k+1} \Theta_{k-1}^{1}, \quad n=k+1, \ldots, k+k_{0}
$$

Case c) If $\phi_{n}(0)=0, \forall n \geq n_{0}$, then ϕ_{n} and Ω_{n} are polynomials of the Bernstein-Szegő type,

$$
\phi_{n}(z)=z^{n-n_{0}+1} \phi_{n_{0}-1}(z), \quad \Omega_{n}(z)=z^{n-n_{0}+1} \Omega_{n_{0}-1}(z)
$$

Applying the same method as before, we conclude that equations (15) hold, $\forall n \in \mathbb{N}$, and, for $n \geq n_{0}, l_{n}^{1}$ and Θ_{n}^{1} are given by

$$
l_{n}^{1}=l_{n_{0}-1}+\left(n-n_{0}+1\right) A, \Theta_{n}^{1}=z^{n-n_{0}+1} \Theta_{n_{0}-1}^{1}
$$

Part 2. If we substitute $F=\frac{\Omega_{n}^{*}}{\phi_{n}^{*}}-\frac{Q_{n}^{*}}{\phi_{n}^{*}}$ (cf. (6)) in $z A F^{\prime}=B F^{2}+C F+D$ and proceed as in part one, we obtain (16) with

$$
\operatorname{deg}\left(l_{n}^{2}\right)=\max \{\operatorname{deg}(z A)-1, \operatorname{deg}(B), \operatorname{deg}(C)\}, \forall n \in \mathbb{N}
$$

Finally, equations (15) and (16) can be presented in the matrix form (11).
We now obtain (12). Taking derivatives on $Q_{n}=\Omega_{n}+\phi_{n} F$ and $Q_{n}^{*}=$ $\Omega_{n}^{*}-\phi_{n}^{*} F$ (cf. (6)) we obtain

$$
\begin{aligned}
& z A Q_{n}^{\prime}=z A \Omega_{n}^{\prime}+z A \phi_{n}^{\prime} F+z A F^{\prime} \phi_{n} \\
& z A\left(Q_{n}^{*}\right)^{\prime}=z A\left(\Omega_{n}^{*}\right)^{\prime}-z A\left(\phi_{n}^{*}\right)^{\prime} F-z A F^{\prime} \phi_{n}^{*} .
\end{aligned}
$$

Using (15) and (16), respectively, in previous equations, (12) follows. b) $\Rightarrow a$).

Taking into account (6), $\mathcal{Q}_{n}=Y_{n}\left[\begin{array}{c}F \\ -1\end{array}\right], \forall n \in \mathbb{N}$, we see that (12) is equivalent to

$$
z A Y_{n}^{\prime}\left[\begin{array}{c}
F \\
-1
\end{array}\right]+z A Y_{n}\left[\begin{array}{c}
F^{\prime} \\
0
\end{array}\right]=\mathcal{B}_{n} Y_{n}\left[\begin{array}{c}
F \\
-1
\end{array}\right]+(B F+C / 2) Y_{n}\left[\begin{array}{c}
F \\
-1
\end{array}\right]
$$

From (11) it follows that

$$
\left(\mathcal{B}_{n} Y_{n}-Y_{n} \mathcal{C}\right)\left[\begin{array}{c}
F \\
-1
\end{array}\right]+z A Y_{n}\left[\begin{array}{c}
F^{\prime} \\
0
\end{array}\right]=\mathcal{B}_{n} Y_{n}\left[\begin{array}{c}
F \\
-1
\end{array}\right]+(B F+C / 2) Y_{n}\left[\begin{array}{c}
F \\
-1
\end{array}\right]
$$ i.e.,

$$
Y_{n}\left(z A\left[\begin{array}{c}
F^{\prime} \\
0
\end{array}\right]-\mathcal{C}\left[\begin{array}{c}
F \\
-1
\end{array}\right]\right)=(B F+C / 2) Y_{n}\left[\begin{array}{c}
F \\
-1
\end{array}\right] .
$$

Taking into account that Y_{n} is regular, then we obtain

$$
z A\left[\begin{array}{c}
F^{\prime} \\
0
\end{array}\right]-\mathcal{C}\left[\begin{array}{c}
F \\
-1
\end{array}\right]=(B F+C / 2)\left[\begin{array}{c}
F \\
-1
\end{array}\right] .
$$

Since \mathcal{C} is given by (14), $z A F^{\prime}=B F^{2}+C F+D$ follows.
Remark. Hereafter we will say that the matrices \mathcal{B}_{n} are associated with the equation $z A F^{\prime}=B F^{2}+C F+D$.

The following formula for $\operatorname{tr}\left(\mathcal{B}_{n}\right)$ was given in [12] for a particular case of a semi-classical sequence of orthogonal polynomials on the unit circle.

Corollary 3. Under the conditions of the previous theorem, the matrices \mathcal{B}_{n} given by (13) satisfy

$$
\begin{align*}
& z A \mathcal{A}_{n}^{\prime}=\mathcal{B}_{n} \mathcal{A}_{n}-\mathcal{A}_{n} \mathcal{B}_{n-1}, n \geq 2, \tag{19}\\
& \operatorname{tr}\left(\mathcal{B}_{n}\right)=n A, n \in \mathbb{N}, \tag{20}\\
& \operatorname{det}\left(\mathcal{B}_{n}\right)=\operatorname{det}\left(\mathcal{B}_{1}\right)-A \sum_{k=1}^{n-1} l_{k, 2}, n \geq 2, \tag{21}
\end{align*}
$$

where $\operatorname{tr}\left(\mathcal{B}_{n}\right)$ and $\operatorname{det}\left(\mathcal{B}_{n}\right)$ denote, respectively, the trace and the determinant of \mathcal{B}_{n}, and

$$
\begin{equation*}
\operatorname{det}\left(\mathcal{B}_{1}\right)=A\left(2 z A \bar{a}_{1}-h_{1}(D+B)+C\left(\left|a_{1}\right|^{2}+1\right)\right) /\left(2 h_{1}\right)+B D-C^{2} / 4 \tag{22}
\end{equation*}
$$

$a_{1}=\phi_{1}(0), h_{1}=1-\left|a_{1}\right|^{2}$.
Proof: To obtain (19) we take derivatives on $Y_{n}=\mathcal{A}_{n} Y_{n-1}$ and substitute $Y_{n}^{\prime}=\mathcal{A}_{n}^{\prime} Y_{n-1}+\mathcal{A}_{n} Y_{n-1}^{\prime}$ in (11), $z A Y_{n}^{\prime}=\mathcal{B}_{n} Y_{n}-Y_{n} \mathcal{C}$. Therefore, we get

$$
z A \mathcal{A}_{n}^{\prime} Y_{n-1}+z A \mathcal{A}_{n} Y_{n-1}^{\prime}=\mathcal{B}_{n} Y_{n}-Y_{n} \mathcal{C}
$$

Using (11) with $n-1$ in previous equation we get

$$
z A \mathcal{A}_{n}^{\prime} Y_{n-1}+\mathcal{A}_{n}\left(\mathcal{B}_{n-1} Y_{n-1}-Y_{n-1} \mathcal{C}\right)=\mathcal{B}_{n} Y_{n}-Y_{n} \mathcal{C}
$$

Using the recurrence relation (5) we obtain

$$
z A \mathcal{A}_{n}^{\prime} Y_{n-1}+\mathcal{A}_{n}\left(\mathcal{B}_{n-1} Y_{n-1}-Y_{n-1} \mathcal{C}\right)=\mathcal{B}_{n} \mathcal{A}_{n} Y_{n-1}-\mathcal{A}_{n} Y_{n-1} \mathcal{C}
$$

i.e.,

$$
z A \mathcal{A}_{n}^{\prime} Y_{n-1}=\left(\mathcal{B}_{n} \mathcal{A}_{n}-\mathcal{A}_{n} \mathcal{B}_{n-1}\right) Y_{n-1}
$$

Since Y_{n} is regular, for all $n \in \mathbb{N}$ and $z \neq 0$, we obtain (19).

To deduce (20) we use equations (15) and (16),

$$
\left\{\begin{array}{l}
z A \phi_{n}^{\prime}+C / 2 \phi_{n}-B \Omega_{n}+\Theta_{n, 1} \phi_{n}^{*}=l_{n, 1} \phi_{n} \\
z A \Omega_{n}^{\prime}-C / 2 \Omega_{n}+D \phi_{n}-\Theta_{n, 1} \Omega_{n}^{*}=l_{n, 1} \Omega_{n} \\
z A\left(\Omega_{n}^{*}\right)^{\prime}-C / 2 \Omega_{n}^{*}-D \phi_{n}^{*}-\Theta_{n, 2} \Omega_{n}=l_{n, 2} \Omega_{n}^{*} \\
z A\left(\phi_{n}^{*}\right)^{\prime}+C / 2 \phi_{n}^{*}+B \Omega_{n}^{*}+\Theta_{n, 2} \phi_{n}=l_{n, 2} \phi_{n}^{*}
\end{array}\right.
$$

If we multiply previous equations by $\Omega_{n}^{*}, \phi_{n}^{*}, \phi_{n}$ and Ω_{n}, respectively, we obtain, after summing,

$$
z A\left(\phi_{n}^{\prime} \Omega_{n}^{*}+\phi_{n}\left(\Omega_{n}^{*}\right)^{\prime}+\left(\phi_{n}^{*}\right)^{\prime} \Omega_{n}+\phi_{n}^{*} \Omega_{n}^{\prime}\right)=\left(l_{n, 1}+l_{n, 2}\right)\left(\phi_{n} \Omega_{n}^{*}+\phi_{n}^{*} \Omega_{n}\right)
$$

i.e.,

$$
z A\left(\phi_{n} \Omega_{n}^{*}+\phi_{n}^{*} \Omega_{n}\right)^{\prime}=\left(l_{n, 1}+l_{n, 2}\right)\left(\phi_{n} \Omega_{n}^{*}+\phi_{n}^{*} \Omega_{n}\right) .
$$

Thus,

$$
z A\left(\phi_{n} \Omega_{n}^{*}+\phi_{n}^{*} \Omega_{n}\right)^{\prime}=\operatorname{tr}\left(\mathcal{B}_{n}\right)\left(\phi_{n} \Omega_{n}^{*}+\phi_{n}^{*} \Omega_{n}\right) .
$$

If we use (7) in previous equation then we get (20).
We now establish (21). From (19) we obtain, for $n \geq 2$,

$$
\operatorname{det}\left(\mathcal{B}_{n} \mathcal{A}_{n}\right)=\operatorname{det}\left(z A \mathcal{A}_{n}^{\prime}+\mathcal{A}_{n} \mathcal{B}_{n-1}\right) .
$$

Taking into account that \mathcal{B}_{n} is given by (13) and $\mathcal{A}_{n}=\left[\begin{array}{cc}z & a_{n} \\ \bar{a}_{n} z & 1\end{array}\right]$, we obtain

$$
\operatorname{det}\left(\mathcal{B}_{n}\right) \operatorname{det}\left(\mathcal{A}_{n}\right)=z\left(1-\left|a_{n}\right|^{2}\right)\left(\operatorname{det}\left(\mathcal{B}_{n-1}\right)+A l_{n-1,2}\right), \forall n \geq 2
$$

Since $\operatorname{det}\left(\mathcal{A}_{n}\right)=z\left(1-\left|a_{n}\right|^{2}\right)$, then the last equation is equivalent, if $z \neq 0$, to

$$
\operatorname{det}\left(\mathcal{B}_{n}\right)=\operatorname{det}\left(\mathcal{B}_{n-1}\right)+A l_{n-1,2}, \forall n \geq 2
$$

Consequently, we obtain (21). Moreover, if we compute $\operatorname{det}\left(\mathcal{B}_{1}\right)$ by taking $n=1$ in (11), we obtain (22).
Remark . (19) is equivalent to the following equations, for all $n \in \mathbb{N}$,

$$
\left\{\begin{array}{l}
a_{n} l_{n, 1}-\Theta_{n, 1}=-z \Theta_{n-1,1}+a_{n} l_{n-1,2} \tag{23}\\
z l_{n, 1}-\bar{a}_{n} z \Theta_{n, 1}=z l_{n-1,1}-a_{n} \Theta_{n-1,2}+z A \\
-z \Theta_{n, 2}+\bar{a}_{n} z l_{n, 2}=\bar{a}_{n} z l_{n-1,1}-\Theta_{n-1,2}+\bar{a}_{n} z A \\
-a_{n} \Theta_{n, 2}+l_{n, 2}=-\bar{a}_{n} z \Theta_{n-1,1}+l_{n-1,2} .
\end{array}\right.
$$

4. A characterization for semi-classical orthogonal polynomials on the unit circle

The following lemma can be found in [5].
Lemma 2. Let X and M be matrix functions of order two such that $X^{\prime}=$ M X . Then,

$$
\begin{equation*}
(\operatorname{det}(X))^{\prime}=\operatorname{tr}(M) \operatorname{det}(X) \tag{24}
\end{equation*}
$$

Next theorem is a generalization of a result for semi-classical orthogonal polynomials on the real line established in [11], by Magnus. Moreover, it shows that the necessary condition given in [2] for a MOPS on the unit circle to be semi-classical is also sufficient.

Theorem 4. Let $\left\{\phi_{n}\right\}$ be a MOPS on the unit circle with respect to a measure μ whose absolutely continuous part is denoted by $w,\left\{Q_{n}\right\}$ be the sequence of functions of the second kind, and $\tilde{Y}_{n}=\left[\begin{array}{cc}\phi_{n} & Q_{n} / w \\ \phi_{n}^{*} & -Q_{n}^{*} / w\end{array}\right], \forall n \geq 1$. Then, μ is semi-classical and w satisfies

$$
\begin{equation*}
w(z)=K e^{\int_{z_{1}}^{z} \frac{C(t)}{t A(t)} d t}, K \in \mathbb{C}, \tag{25}
\end{equation*}
$$

if, and only if, \tilde{Y}_{n} satisfy

$$
\begin{equation*}
z A \tilde{Y}_{n}^{\prime}=\left(\mathcal{B}_{n}-C / 2 I\right) \tilde{Y}_{n}, \forall n \in \mathbb{N} \tag{26}
\end{equation*}
$$

where \mathcal{B}_{n} is the matrix associated with the equation

$$
\begin{equation*}
z A F^{\prime}=C F+D \tag{27}
\end{equation*}
$$

satisfied by the corresponding Carathéodory function.
Proof: If w satisfies $w^{\prime} / w=C /(z A)$, then the corresponding F satisfies (27) (see $[2,4]$).

From Theorem 3 the following two equations hold,

$$
\begin{align*}
& z A\left[\begin{array}{c}
Q_{n}^{\prime} / w \\
-\left(Q_{n}^{*}\right)^{\prime} / w
\end{array}\right]=\left(\mathcal{B}_{n}+C / 2 I\right)\left[\begin{array}{c}
Q_{n} / w \\
-Q_{n}^{*} / w
\end{array}\right] \tag{28}\\
& z A\left[\begin{array}{c}
\phi_{n} \\
\phi_{n}^{*}
\end{array}\right]^{\prime}=\left(\mathcal{B}_{n}-C / 2 I\right)\left[\begin{array}{c}
\phi_{n} \\
\phi_{n}^{*}
\end{array}\right] . \tag{29}
\end{align*}
$$

Moreover, as

$$
w^{\prime} / w=C /(z A)
$$

we obtain

$$
z A\left[\begin{array}{c}
Q_{n} / w \tag{30}\\
-Q_{n}^{*} / w
\end{array}\right]^{\prime}=z A\left[\begin{array}{c}
Q_{n}^{\prime} / w \\
-\left(Q_{n}^{*}\right)^{\prime} / w
\end{array}\right]-C I\left[\begin{array}{c}
Q_{n} / w \\
-Q_{n}^{*} / w
\end{array}\right] .
$$

If we substitute (28) in (30) we get

$$
z A\left[\begin{array}{c}
Q_{n} / w \tag{31}\\
-Q_{n}^{*} / w
\end{array}\right]^{\prime}=\left(\mathcal{B}_{n}-C / 2 I\right)\left[\begin{array}{c}
Q_{n} / w \\
-Q_{n}^{*} / w
\end{array}\right] .
$$

Finally, from (29) and (31), the differential system (26) follows.
We now prove the converse.

$$
\begin{aligned}
& \text { If } \tilde{Y}_{n}=\left[\begin{array}{cc}
\phi_{n} & Q_{n} / w \\
\phi_{n}^{*} & -Q_{n}^{*} / w
\end{array}\right] \text { satisfies (26) then, from Lemma 2, we obtain } \\
& \qquad\left(\operatorname{det}\left(\tilde{Y}_{n}\right)\right)^{\prime}=\frac{\operatorname{tr}\left(\mathcal{B}_{n}-C / 2 I\right)}{z A} \operatorname{det}\left(\tilde{Y}_{n}\right)
\end{aligned}
$$

From (8) we get $\operatorname{det}\left(\tilde{Y}_{n}\right)=2 h_{n} z^{n} / w$, thus last equation is equivalent to

$$
\frac{w^{\prime}}{w}=\frac{n A-\operatorname{tr}\left(\mathcal{B}_{n}-C / 2 I\right)}{z A} .
$$

Using $\operatorname{tr}\left(\mathcal{B}_{n}\right)=n A($ cf. (20)) in previous equation, it follows that

$$
\frac{w^{\prime}}{w}=\frac{C}{z A},
$$

and we conclude that μ is semi-classical and w is given by (25).

5. Solutions of the Sylvester differential equations

In this section we solve the Sylvester differential equations (11), $z A Y_{n}^{\prime}=$ $\mathcal{B}_{n} Y_{n}-Y_{n} \mathcal{C}, \forall n \in \mathbb{N}$. In what comes next, we use a particular case of a result on matrix Riccati equations, known as Radon's Lemma (see [1]).

Theorem 5. Let F satisfy $z A F^{\prime}=B F^{2}+C F+D$ and $\left\{Y_{n}\right\}$ be the corresponding sequence given in (4). If \mathcal{P}_{n} and \mathcal{L} (\mathcal{L} invertible) satisfy, $\forall n \in \mathbb{N}$,

$$
\left\{\begin{array}{l}
z A(z) \mathcal{L}^{\prime}(z)=\mathcal{C}(z) \mathcal{L}(z) \tag{32}\\
\mathcal{L}\left(z_{0}\right)=I
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
z A(z) \mathcal{P}_{n}^{\prime}(z)=\mathcal{B}_{n}(z) \mathcal{P}_{n}(z) \tag{33}\\
\mathcal{P}_{n}\left(z_{0}\right)=Y_{n}\left(z_{0}\right)
\end{array}\right.
$$

where \mathcal{B}_{n} and \mathcal{C} are given by (13) and (14), respectively, then, $\forall n \in \mathbb{N}$,

$$
\begin{equation*}
Y_{n}=\mathcal{P}_{n} \mathcal{L}^{-1} \tag{34}
\end{equation*}
$$

Proof: To $z A F^{\prime}=B F^{2}+C F+D$ we associate (11), $z A Y_{n}^{\prime}=\mathcal{B}_{n} Y_{n}-Y_{n} \mathcal{C}$, with \mathcal{B}_{n} and \mathcal{C} given by (13) and (14), respectively (see Theorem 3).

Let \mathcal{L} and \mathcal{P}_{n} satisfy (32) and (33). Then, since

$$
z A\left(\mathcal{P}_{n} \mathcal{L}^{-1}\right)^{\prime}=z A \mathcal{P}_{n}^{\prime} \mathcal{L}^{-1}+z A \mathcal{P}_{n}\left(\mathcal{L}^{-1}\right)^{\prime}
$$

and $\left(\mathcal{L}^{-1}\right)^{\prime}=-\mathcal{L}^{-1} \mathcal{L}^{\prime} \mathcal{L}^{-1}$, using (33) we get

$$
z A\left(\mathcal{P}_{n} \mathcal{L}^{-1}\right)^{\prime}=\mathcal{B}_{n} \mathcal{P}_{n} \mathcal{L}^{-1}-z A \mathcal{P}_{n} \mathcal{L}^{-1} \mathcal{L}^{\prime} \mathcal{L}^{-1}
$$

Using (32) it follows that

$$
z A\left(\mathcal{P}_{n} \mathcal{L}^{-1}\right)^{\prime}=\mathcal{B}_{n} \mathcal{P}_{n} \mathcal{L}^{-1}-\mathcal{P}_{n} \mathcal{L}^{-1} \mathcal{C} \mathcal{L} \mathcal{L}^{-1}
$$

i.e., $Y_{n}=\mathcal{P}_{n} \mathcal{L}^{-1}$ satisfies

$$
z A Y_{n}^{\prime}=\mathcal{B}_{n} Y_{n}-Y_{n} \mathcal{C}
$$

Thus, the assertion follows.
Remark. The solution of (32) is given by $\mathcal{L}(z)=L(z) L^{0}$, with L a fundamental matrix of the differential system (32) satisfying $z A L^{\prime}=\mathcal{C} L$, and $L^{0}=L\left(z_{0}\right)^{-1}$. The solution of (33) is given by $\mathcal{P}_{n}(z)=P_{n}(z) P_{n}^{0}$, with P_{n} a fundamental matrix of (33) satisfying $z A P_{n}^{\prime}=\mathcal{B}_{n} P_{n}$, and P_{n}^{0} satisfying $P_{n}\left(z_{0}\right) P_{n}^{0}=Y_{n}\left(z_{0}\right)$, i.e., $P_{n}^{0}=\left(P_{n}\left(z_{0}\right)\right)^{-1} Y_{n}\left(z_{0}\right)$. Then, if we substitute \mathcal{L} and \mathcal{P}_{n}, given as above, in (34), the solution of the Sylvester differential equations (11) becomes

$$
\begin{equation*}
Y_{n}(z)=P_{n}(z) E_{n} L^{-1}(z) \tag{35}
\end{equation*}
$$

with

$$
\begin{equation*}
E_{n}=\left(P_{n}\left(z_{0}\right)\right)^{-1} Y_{n}\left(z_{0}\right) L\left(z_{0}\right) . \tag{36}
\end{equation*}
$$

5.1. Solution of (32). We search for a matrix L of order 2 satisfying $z A(z) L^{\prime}(z)=\mathcal{C}(z) L(z)$, with \mathcal{C} given in (14).

Lemma 3. Let L be a fundamental matrix of solutions of (32). Then, $\operatorname{det}(L(z))=\operatorname{det}\left(L\left(z_{0}\right)\right)$.

Proof: From Lemma 2 (cf. (24)) we have

$$
(\operatorname{det}(L))^{\prime}=\frac{\operatorname{tr}(\mathcal{C})}{z A} \operatorname{det}(L) .
$$

Since $\operatorname{tr}(\mathcal{C})=0$, it follows that $(\operatorname{det}(L))^{\prime}=0$, i.e.,

$$
\operatorname{det}(L)=c, c \in \mathbb{C}
$$

Thus, $\operatorname{det}(L(z))=\operatorname{det}\left(L\left(z_{0}\right)\right)$, for some $z_{0} \in \mathbb{C}$.
Lemma 4. Let \mathcal{C} be the matrix defined by (14). Then,
(a) $\mathcal{C}^{2}=\beta I, \quad \beta=(C / 2)^{2}-B D$;
(b) The eigenvalues of \mathcal{C} are $\pm \sqrt{\beta}$;
(c) The eigenspace corresponding to $\sqrt{\beta}$ is $V_{\sqrt{\beta}}=\operatorname{span}\left\{\left[\begin{array}{c}D \\ C / 2-\sqrt{\beta}\end{array}\right]\right\}$ and the eigenspace corresponding to $-\sqrt{\beta}$ is $V_{-\sqrt{\beta}}=\operatorname{span}\left\{\left[\begin{array}{c}D \\ C / 2+\sqrt{\beta}\end{array}\right]\right\}$.
In what follows, L_{1}, L_{2} are column vectors of size 2 .
Lemma 5. Let $L=\left[L_{1} L_{2}\right]$ be a fundamental matrix of (32). Then,

$$
\begin{align*}
& z A L_{1}^{\prime}=\sqrt{\beta} L_{1}+z A c_{1} V_{-\sqrt{\beta}}, \tag{37}\\
& z A L_{2}^{\prime}=-\sqrt{\beta} L_{2}+z A c_{2} V_{\sqrt{\beta}}, \tag{38}
\end{align*}
$$

with c_{1}, c_{2} functions.
Proof: From (32) it follows that

$$
\begin{align*}
& (\mathcal{C}+\sqrt{\beta} I)\left(L_{1}^{\prime}-\frac{\sqrt{\beta}}{z A} L_{1}\right)=0_{2 \times 1} \tag{39}\\
& (\mathcal{C}-\sqrt{\beta} I)\left(L_{2}^{\prime}+\frac{\sqrt{\beta}}{z A} L_{2}\right)=0_{2 \times 1} \tag{40}
\end{align*}
$$

Since the eigenvalues of \mathcal{C} are $\pm \sqrt{\beta}$, and the corresponding eigenvectors are $V_{\sqrt{\beta}}$ and $V_{\sqrt{-\beta}}$, from (39) and (40) we obtain, respectively,

$$
\begin{aligned}
& L_{1}^{\prime}-\frac{\sqrt{\beta}}{z A} L_{1}=c_{1}(z) V_{-\sqrt{\beta}} \\
& L_{2}^{\prime}+\frac{\sqrt{\beta}}{z A} L_{2}=c_{2}(z) V_{\sqrt{\beta}}
\end{aligned}
$$

where c_{1}, c_{2} are functions. Thus, (37) and (38) follow.
5.2. Solution of (33). We search for matrices P_{n} of order two satisfying, for each $n \in \mathbb{N}$,

$$
\begin{equation*}
z A P_{n}^{\prime}=\mathcal{B}_{n} P_{n} \tag{41}
\end{equation*}
$$

Hereafter we will consider $z_{1} \in \mathbb{C}$ and \tilde{C} be an analytic function such that $\int_{z_{1}}^{z} \frac{\tilde{C} / 2}{t A} d t$ is defined (in suitable domains).

Lemma 6. \tilde{P}_{n} is a solution of

$$
\begin{equation*}
z A \tilde{P}_{n}^{\prime}=\left(\mathcal{B}_{n}-\tilde{C} / 2 I\right) \tilde{P}_{n} \tag{42}
\end{equation*}
$$

if, and only if, $P_{n}=e^{\int_{z_{1}}^{z} \frac{\tilde{c} / 2}{t A} d t} \tilde{P}_{n}$ is a solution of (41).
Proof: Let \tilde{P}_{n} be a solution of (42). We have that

$$
z A\left(e^{\int_{z_{1}}^{z} \frac{\tilde{C} / 2}{t A} d t} \tilde{P}_{n}\right)^{\prime}=\frac{\tilde{C}}{2} e^{\int_{t_{1}}^{z} \frac{\tilde{\sigma} / 2}{t A} d t} \tilde{P}_{n}+z A \tilde{P}_{n}^{\prime} e^{\int_{t_{1}}^{z} \frac{\tilde{d} / 2}{t A} d t}
$$

Since \tilde{P}_{n} satisfies (42), we obtain

$$
z A\left(e^{\int_{t_{1}}^{z} \frac{\tilde{\partial} / 2}{t A} d t} \tilde{P}_{n}\right)^{\prime}=\mathcal{B}_{n} \tilde{P}_{n} e^{\int_{z_{1}}^{z} \frac{\tilde{\partial} / 2}{t A} d t}
$$

thus $P_{n}=\tilde{P}_{n} e^{\int_{t_{1}}^{z} \frac{\tilde{C} / 2}{t A} d t}$ is a solution of (41). Analogously one can see that the converse holds.

Taking into account previous lemma, we will solve (41) searching for a solution $\left\{P_{n}\right\}$ given by $P_{n}=e^{\int_{z_{1}}^{z} \frac{\tilde{\tilde{c}} / 2}{t A} d t} \tilde{P}_{n}, n \in \mathbb{N}$. Furthermore, taking into account Theorem 4, we will consider \tilde{C} as a polynomial and $\tilde{P}_{n}=$ $\left[\begin{array}{cc}\tilde{\phi}_{n} & -\tilde{Q}_{n} / \tilde{w} \\ \left(\tilde{\phi}_{n}\right)^{*} & \tilde{Q}_{n}^{*} / \tilde{w}\end{array}\right], \forall n \in \mathbb{N}$, where $\left\{\tilde{\phi}_{n}\right\}$ is a MOPS on the unit circle, orthogonal with respect to a measure $\tilde{\mu}$ with weight function

$$
\begin{equation*}
\tilde{w}=K e^{\int_{z_{1}}^{z} \frac{\tilde{c}}{t A} d t}, K \in \mathbb{C} \tag{43}
\end{equation*}
$$

and $\left\{\tilde{Q}_{n}\right\}$ is the corresponding sequence of functions of the second kind. Hence,

$$
P_{n}=e^{\int_{z_{1}}^{z} \frac{\tilde{c} / 2}{t A} d t}\left[\begin{array}{cc}
\tilde{\phi}_{n} & -\tilde{Q}_{n} / \tilde{w} \tag{44}\\
\left(\tilde{\phi}_{n}\right)^{*} & \tilde{Q}_{n}^{*} / \tilde{w}
\end{array}\right], n \in \mathbb{N} .
$$

Lemma 7. Let F be a Carathéodory function satisfying $z A F^{\prime}=B F^{2}+C F+$ D and $\left\{\phi_{n}\right\}$ the corresponding $M O P S$. For all $n \in \mathbb{N}$, let P_{n} be a fundamental
matrix of the corresponding differential system (33). If P_{n} is given by (44), then the following equations hold:

$$
\begin{gather*}
P_{n}=\tilde{\mathcal{A}}_{n} P_{n-1}, \quad \tilde{\mathcal{A}}_{n}=\left[\begin{array}{cc}
z & \tilde{a}_{n} \\
\tilde{a}_{n} z & 1
\end{array}\right], n \in \mathbb{N} \tag{45}\\
z A \tilde{\mathcal{A}}_{n}^{\prime}=\mathcal{B}_{n} \tilde{\mathcal{A}}_{n}-\tilde{\mathcal{A}}_{n} \mathcal{B}_{n-1}, n \geq 2 . \tag{46}
\end{gather*}
$$

Proof: To establish (45) we recall that $\left\{\tilde{P}_{n}\right\}$ satisfies the recurrence relations in the matrix form (see Theorem 1)

$$
\tilde{P}_{n}=\tilde{\mathcal{A}}_{n} \tilde{P}_{n-1}, \quad \tilde{\mathcal{A}}_{n}=\left[\begin{array}{cc}
z & \tilde{a}_{n} \\
\bar{a}_{n} z & 1
\end{array}\right], n \in \mathbb{N}
$$

with $\tilde{a}_{n}=\tilde{\phi}_{n}(0)$. Thus P_{n} given by (44) satisfies (45), $\forall n \in \mathbb{N}$.
We now establish (46).
Since P_{n} satisfies $z A P_{n}^{\prime}=\mathcal{B}_{n} P_{n}$, then by substituting $P_{n}=\tilde{\mathcal{A}}_{n} P_{n-1}$ in previous equation, there follows

$$
z A \tilde{\mathcal{A}}_{n}^{\prime} P_{n-1}+\tilde{\mathcal{A}}_{n} z A P_{n-1}^{\prime}=\mathcal{B}_{n} \tilde{\mathcal{A}}_{n} P_{n-1}, n \geq 2 .
$$

Using $z A P_{n-1}^{\prime}=\mathcal{B}_{n-1} P_{n-1}$ in last equation we get

$$
z A \tilde{\mathcal{A}}_{n}^{\prime} P_{n-1}+\tilde{\mathcal{A}}_{n} \mathcal{B}_{n-1} P_{n-1}=\mathcal{B}_{n} \tilde{\mathcal{A}}_{n} P_{n-1} .
$$

Thus,

$$
\left(z A \tilde{\mathcal{A}}_{n}^{\prime}+\tilde{\mathcal{A}}_{n} \mathcal{B}_{n-1}\right) P_{n-1}=\mathcal{B}_{n} \tilde{\mathcal{A}}_{n} P_{n-1} .
$$

Since P_{n} is regular $\left(\operatorname{det}\left(P_{n}\right) \neq 0, \forall n \in \mathbb{N}, \forall z \neq 0\right)$ then

$$
z A \tilde{\mathcal{A}}_{n}^{\prime}+\tilde{\mathcal{A}}_{n} \mathcal{B}_{n-1}=\mathcal{B}_{n} \tilde{\mathcal{A}}_{n}
$$

follows, and we obtain (46).
Remark. From (19) and (46) we get the equations

$$
z A\left(\mathcal{A}_{n}-\tilde{\mathcal{A}}_{n}\right)^{\prime}=\mathcal{B}_{n}\left(\mathcal{A}_{n}-\tilde{\mathcal{A}}_{n}\right)-\left(\mathcal{A}_{n}-\tilde{\mathcal{A}}_{n}\right) \mathcal{B}_{n-1}, n \geq 2
$$

Hence,

$$
\left\{\begin{array}{l}
\bar{\lambda}_{n} \Theta_{n, 1}=\lambda_{n} \Theta_{n-1,2} \tag{47}\\
\lambda_{n} l_{n, 1}=\lambda_{n} l_{n-1,2} \\
\bar{\lambda}_{n} \Theta_{n-1,1}=\lambda_{n} \Theta_{n, 2} \\
\bar{\lambda}_{n} l_{n, 2}-\bar{\lambda}_{n} l_{n-1,1}=\bar{\lambda}_{n} z A
\end{array}\right.
$$

where $\lambda_{n}=a_{n}-\tilde{a}_{n}, a_{n}=\phi_{n}(0), \tilde{a}_{n}=\tilde{\phi}_{n}(0), \forall n \in \mathbb{N}$.

Hereafter we will denote linear fractional transformations $T(F)=\frac{a+b F}{c+d F}$ by $T_{(a, b ; c, d)}(F)$.

Theorem 6. Let F be a Carathéodory function satisfying $z A F^{\prime}=B F^{2}+$ $C F+D,\left\{\phi_{n}\right\}$ the corresponding MOPS, and for all $n \in \mathbb{N}$, let P_{n} be a fundamental matrix of the corresponding differential system (33), given by (44). Let \tilde{F} be the Carathéodory function associated with $\left\{\tilde{\phi}_{n}\right\}$ given in (44). Then, there exists a unique linear fractional transformation, $T_{(a, b ; c, d)}$, with $a, b, c, d \in \mathbb{P}$ and $a d-b c \not \equiv 0$, such that $F=T_{(a, b ;, d)}(\tilde{F})$.
Proof: To prove that F is a linear fractional transformation of \tilde{F}, we begin by establishing that the reflection coefficients of $\left\{\phi_{n}\right\}$ and $\left\{\tilde{\phi}_{n}\right\}$, i.e., $a_{n}=\phi_{n}(0)$ and $\tilde{a}_{n}=\tilde{\phi}_{n}(0)$, differ only in a finite number of indexes.

Let us write $\lambda_{n}=a_{n}-\tilde{a}_{n}, \forall n \in \mathbb{N}$. First we establish that $\mathcal{Z}=\{n \in \mathbb{N}$: $\left.\lambda_{n} \neq 0\right\}$ is a finite set. In fact, if \mathcal{Z} was not finite, for example, $\mathcal{Z} \equiv \mathbb{N}$, then $\lambda_{n} \neq 0, \forall n \in \mathbb{N}$. But from (47) we would obtain

$$
l_{n, 1}=l_{n-1,2}, \forall n \in \mathbb{N}
$$

Substituting in (23), we would obtain

$$
\Theta_{n, 1}=z \Theta_{n-1,1}, \forall n \in \mathbb{N}
$$

hence

$$
\Theta_{n, 1}=z^{n} \Theta_{1,1}, \forall n \in \mathbb{N}
$$

But this is a contradiction with the fact that $\operatorname{deg}\left(\Theta_{n}\right)$ is bounded. Therefore, $\mathcal{Z} \not \equiv \mathbb{N}$. On the other hand, if we consider, without loss of generality, the case

$$
\begin{cases}a_{n}=\tilde{a}_{n}, & n=1,2, \ldots, n_{0} \\ a_{n} \neq \tilde{a}_{n}, & n \geq n_{0}\end{cases}
$$

then we will obtain the same conclusion.
To conclude that F is a rational transformation of \tilde{F} of the referred type, we take into account its representation in continued fraction given in Theorem 2. To establish the uniqueness of $T_{(a, b ; c, d)}$ we remind that the inverse of $T_{(a, b ; c, d)}, \quad a d-b c \neq 0$, is given by $T_{(a,-c ;-b, d)}$. Therefore, if T_{1} and T_{2} are two linear fractional transformations such that $T_{1}(\tilde{F})=T_{2}(\tilde{F})$, then the composition $T_{2}^{-1} \circ T_{1}$ satisfies $\left(T_{2}^{-1} \circ T_{1}\right)(\tilde{F})=\tilde{F}$, and thus we obtain $T_{2}^{-1} \circ T_{1}=$ $i d$, i.e., $T_{1}=T_{2}$. Thus, the uniqueness of T is established.
5.3. Determination of the polynomial \tilde{C}. In what follows we determine the polynomial \tilde{C} which defines $\left\{P_{n}\right\}$ given in (44).

Lemma 8. Under the conditions of previous theorem, let F be a Carathéodory function satisfying $z A F^{\prime}=B F^{2}+C F+D$, let \tilde{C} be a polynomial which defines a weight \tilde{w} given by (43), and \tilde{F} the Carathéodory function associated with \tilde{w}. Let $T_{\left(\alpha_{1},-\beta_{1} ;-\alpha_{2}, \beta_{2}\right)}, \quad \alpha_{i}, \beta_{i} \in \mathbb{P}, i=1,2, \alpha_{1} \beta_{2}-\alpha_{2} \beta_{1} \not \equiv 0$, such that $F=T(\tilde{F})$. Let us consider the first order linear differential equation for \tilde{F},

$$
\begin{equation*}
z A \tilde{F}^{\prime}=\tilde{C} \tilde{F}+\tilde{D}, \tilde{D} \in \mathbb{P} . \tag{48}
\end{equation*}
$$

Then, the following relations hold:

$$
\begin{align*}
& B=\left(\alpha_{2} \beta_{2}^{\prime}-\alpha_{2}^{\prime} \beta_{2}\right) z A+\alpha_{2} \beta_{2} \tilde{C}+\beta_{2}^{2} \tilde{D}, \tag{49}\\
& C=\left(\alpha_{2} \beta_{1}^{\prime}+\alpha_{1} \beta_{2}^{\prime}-\alpha_{2}^{\prime} \beta_{1}-\alpha_{1}^{\prime} \beta_{2}\right) z A+\left(\alpha_{1} \beta_{2}+\alpha_{2} \beta_{1}\right) \tilde{C}+2 \beta_{1} \beta_{2} \tilde{D}, \tag{50}\\
& D=\left(\alpha_{1} \beta_{1}^{\prime}-\alpha_{1}^{\prime} \beta_{1}\right) z A+\alpha_{1} \beta_{1} \tilde{C}+\beta_{1}^{2} \tilde{D}, \tag{51}
\end{align*}
$$

where we have considered, without lost of generality, $\alpha_{2} \beta_{1}-\alpha_{1} \beta_{2}=1$.
Proof: Since $\tilde{w}^{\prime} / \tilde{w}=\tilde{C} /(z A)$ (cf. (43)), then \tilde{w} is semi-classical. Therefore, (48) is a consequence of Lemma 1.
Let us write $F=\frac{\alpha_{1}-\beta_{1} \tilde{F}}{-\alpha_{2}+\beta_{2} \tilde{F}}$, i.e., $\tilde{F}=\frac{\alpha_{1}+\alpha_{2} F}{\beta_{1}+\beta_{2} F}$. Using $\tilde{F}=\frac{\alpha_{1}+\alpha_{2} F}{\beta_{1}+\beta_{2} F}$ in (48), it follows that

$$
\begin{equation*}
z A\left(\alpha_{2} \beta_{1}-\alpha_{1} \beta_{2}\right) F^{\prime}=B_{2} F^{2}+C_{2} F+D_{2}, \tag{52}
\end{equation*}
$$

with

$$
\begin{aligned}
& B_{2}=\left(\alpha_{2} \beta_{2}^{\prime}-\alpha_{2}^{\prime} \beta_{2}\right) z A+\alpha_{2} \beta_{2} \tilde{C}+\beta_{2}^{2} \tilde{D} \\
& C_{2}=\left(\alpha_{2} \beta_{1}^{\prime}+\alpha_{1} \beta_{2}^{\prime}-\alpha_{2}^{\prime} \beta_{1}-\alpha_{1}^{\prime} \beta_{2}\right) z A+\left(\alpha_{1} \beta_{2}+\alpha_{2} \beta_{1}\right) \tilde{C}+2 \beta_{1} \beta_{2} \tilde{D}, \\
& D_{2}=\left(\alpha_{1} \beta_{1}^{\prime}-\alpha_{1}^{\prime} \beta_{1}\right) z A+\alpha_{1} \beta_{1} \tilde{C}+\beta_{1}^{2} \tilde{D} .
\end{aligned}
$$

Hence, F satisfies $z A F^{\prime}=B F^{2}+C F+D$ and (52), thus it follows that

$$
\frac{z A\left(\alpha_{2} \beta_{1}-\alpha_{1} \beta_{2}\right)}{z A}=\frac{B_{2}}{B}=\frac{C_{2}}{C}=\frac{D_{2}}{D} .
$$

Therefore, if $\alpha_{2} \beta_{1}-\alpha_{1} \beta_{2}=1$, then

$$
B=B_{2}, C=C_{2}, D=D_{2}
$$

and (49)-(51) follow.

According with Theorem 6 , for each polynomial \tilde{C} defining a weight \tilde{w} by (43) and $\left\{P_{n}\right\}$ as in (44), there exists a unique linear fractional transformation T such that $F=T(\tilde{F})$, with \tilde{F} the Carathéodory function associated with \tilde{w}. In this issue, we pose the question: being \tilde{C}_{1} and \tilde{C}_{2} polynomials (defining weights of the same type as in (43)) and $\tilde{F}_{1}, \tilde{F}_{2}$ the corresponding Carathéodory functions such that F is a linear fractional transformation of $\tilde{F}_{i}, i=1,2$, to obtain relations between \tilde{C}_{1} e \tilde{C}_{2}. Next lemma gives us an answer.

Lemma 9. Under the same conditions of previous lemma, let F be a Carathéodory function satisfying $z A F^{\prime}=B F^{2}+C F+D$. Let $\tilde{C}_{1}, \tilde{C}_{2}$ be polinomials defining semi-classical weights of the type (43), and let F_{1} and F_{2} be the corresponding Carathéodory functions, non rational, satisfying

$$
\begin{align*}
& z A F_{1}^{\prime}=\tilde{C}_{1} F_{1}+\tilde{D}_{1}, \tag{53}\\
& z A F_{2}^{\prime}=\tilde{C}_{2} F_{2}+\tilde{D}_{2} . \tag{54}
\end{align*}
$$

Let $T_{1}=T_{\left(\alpha_{1},-\beta_{1} ;-\alpha_{2}, \beta_{2}\right)}, \quad T_{2}=T_{\left(\gamma_{1},-\eta_{1} ;-\gamma_{2}, \eta_{2}\right)}$ be the transformations such that $T_{1}\left(F_{1}\right)=F, T_{2}\left(F_{2}\right)=F$. If we assume, without loss of generality, that $\alpha_{2} \beta_{1}-\alpha_{1} \beta_{2}=1, \quad \gamma_{2} \eta_{1}-\gamma_{1} \eta_{2}=1$, then the following relations take place:

$$
\begin{align*}
&\left(\alpha_{2} \beta_{2}^{\prime}-\alpha_{2}^{\prime} \beta_{2}\right) z A+\alpha_{2} \beta_{2} \tilde{C}_{1}+\beta_{2}^{2} \tilde{D}_{1} \\
&=\left(\gamma_{2} \eta_{2}^{\prime}-\gamma_{2}^{\prime} \eta_{2}\right) z A+\gamma_{2} \eta_{2} \tilde{C}_{2}+\eta_{2}^{2} \tilde{D}_{2} \tag{55}\\
&\left(\alpha_{2} \beta_{1}^{\prime}+\alpha_{1} \beta_{2}^{\prime}-\alpha_{2}^{\prime} \beta_{1}-\alpha_{1}^{\prime} \beta_{2}\right) z A+\left(\alpha_{1} \beta_{2}+\alpha_{2} \beta_{1}\right) \tilde{C}_{1}+2 \beta_{1} \beta_{2} \tilde{D}_{1} \\
&=\left(\gamma_{2} \eta_{1}^{\prime}+\gamma_{1} \eta_{2}^{\prime}-\gamma_{2}^{\prime} \eta_{1}-\gamma_{1}^{\prime} \eta_{2}\right) z A+\left(\gamma_{1} \eta_{2}+\gamma_{2} \eta_{1}\right) \tilde{C}_{2}+2 \eta_{1} \eta_{2} \tilde{D}_{2} \tag{56}\\
&\left(\alpha_{1} \beta_{1}^{\prime}-\alpha_{1}^{\prime} \beta_{1}\right) z A+\alpha_{1} \beta_{1} \tilde{C}_{1}+\beta_{1}^{2} \tilde{D}_{1} \\
&=\left(\gamma_{1} \eta_{1}^{\prime}-\gamma_{1}^{\prime} \eta_{1}\right) z A+\gamma_{1} \eta_{1} \tilde{C}_{2}+\eta_{1}^{2} \tilde{D}_{2} \tag{57}
\end{align*}
$$

Proof: Since $F=T_{1}\left(F_{1}\right)$ with F_{1} satisfying (53), from previous lemma we obtain

$$
\begin{aligned}
& B=\left(\alpha_{2} \beta_{2}^{\prime}-\alpha_{2}^{\prime} \beta_{2}\right) z A+\alpha_{2} \beta_{2} \tilde{C}_{1}+\beta_{2}^{2} \tilde{D}_{1} \\
& C=\left(\alpha_{2} \beta_{1}^{\prime}+\alpha_{1} \beta_{2}^{\prime}-\alpha_{2}^{\prime} \beta_{1}-\alpha_{1}^{\prime} \beta_{2}\right) z A+\left(\alpha_{1} \beta_{2}+\alpha_{2} \beta_{1}\right) \tilde{C}_{1}+2 \beta_{1} \beta_{2} \tilde{D}_{1} \\
& D=\left(\alpha_{1} \beta_{1}^{\prime}-\alpha_{1}^{\prime} \beta_{1}\right) z A+\alpha_{1} \beta_{1} \tilde{C}_{1}+\beta_{1}^{2} \tilde{D}_{1}
\end{aligned}
$$

Also, since $F=T_{2}\left(F_{2}\right)$ with F_{2} satisfying (54), from previous lema we obtain

$$
\begin{aligned}
& B=\left(\gamma_{2} \eta_{2}^{\prime}-\gamma_{2}^{\prime} \eta_{2}\right) z A+\gamma_{2} \eta_{2} \tilde{C}_{2}+\eta_{2}^{2} \tilde{D}_{2}, \\
& C=\left(\gamma_{2} \eta_{1}^{\prime}+\gamma_{1} \eta_{2}^{\prime}-\gamma_{2}^{\prime} \eta_{1}-\gamma_{1}^{\prime} \eta_{2}\right) z A+\left(\gamma_{1} \eta_{2}+\gamma_{2} \eta_{1}\right) \tilde{C}_{2}+2 \eta_{1} \eta_{2} \tilde{D}_{2}, \\
& D=\left(\gamma_{1} \eta_{1}^{\prime}-\gamma_{1}^{\prime} \eta_{1}\right) z A+\gamma_{1} \eta_{1} \tilde{C}_{2}+\eta_{1}^{2} \tilde{D}_{2} .
\end{aligned}
$$

Therefore, (55)-(57) follow.
We now state the main result of this section, a representation formulae for $\left\{Y_{n}\right\}$, defined in (4), associated with a Caratéodory function F that satisfies $z A F^{\prime}=B F^{2}+C F+D$.

Theorem 7. Let F be a Carathéodory function satisfying $z A F^{\prime}=B F^{2}+$ $C F+D, A, B, C, D \in \mathbb{P}$, and let $\left\{Y_{n}\right\}$ be the corresponding sequence given by (4). Then, there exists a polynomial \tilde{C} (defined by Lemmas 8 and 9), and a weight $\tilde{w}(z)=K e^{\int_{z_{1}}^{z} \frac{C}{t A} d t}, K \in \mathbb{C}$, such that

$$
Y_{n}=\left[\begin{array}{cc}
\sqrt{\tilde{w}} \tilde{\phi}_{n} & -\tilde{Q}_{n} / \sqrt{\tilde{w}} \\
\sqrt{\tilde{w}} \tilde{\phi}_{n}^{*} & \tilde{Q}_{n}^{*} / \sqrt{\tilde{w}}
\end{array}\right] E_{n} L^{-1}, \quad n \in \mathbb{N},
$$

where $\left\{\tilde{\phi}_{n}\right\}$ is the MOPS with respect to $\tilde{w},\left\{\tilde{Q}_{n}\right\}$ is the sequence of functions of the second kind associated with $\left\{\tilde{\phi}_{n}\right\}, E_{n}$ are the matrices defined in (36), and L is a fundamental matrix of (32).

Proof: These equations are a direct application of Theorem 6, namely formulae (35).

6. Example

Let us consider the sequence of Jacobi orthogonal polynomials on the unit circle, $\left\{\phi_{n}\right\}$, with parameters $\alpha=\beta, \tilde{F}$ the corresponding Carathéodory function. Let $\left\{\Omega_{n}\right\}$ be the sequence of associated polynomials of the second kind and F be the corresponding Carathéodory function. F satisfies (see [3])

$$
z\left(z^{2}-1\right) F^{\prime}(z)=-2 \alpha c_{0}\left(z^{2}-1\right) F^{2}(z)-2 \alpha\left(z^{2}+1\right) F(z)
$$

where c_{0} is the moment of order zero of the Jacobi measure on the unit circle.
Taking into account Theorem 6, firstly we will solve the following differential systems:

$$
\begin{align*}
& z\left(z^{2}-1\right) L^{\prime}(z)=\left[\begin{array}{cc}
-\alpha\left(z^{2}+1\right) & 0 \\
-2 \alpha c_{0}\left(z^{2}-1\right) & \alpha\left(z^{2}+1\right)
\end{array}\right] L(z), \tag{58}\\
& z\left(z^{2}-1\right) P_{n}^{\prime}(z)=\mathcal{B}_{n}(z) P_{n}(z) . \tag{59}
\end{align*}
$$

In what follows we consider a complex domain G such that $\{0,1,-1\} \nsubseteq G$, and a z_{0} in G.

Lemma 10. The fundamental matrix of solutions of (58) is given by

$$
\begin{aligned}
L(z)= & z^{-\alpha}\left(z^{2}-1\right)^{\alpha} \\
& \times\left[\begin{array}{cc}
z^{2 \alpha}\left(z^{2}-1\right)^{-2 \alpha} & z^{2 \alpha}\left(z^{2}-1\right)^{-2 \alpha} \\
1-2 \alpha c_{0} \int_{z_{1}}^{z} t^{2 \alpha-1}\left(t^{2}-1\right)^{-2 \alpha} d t & 1-2 \alpha c_{0} \int_{z_{2}}^{z} t^{2 \alpha-1}\left(t^{2}-1\right)^{-2 \alpha} d t
\end{array}\right]
\end{aligned}
$$

with $z_{1} \neq z_{2}$.
Now we obtain a solution of (59). Takin into account Theorem 4, henceforth we will consider \tilde{C} as polynomial and we will solve (59) searching for a solution \tilde{P}_{n} given by $(44), P_{n}=e^{\int_{z_{1}}^{z} \frac{\tilde{c} / 2}{t A} d t}\left[\begin{array}{cc}\tilde{\phi}_{n} & -\tilde{Q}_{n} / \tilde{w} \\ \tilde{\phi}_{n}^{*} & \tilde{Q}_{n}^{*} / \tilde{w}\end{array}\right], \forall n \in \mathbb{N}$, with $A=z^{2}-1,\left\{\tilde{\phi}_{n}\right\}$ the MOPS with respect to $\tilde{w},\left\{\tilde{Q}_{n}\right\}$ the corresponding sequence of functions of the second kind, and $\tilde{w}=K e^{\int_{z_{1}}^{z} \frac{C}{C A} d t}$.

On the other hand, F is a linear fractional transformation of \tilde{F} given by $F=1 / \tilde{F}$ (see, for example, $[15,16]$), with \tilde{F} satisfying (see [17])

$$
z\left(z^{2}-1\right) \tilde{F}^{\prime}=2 \alpha\left(z^{2}+1\right) \tilde{F}+2 \alpha c_{0}\left(z^{2}-1\right) .
$$

Therefore, by Lemma $8, \tilde{C}=2 \alpha\left(z^{2}+1\right)$ follows, and consequently we obtain $\tilde{w}=\left(\left(z^{2}-1\right) / z\right)^{2 \alpha}$.
From Theorem 8, the following representation for $Y_{n}=\left[\begin{array}{cc}\phi_{n} & -\Omega_{n} \\ \phi_{n}^{*} & \Omega_{n}^{*}\end{array}\right]$ holds, $\forall n \in \mathbb{N}$:

$$
\begin{aligned}
& Y_{n} K=\left[\begin{array}{cl}
\tilde{\phi}_{n} & -\left(\left(z^{2}-1\right) / z\right)^{-2 \alpha} \tilde{Q}_{n} \\
\left(\tilde{\phi}_{n}\right)^{*} & \left(\left(z^{2}-1\right) / z\right)^{-2 \alpha}\left(\tilde{Q}_{n}\right)^{*}
\end{array}\right] E_{n} \\
& \times\left[\begin{array}{cc}
1-2 \alpha c_{0} \int_{z_{2}}^{z} t^{2 \alpha-1}\left(t^{2}-1\right)^{-2 \alpha} d t & -z^{2 \alpha}\left(z^{2}-1\right)^{-2 \alpha} \\
-1+2 \alpha c_{0} \int_{z_{1}}^{z} t^{2 \alpha-1}\left(t^{2}-1\right)^{-2 \alpha} d t & z^{2 \alpha}\left(z^{2}-1\right)^{-2 \alpha}
\end{array}\right],
\end{aligned}
$$

where $K=2 \alpha c_{0} \int_{z_{1}}^{z_{2}} t^{2 \alpha-1}\left(t^{2}-1\right)^{-2 \alpha} d t, \quad E_{n}=\left(P_{n}\left(z_{0}\right)\right)^{-1} Y_{n}\left(z_{0}\right) L\left(z_{0}\right)$.

References

[1] H. Abou-Kandil, G. Freiling, V. Ionescu, and G. Jank, Matrix Riccati Equations in Control and Systems Theory, Birhäuser, 2003.
[2] A. Branquinho and M.N. Rebocho, Characterizations of Laguerre-Hahn affine orthogonal polynomials on the unit circle, J. Comput. Anal. Appl. 10 (2) (2008), 229-242.
[3] A. Branquinho and M.N. Rebocho, Distributional equation for Laguerre-Hahn functionals on the unit circle, to appear on J. Comput. Appl. Math..
[4] A. Cachafeiro and C. Pérez, A study of the Laguerre-Hahn affine functionals on the unit circle, J. Comput. Anal. Appl. 6 (2) (2004), 107-123.
[5] J. Favard, Cours D'Analyse de l'Ecole Polytechnique, Tome II, Théorie des équations, GauthierVillars, Paris, 1962.
[6] J. Geronimus, On the trignometric moment problem, Annals of Mathematics 47 (4) (1946), 742-761.
[7] Ya.L. Geronimus, Polynomials orthogonal on a circle and interval, vol 18, International Series on Applied Mathematics, Consultants Bureau, New York, 1961.
[8] Ya.L. Geronimus, Polynomials orthogonal on a circle and their applications, American Mathematical Society Translations, Series 1, Vol. 3, Providence R. I., 1962.
[9] L. Golinskii and P. Nevai, Szegő difference equations, transfer matrices and orthogonal polynomials on the unit circle, Commun. Math. Phys. 223 (2001), 223-259.
[10] A.P. Magnus, Riccati acceleration of the Jacobi continued fractions and Laguerre-Hahn orthogonal polynomials, 213-230, in "Padé Approximation and its Applications, Proc., Bad Honnef 1983", Lect. Notes in Math. 1071 (H. Werner e H.T. Bunger, eds.), Springer Verlag, Berlin, 1984.
[11] A.P. Magnus, Painlevé-type differential equations for the recurrence coefficients of semiclassical orthogonal polynomials, J. Comput. Appl. Math. 57 (1995), 215-237.
[12] A.P. Magnus, Freud equatins for Legendre polynomials on a circular arc and solution of the Grünbaum-Delsarte-Janssen-Vries problem, J. Approx. Theory 139 (1-2) (2006), 75-90.
[13] P. Maroni, Le calcul des formes linéaires et les polynômes orthogonaux semi-classiques, Lect. Notes in Math. 1329, Springer Verlag, Berlin, Heidelberg, New York, 1988, 279-290.
[14] P. Maroni, Une théorie algébrique des polynômes orthogonaux. Application aux polynômes orthogonaux semi-classiques, em "Orthogonal Polynomials and their applications", (C. Brezinski, L. Gori e A. Ronveaux Eds.) J.C. Baltzer A.G. Basel IMACS Annals on Computing and Applied Mathematics, 9 (1-4) (1991), 95-130.
[15] F. Peherstorfer and R. Steinbauer, Characterization of orthogonal polynomials with respect to a functional, J. Comput. Appl. Math. 65 (1995), 339-355.
[16] B. Simon, Orthogonal Polynomials on the Unit Circle. Part 1: Classical Theory, Amer. Math. Soc. Colloq. Publ. Volume 54, Part 1. Amer. Math. Soc. Providence, Rhode Island, 2005.
[17] C. Tasis, Propriedades diferenciales de los polinomios ortogonales relativos a la circunferencia unidad, PhD Thesis, Universidad de Cantabria, 1989 (in spanish).
A. Branquinho

CMUC and Department of Mathematics, University of Coimbra, Largo D. Dinis, 3001-454 Coimbra, Portugal.
E-mail address: ajplb@mat.uc.pt
URL: http://www.mat.uc.pt/~ajplb
M.N. Rebocho

CMUC and Department of Mathematics, University of Beira Interior, 6201-001 Covilhã, Portugal.
E-mail address: mneves@mat.ubi.pt

[^0]: Received March 24, 2008.
 This work was supported by CMUC, Department of Mathematics, University of Coimbra. The second author was supported by FCT, Fundação para a Ciência e Tecnologia, with grant ref. SFRH/BD/25426/2005. The authors would like to thank Professor Jank, by the insight into the theory of matrix Riccati equations.

