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Abstract: Antimicrobial resistance continues to increase globally and treatment of difficult-to-treat
(DTT) infections, mostly associated with carbapenem-resistant (CR) Pseudomonas aeruginosa, CR
Acinetobacter baumannii, and CR- and third-generation-cephalosporins-resistant Enterobacterales re-
mains a challenge for the clinician. The recent approval of cefiderocol has broaden the armamentarium
for the treatment of patients with DTT infections. Cefiderocol is a siderophore cephalosporin that
has shown excellent antibacterial activity, in part due to its innovative way of cell permeation. It is
relatively stable compared to most commonly found carbapenamases. However, some resistant mech-
anisms to cefiderocol have already been identified and reduced susceptibility has developed during
patient treatment, highlighting that the clinical use of cefiderocol must be rational. In this review, we
summarize the current available treatments against the former resistant bacteria, and we revise and
discuss the mechanism of action of cefiderocol, underlying the biological function of siderophores,
the therapeutic potential of cefiderocol, and the mechanisms of resistance reported so far.

Keywords: cephalosporin; carbapenem-resistant; cefiderocol antibacterial activity; cefiderocol resistance;
antimicrobial resistance; healthcare infections; siderophore; iron transporter; ESKAPE

1. Introduction

The discovery of antibiotics in the 20th century was a milestone in the history of
medicine and healthcare. However, bacteria are constantly evolving, and have been
developing resistance mechanisms against virtually all available antibiotics [1]. In order
to uniformize the definitions associated with multi-resistance, a joint initiative from the
European Centre for Disease Prevention and Control and the Centers for Disease Control
and Prevention defined the resistance profile of bacteria classified as multidrug-resistant
(MDR), extensively drug-resistant (XDR), and pandrug-resistant (PDR); the standardized
definitions and associated resistance profiles were elaborated for bacteria highly prone to
develop resistance and frequently responsible for infections in the healthcare system [2].

After the golden age, the rhythm of antibiotic discovery has decreased, with fewer new
antibiotics being introduced into the clinical practice over the last few decades, resulting
in the current antibiotic crisis, where there are very scarce options to treat multidrug-
resistant bacterial infections, especially the ones related to Gram-negative bacteria [3].
MDR is associated with an increased risk of mortality [4] and it is predictable that the
lack of therapeutic options will lead to 10 million deaths in 2050 if new antibiotics are not
developed [5].

The World Health Organization (WHO) has listed the pathogens that urgently need
new antibiotics, with MDR Gram-negative bacteria included in the critical priority level
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of the list [6,7]. In the last five years, five antibiotics active against MDR Gram-negative
bacteria were approved; however, they are all modified agents of already known classes [8],
which increases the possibility for antibiotic resistance emergence.

This review will focus on the latest available therapy for pathogens classified at the
critical priority level of the WHO list, the carbapenem-resistant Acinetobacter baumannii and
Pseudomonas aeruginosa, and carbapenem- and third-generation-cephalosporins-resistant
Enterobacterales, and on the novel cephalosporin cefiderocol, which offers a novel approach
to cell permeation and shows promise as a treatment option for these challenging infections.
The mechanism of action and therapeutic guidelines of cefiderocol will be analyzed, along
with a discussion on the potential emergence of resistance based on recent in vitro and
in vivo studies.

2. Top-Priority Pathogens and Current Last-Line Therapeutic Options
2.1. Carbapenem-Resistant Acinetobacter baumannii

The microorganism that is at the top of the priority list is carbapenem-resistant
A. baumannii (CRAB); resistance to carbapenems is usually associated with resistance to
several other antibiotics theoretically active against A. baumannii [9]. This Gram-negative
coccobacillus, which was not particularly known to be a highly pathogenic bacterium, has
emerged in recent years as the cause of several nosocomial infections worldwide, including
ventilator-associated pneumonia and bloodstream and wound infections (WHO 2017),
especially due to its ability to develop antibiotic resistance [10] and resist desiccation [11],
persisting in the hospital environment for long periods of time. Besides the intrinsic re-
sistance to several classes of antibiotics, A. baumannii can easily acquire resistance via
horizontal gene transfer events [12,13].

Different resistance mechanisms preclude the general use of β-lactams, sulbactam, amino-
glycosides, and fluoroquinolones usually active against susceptible strains of A. baumannii [9].
According to European and American guidelines, the agent of choice for treatment of CRAB
infections is ampicillin-sulbactam; alternatives include minocycline, tigecycline, polymyx-
ins, or cefiderocol [4,9]. Combination therapy is recommended for moderate to severe
infections, including high-dose ampicillin-sulbactam plus at least one agent with in vitro
activity among minocycline, tigecycline, polymyxin B, extended-infusion meropenem, or
cefiderocol [9].

2.2. Carbapenem-Resistant Pseudomonas aeruginosa

P. aeruginosa is an opportunistic nosocomial pathogen mainly responsible for infec-
tions in patients with a compromised immune system, especially pneumonia and other
respiratory infections, as well as bloodstream and wound infections [6,14]. Carbapenem
resistance is linked with increased mortality in bloodstream infections [6]. P. aeruginosa
is commonly found in the hospital environment due to its presence in water sources and
medical devices [14].

MDR P. aeruginosa has a multiplicity of resistance mechanisms that prevent the use of
antibiotics that should be active against this species, namely penicillins, cephalosporins,
fluoroquinolones, aminoglycosides, and carbapenems; the term difficult-to-treat resistance
(DTR) has been proposed for strains with non-susceptibility to piperacillin-tazobactam,
ceftazidime, cefepime, aztreonam, meropenem, imipenem-cilastatin, ciprofloxacin, and
levofloxacin [9].

Overall, high-certainty evidence to advise on the adequate therapy for carbapenem-
resistant P. aeruginosa (CRPA) is lacking. For non-severe or low-risk CRPA, monotherapy
with old antibiotics, such as polymyxins and aminoglycosides, are recommended. The
recommendation for DTR-CRPA severe infections is the use of ceftolozane-tazobactam; two
drugs should be combined if using polymixins, aminoglycosides, or fosfomycin [4]. Due to
the lack of evidence, the use of new β-lactam agents, including ceftazidime-avibactam or
cefiderocol, are not recommended by European guidelines [4], but are advised by American
recommendations [15].
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2.3. Carbapenem- and Third-Generation-Cephalosporins-Resistant Enterobacterales

Enterobacterales include Gram-negative rod bacteria that inhabit in a variety of environ-
ments; numerous species are part of the human and animal microbiota, being widely release
to the environment. As opportunistic pathogens, they are also implicated in several bacte-
rial infections, including urinary tract infections and bloodstream and ventilator-associated
pneumonia [6,16,17]. Extended-spectrum β-lactamase (ESBL) or AmpC β-lactamase pro-
duction is associated with strains resistant to third generation cephalosporins; the rise of
this type of resistance led to the increased use of carbapenems in empirical treatments, with
a consequent emergence of carbapenem-resistant Enterobacterales (CRE), mainly associated
with carbapenemases production [6,18].

The treatment recommendations for infections due to third-generation-cephalosporin-
resistant Enterobacterales include carbapenems for bloodstream and severe infections,
piperacillin-tazobactam, amoxicillin/clavulanic acid or quinolones for low-risk and non-severe
infections, cotrimoxazole for non-severe complicated urinary tract infections (cUTI), and in-
travenous fosfomycin for cUTI. After the stabilization of patients, the carbapenem should
be replaced by classical β-lactam/β-lactamase inhibitors, quinolones, or cotrimoxazole [4].
The American guidelines recommend different antibiotics based on the genotypic mech-
anism of resistance. Infections due to Enterobacterales that produce ESBL can be treated
with nitrofurantoin or cotrimoxazole (uncomplicated cystitis); ertapenem, meropenem,
imipenem-cilastatin, ciprofloxacin, levofloxacin, or cotrimoxazole (pyelonephritis or cUTI);
and carbapenem followed by oral fluoroquinolone or cotrimoxazole after initial clinical
response (infections outside the urinary tract) [15]. When resistance to third-generation
cephalosporins is present in strains with a moderate to high risk of AmpC expression due
to an inducible ampC, cefepime is recommended if the minimum inhibitory concentration
(MIC) is ≤2 µg/mL or a carbapenem when the cefepime MIC ≥ 4 µg/mL; ceftriaxone,
nitrofurantoin, cotrimoxazole, or single-dose aminoglycoside for uncomplicated cystitis;
and cotrimoxazole or fluoroquinolones for invasive infections [9].

CRE severe infections, outside the urinary tract, should be treated with meropenem-
vaborbactam, ceftazidime-avibactam, or imipenem-cilastatin-relebactam [4,15]; if suscep-
tibility to meropenem is present, extended infusion is recommended [15]. If a metallo-
β-lactamase is present or the strains are resistant to all other antibiotics, cefiderocol or
ceftazidime-avibactam in combination with aztreonam may be used. Non-severe infec-
tions can be treated with old antibiotics, such as polymyxins or tigecycline as alternatives
to β-lactams. cUTI can be treated with aminoglycosides, ciprofloxacin, levofloxacin, or
cotrimoxazole and pneumonia with tigecycline [4,15]. Ciprofloxacin, levofloxacin, cotri-
moxazole, nitrofurantoin, or single-dose aminoglycoside can be employed in the treatment
of uncomplicated cystitis [15].

3. Cephalosporins

The β-lactam antibiotics are one of the most commonly prescribed antibiotics in many
countries. Among these, cephalosporins are used to treat infections such as pneumonia,
urinary tract infections, and skin and soft tissue infections. Cephalosporins are classified as
β-lactam antibiotics, originally derived from the fungus Cephalosporium sp., known today
as Acremonium sp. [19].

They act in bacteria by binding to the penicillin binding proteins (PBPs), enzymes
located in the cytoplasmatic membrane that cross-link the peptidoglycan units, inhibiting
the building of the cell wall and leading to cell death. Cephalosporins are used for the
treatment of various infections caused by both Gram-positive and Gram-negative bacteria.
They can be administered orally or parenterally, and are used in skin infections, pneumonia,
meningitis, and infections caused by bacteria resistant to others antibiotics. So far, they are
classified into five generations, according to their antibacterial spectrum of action and their
temporal release.

The first cephalosporins launched, the so-called first-generation cephalosporins, act
mainly on Gram-positive bacteria, while the following generations progressively increased
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their effectiveness against Gram-negative bacteria; the third and fourth generations were
more powerful against resistant Gram-negative bacteria and lost some effectiveness against
Gram-positive bacteria. Fifth-generation cephalosporins have a broad bacterial spectrum
and act on Gram-positive and Gram-negative bacteria. Some fifth-generation cephalosporins
stand out for their activity against Gram-positive bacteria, in particular methicillin-resistant
Staphylococcus aureus (MRSA), such as ceftaroline. Others, like the combinations of cef-
tazidime/avibactam and ceftolozane/tazobactam, have been developed to address most
difficult-to-treat Gram-negative infections [20].

The emergence and dissemination of ESBL producers, mostly among Enterobacterales,
led to the use of last-resort antibiotics, such as carbapenems. In the last few years, a blast of
infections caused by carbapenem-resistant Gram-negative bacteria has been observed, in
part due to the production of carbapenemases, like NDM type, OXA-48-like, and KPC type,
by clinical strains. Colistin has been re-introduced into the clinical practice to fight these
MDR infections, but its toxicity and the emergence of colistin-resistant strains are factors to
consider in its therapeutic use [6,21–25].

The outer membrane (OM) functions as a permeability barrier in Gram-negative
bacteria, slowing down the passive diffusion of hydrophobic compounds of high molecular
weight into the cell, which are active in Gram-positive bacteria, and letting only small
hydrophilic molecules penetrate through the porin channels. In addition, bacteria can
have active transporters that efflux the antibiotics from the periplasmic space, preventing
the β-lactam antibiotics from reaching the target, the PBPs, located in the cytoplasmic
membrane [26].

Different strategies have been explored to increase the antibiotic concentration in the
periplasmic space, namely inhibition of efflux pumps, use of OM disrupters to increase
permeability, modifications of the antibiotic structure or electrical charge, and developing
antibiotics that cross the OM using iron transporters—the siderophores [27–31].

4. Siderophores: Biological Function

Virulence factors are cellular structures, molecules, and regulatory systems that enable
bacteria to colonize the host at the cellular level and promote the development of disease.
These factors can be secretory, membrane/cell-wall-associated, and cytosolic in nature, and
they include adherence and invasive factors, exotoxins, endotoxin in the case of Gram-
negative bacteria, capsules, and other surface components. There is a lot of interest in these
traits that can be disrupted and used for therapeutic purposes.

Iron is an essential nutrient for both host and microbial cells. Free iron levels are
extremely low in the host since this metal is largely bound to proteins, and much more
limited during the process of infection, a process known as nutritional immunity [32].

In general, animals have developed ways of retaining iron from body fluids, with the
main objectives of preventing bacterial development and maintaining iron homeostasis.
The blood therefore transports most of the iron in the form of molecular complexes, not be-
ing freely accessible to bacteria, but rather, and mainly, bound to intracellular haemoglobin
or extracellular proteins such as transferrin, which has a high affinity to iron under physio-
logical conditions. During infection, organic acids are produced, which reduce the pH, and
Fe3+ is released into the medium. To prevent the obtention of iron by bacteria, neutrophils
synthesize lactoferrin that shows a much higher affinity for ferric ions in acidic environment
than transferrin [33].

Bacteria require intracellular iron for their metabolism, which they achieve by produc-
ing siderophores, molecules with a high affinity for binding iron. Siderophores are usually
small organic molecules that are secreted into the environment and effectively compete
with host proteins to bind scarce free iron (Fe3+). Bacteria produce different siderophores,
depending on the species, such as enterobactin, pioverdin, and salmochelin. Due to the
presence of functional groups, these molecules form strong complexes with iron ions. OM
receptors recognize these siderophore–iron complexes and transport them to the periplas-
mic space with the assistance of protein complexes in the cytoplasmic membrane (TonB and
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ExbB/ExbD family) that generate the necessary energy for active transportation. The iron
is then incorporated into the respiratory chain once it is inside the bacteria cytoplasm [34].

5. Cefiderocol
5.1. Mechanism of Action

The chemical structure of cefiderocol and unique mechanism of entry into the bacterial
cell contribute to its potent antibacterial activity and ability to overcome resistance [35].

The molecular structure of cefiderocol has similarities with both cefepime and cef-
tazidime (Figure 1), sharing with the former a pyrrolidin group in the C3 side chain, which
promotes the stability of the molecule against the action of β-lactamases, improving the
antibacterial activity, while with the second, it shares a carboxy-propanoxymino group in
the side chain at C7, which improves transport through the bacterial outer membrane [36].
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Unlike cefepime and ceftazidime, cefiderocol has a chlorocathecol residue at the end
of the C3 chain, which makes it a siderophore. Natural siderophores, such as enterobactin
from Escherichia coli and pyoverdin from P. aeruginosa, also show a cathecol group as an
iron chelator. This cathecol group is recognized by the iron active transporters located in
the bacterial OM, allowing the antibiotic to pass through the membrane and to reach the
periplasmic space where cefiderocol bind to the PBPs, primarily PBP-3. This promotes a
faster and higher concentration of the antibiotic in the periplasm, in addition to the passive
diffusion through porins, the traditional passage used by β-lactams (Figure 2).

This innovative strategy has been called “Trojan horse”, which gave this siderophore–
cephalosporin the commercial name of “Fetroja”, discovered and developed by Shionogi
& Co., Ltd., Osaka, Japan. This strategy overcomes the resistance mechanism of loss of
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porins. Moreover, the chemical structure of cefiderocol renders this antibiotic more stable
against a variety of Ambler A, B, C, and D beta-lactamases, namely KPC and ESBLs from
class A, AmpC, the carbapenemase OXA-48 from class D serine β-lactamases, and the
metallo-β-lactamases NDM, VIM, and IMP [37].
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Recently, it was also demonstrated that cefiderocol remained completely active against
minor carbepenemases (SME, NmcA, FRI, and IMI types) produced by Enterobacterales [38].

5.2. Therapeutic Indications

Cefiderocol was recently released in the market of the United States of America (USA)
and Europe and approved by the Food and Drug Administration (FDA) in 2019 [39] and
European Medicines Agency (EMA) in 2020 [40], respectively.

Due to its innovative cell entry mechanism and ability to overcome some forms of
bacterial resistance, cefiderocol is a novel cephalosporin focused on the treatment of various
infections caused by MDR Gram-negative bacteria [35].

Its chemical structure, especially the cathecol residue on the side chain at position 3,
provides its superior activity (Figure 1). Cefiderocol has demonstrated activity against
members of the Enterobacteriaceae family, such as E. coli and Klebsiella pneumoniae, and
non-fermenter bacilli P. aeruginosa and A. baumannii. However, it is not effective against
Gram-positive bacteria like S. aureus or Streptococcus pneumoniae [41,42].

In addition to being highly stable against a broad range of β-lactamases, includ-
ing ESBLs, AmpC, and carbapenemases, cefiderocol has demonstrated identical or su-
perior activity against aerobic Gram-negative bacilli compared to ceftazidime-avibactam
and meropenem, including MDR A. baumannii and K. penumoniae carbapenemase (KPC)-
producing Enterobacterales. Furthermore, it showed higher potency than ceftazidime-
avibactam against resistant phenotypes of P. aeruginosa and Stenotrophomonas maltophilia [43].

In Europe, it is recommended to treat infections in adults caused by Gram-negative
aerobic organisms with limited therapeutic alternatives, always considering the general
rules for the rational use of antibacterial agents [40]. In the case of the USA, the therapeutic
indications established for cefiderocol by the respective regulatory agency, the FDA, are
also only applicable to infections in adults who have reduced or no alternative therapeutic.
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The FDA has approved cefiderocol for the treatment of cUTI, including pyelonephritis and
hospital-acquired bacterial pneumonia (HABP), including ventilator-associated pneumonia
caused by susceptible Gram-negative bacteria in patients 18 years of age or older, always
bearing in mind the rational use of antimicrobial drugs [39].

However, in view of the ongoing scientific knowledge, it is expected that this drug will
be used for other infections by resistant strains in an “off-label” way, especially due to its
effectiveness combined with a good safety profile and current low resistance potential. The
performance of the APEKS-cUTI, APEKS-NP, and CREDIBLE-CR clinical trials contributed
to this optimism around cefiderocol. The APEKS-NP study [44] was a Phase 3 multicenter
study that evaluated the efficacy and safety of cefiderocol compared to the best available
therapy (BAT), meropenem, in the treatment of HABP. The results showed that cefiderocol
was not inferior to BAT, achieving the primary endpoint of clinical cure at day 14, also
demonstrating a favorable safety profile compared to BAT. Similar results were obtained
with the APEKS-cUTI [45] when comparing cefiderocol with the combination imipenem–
cilastatin in the treatment of cUTI. CREDIBLE-CR [46] was a trial that involved cefiderocol
and the BAT for the treatment of serious infections caused by carbapenem-resistant Gram-
negative bacteria (CRGNB). Cefiderocol exhibited activity against CRE and CRPA. The
Infectious Diseases Society of America has published guidelines, focused especially on
Enterobacterales ESBL producers, in CRE and CR-PA, recommending that in pyelonephritis
and cUTI caused by CRE or CRPA, cefiderocol could be used as the preferential treatment
along with some new combinations of β- lactams and β-lactamase inhibitors. However, in
CRE or CRPA infections outside the urinary tract, it is recommended to save cefiderocol for
situations of resistance to other therapeutic options.

Nonetheless, very recent reports of cefiderocol-based regimens suggest that the guide-
lines and evidence in the treatment of CRAB infections are conflicting. The outcome
and safety profile did not differ significantly from the colistin regimen given to the
patients [47,48].

5.3. Mechanisms of Resistance

The emergence of carbapenem-resistant infections has been increasing in the last years,
and novel antibiotics are sorely needed. Cefiderocol appears as a promising new antibac-
terial with an innovative way of entering the cell periplasmic space. Despite its similar
structure with ceftazidime and cefepime (third- and fourth-generation cephalosporins,
respectively), cefiderocol shows an increased stability to various β-lactamases (Figure 1),
including AmpC and ESBL [43].

Taking into consideration its excellent in vitro activity and the results of Phase 3 clinical
trials, it would be expected to have remarkable in vivo activity. Indeed, in recent years, and
with the clinical approval of cefiderocol in diverse countries, it has been shown that this
siderophore–cephalosporin has been effective in MDR infections, with a higher activity
than ceftazidime–avibactam and meropenem [43]. Nonetheless, others reports point to
a similar activity and safety profile to colistin in the treatment of CRAB infections [47].
More real-world studies are needed to settle accurate guidelines in the clinical picture. In
the meantime, in vitro resistance of some species to cefiderocol has been reported, even in
clinical isolates collected in countries like China, where cefiderocol is not yet approved for
clinical use [49,50]. Table 1 shows examples of studies that demonstrate the clinical efficacy
of cefiderocol and resistance already identified in diverse bacterial species. As EUCAST
and CLSI have different MIC breakpoints for cefiderocol, >2 mg/L [51] and 8 mg/L [52],
respectively, resistance was considered based on the European breakpoints.
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Table 1. Antibacterial activity of cefiderocol against diverse Gram-negative bacteria and resistance or
reduced susceptibility identified in these studies.

Bacteria Susceptibility Resistance

Achromobacter spp.

Cefiderocol appeared as a promising
therapeutic alternative for managing
Achromobacter infections in patients

with cystic fibrosis.

[53–57]
Overexpression of AxyABM efflux pump in A.

xylosoxidans was associated with a threefold
higher cefiderocol MIC.

[58]

Acinetobacter
baumannii Complex

SIDERO-WT study 2014 reports
100% of susceptibility of 158 A.

baumannii complex isolates.
SIDERO-WT studies from 2015 to

2019 report percentages of
susceptibility to cefiderocol ranging

97.6% to 99.1%.

[59,60]

Twenty-one cefiderocol-non-susceptible
carbapenem-resistant A. baumannii isolates were

characterized, highlighting the contribution
β-lactamases, including the presence of an ESBL
(PER-1), and deficiency of the iron siderophore

transporter PiuA in several isolates.
In the second study, by investigating a series of

A. baumannii clinical isolates with elevated MICs
of cefiderocol, the authors showed that PER-like
β-lactamases and, to a lesser extent, NDM-like

β-lactamases, significantly contributed to
reduced susceptibility to cefiderocol.

Thirdly, cefiderocol resistance was associated
with reduced expression of the siderophore
receptor gene pirA in A. baumannii isolates.

[61–63]

Burkholderia cepacia
Complex

Cefiderocol was more potent in vitro
than cefepime,

ceftazidime-avibactam,
ceftolozane-tazobactam,

ciprofloxacin, and colistin.

[54,59,64,65]
Only 1 of the 4, 1 of the 12, and 5 of the 89 isolates

tested had a cefiderocol MICs of 16, 8, and
≥8 µg/mL, respectively.

[59,64,65]

Citrobacter freundii
Complex

All the isolates tested in the
SIDERO-WT study 2014 (n = 303)
were susceptible to cefiderocol.

[59,66] Only 1 of the 32 and 1 of the 252 isolates tested
had a cefiderocol MIC of 8 µg/mL. [64,65]

Citrobacter koseri
SIDERO-WT study 2014 involving 73

isolates of C. koseri with MICs
ranging from 0.006 to 4 µg/mL.

[59]
Study involving 73 isolates of C. koseri with MICs

ranging from 0.008 to 4 µg/mL. In the second
study, 1 of 169 isolates had a MIC of 8 µg/mL.

[59,65]

Escherichia coli

SIDERO-WT study 2014 involving
1529 isolates of E. coli with MICs
ranging from ≤0.002 to 4 µg/mL.

The MIC90 value of cefiderocol
against E. coli isolates was 0.5 and
1 µg/mL in the second and third

study, respectively.

[59,65,66]

In total, 10 out of 142 E. coli isolates were resistant
to cefiderocol. In 26 of 1158 E. coli isolates

harboring NDM-5 high levels of cefiderocol
resistance was reported, in the second study. In

the third study, a multidrug-resistant ST167
Escherichia coli clinical isolate recovered from a
patient hospitalized in Switzerland produced

NDM-35 showing ca. 10-fold increased
hydrolytic activity toward cefiderocol compared

to NDM-1.

[49,67,68]

Enterobacter cloacae
Complex

In SIDERO-WT-2014 study and in
another study involving 514 and

103 isolates of E. cloacae, respectively,
the MIC90 value was 1 µg/mL.

[59,66]

In the first study, the authors report
2 cefiderocol-resistant ECC isolates in a

collection of 10 isolates collected from diabetic
patients. In the second study, the potential role of

the VIM-1 carbapenemase in cefiderocol
resistance in the ECC was highlighted. This effect
is probably enhanced due to combination with

additional mechanisms, such as ESBL production
and siderophore inactivation. The presence of the

NDM β-lactamase facilitates the emergence of
resistance via nonsynonymous mutations of the

cirA catecholate siderophore receptor in
the third study.

[67,69,70]

Klebsiella
(Enterobacter)

aerogenes

The MIC90 value of cefiderocol
against E. aerogenes isolates in was

0.5 µg/mL in both studies with
238 and T.

[59,66]
In this study, 1158 cefiderocol resistant isolates

were identified, of which 20 (1.7%) were
K. aerogenes.

[49]
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Table 1. Cont.

Bacteria Susceptibility Resistance

Klebsiella pneumoniae

The MIC90 value of cefiderocol
against 765 and 100 K. pneumoniae

isolates was 0.5 and 0.125 µg/mL, in
the first and in the second study,
respectively. In the second study

MIC values ranged between
≤0.063–2 µg/mL.

[59,66]

In the first study, 7 out of 91 K. pneumoniae were
resistant to cefiderocol. In the second study,

1158 cefiderocol-resistant isolates were identified,
of which 798 (68.9%) were K. pneumoniae. In the

third study, the authors characterized four
cefiderocol-non-susceptible K. pneumoniae strains

(4/86, 4.7%).

[49,50,67]

Klebsiella oxytoca

In the SIDERO-WT-2014
(505 isolates) and 2015 (349 isolates)
the MIC values of cefiderocol ranged
between ≤0.002 and 2 µg/mL and

MIC90 value was 0.25 and
0.5 µg/mL, respectively.

[59,65] In this study, 1158 cefiderocol resistant isolates
were identified, of which 23 (2%) were K. oxytoca. [49]

Morganella morganii

All of 37 and 32 isolates tested were
classified as susceptible to
cefiderocol, respectively, in

two studies.

[71,72] Only 1 out of 1158 isolates of M. morganii was
classified as cefiderocol-resistant in this study. [49]

Proteus spp.
All of 89 isolates tested were

classified as susceptible
to cefiderocol.

[71]

Only 2 out of 52 isolates were resistant to
cefiderocol. In a second study, 1 of 10 isolates

resistant to carbapenems was resistant
to cefiderocol.

[67,72]

Providencia rettgeri

Treatment of complicated urinary
tract infections (cUTI), due to

Gram-negative bacteria in patients
with limited or no alternative

treatment options

[16]
One strain was obtained from the blood of a

patient and it was resistant to all antimicrobials
tested including the cefiderocol

[16,73]

Pseudomonas
aeruginosa

In both studies all the collection of
120 and 33 isolates, respectively,
were susceptible to cefiderocol.

Five consecutive annual
SIDERO-WT Studies reports a 99.9%
of susceptibility to cefiderocol in a

total of 7700 isolates.

[54,60,74]

Whole genome sequencing of P. aeruginosa
non-susceptible to cefiderocol identified

mutations in major iron transport pathways. The
second study reports in vivo development of

cefiderocol resistance among four sequential P.
aeruginosa clinical isolates ST244 recovered from a
single patient, without exposure to cefiderocol.

[75,76]

Serratia
spp./Serratia

marcescens

In SIDERO-WT-2014 study, in
503 isolates of Serratia spp. MIC90

value was 0.25 µg/mL and in
another study involving 103 isolates
of S. marcescens the MIC90 value was

≤0.0063 µg/mL.

[59,66]
In total, 14 out of 1158 isolates of S. marcescens

were classified as cefiderocol-resistant in
this study.

[49]

Stenotrophomonas
maltophilia

Twenty-five meropenem-resistant
S. maltophilia were susceptible to

cefiderocol. In the second study, all
the 7 isolates tested were also

susceptible. SIDERO WT studies of
2014 and 2017 reports 100% of

susceptibility to cefiderocol in 21 and
187 isolates of S. maltophilia,

respectively.

[54,60,74]
S. maltophilia strains evolved cefiderocol

resistance through different genetic pathways,
but often involved iron transport.

[77]

The resistance mechanisms that have been reported so far fall in four categories are the
most frequently reported resistance mechanisms against β-lactams. The expression of the
metallo-β-lactamase NDM and β-lactamases PER and VEB have been associated with a re-
duction in cefiderocol susceptibility [61,62,68,70,78–81]. In A. baumannii, the conjugation of
cefiderocol with avibactam led to a decreased MIC of the former, suggesting that expression
of β-lactamases in this species is linked with resistance [82]. Secondly, structural changes
in the β-lactamases AmpC and KPC confer reduced susceptibility to cefiderocol [83–85].
Thirdly, mutations in the target gene of cefiderocol, the pbp3 gene, might contribute to
resistance [63,86–88]. Lastly, and due to its unique way of cell permeability, it is unsur-
prising that a reduced expression or mutation of genes involving iron transport pathways,
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especially the siderophore receptor genes (e.g., pirA, cirA, ton, piuA), are associated with
cefiderocol resistance in different bacterial species [61,74,77,89–94].

The majority of these studies were conducted in vitro since many are merely intuitive,
like the modification of the target, reduced expression, or mutations in the genes of the iron
transporters. Indeed, some strains, such as those in Klebsiella spp., show these mutations
without ever having been exposed to cefiderocol before. Also, the development of resistance
during treatment with cefiderocol has been reported. Multiple copies of blaNDM genes
have been found and associated with resistance in Enterobacterales through translocation
events [95,96]. Increased MICs to cefiderocol were also observed during treatment in a
patient with a P. aeruginosa infection. The isolates collected during infection time showed
variable and gradually increasing levels of resistance to all β-lactams. Unexpectedly, not
only one mechanism, most likely the production of β-lactamases, but diverse mechanisms
were linked to the resistance to cefiderocol, namely mutations in iron transporter proteins,
overexpression of MexAB-OprM efflux pump, and overproduction of ampC gene [76,95].
Wide substrate efflux pumps have also been implicated in the reduction of cefiderocol
susceptibility. AxyABM overproduction, a resistance nodulation division (RND) efflux
system, was associated with resistance to ciprofloxacin, ceftazidime, and meropenem, and
increased the MIC of cefiderocol in Achromobacter spp. [58].

The introduction of cefiderocol in clinical therapeutics is still recent. While many stud-
ies point to an excellent efficacy to treat carbapenem-resistant and MDR infections, others
highlight the potential for resistance development [97]. Recently, clinical carbapenem-
resistant Enterobacterales isolates showing an increased MIC to cefiderocol (MIC > 4 mg/L)
were never exposed to this cephalosporin, and were compared to wild-type strains and
species-specific reference genomes to understand the putative mechanisms responsible
for the high MICs. The findings suggested that an individual antimicrobial resistance
marker was not consistent to define a resistance base line to cefiderocol that is linked to
the co-expression of different β-lactamases (e.g., carbapenemase and AmpC) along with
permeability defects [98]. Clinical isolates have demonstrated this trend, with multiple
resistance mechanisms identified rather than a single specific mechanism [99].

Heteroresitance can also have a significant impact on the clinical outcome, as it results
from the emergence of resistant subpopulations during treatment, leading to therapeutic
failure and the spread of resistant strains. The prevalence of heteroresistance to cefiderocol
has been suggested as a reason for the suboptimal effectiveness of cefiderocol in fighting
carbapenem-resistant bacteria, especially A. baumannii [100,101].

6. Conclusions

During the last few decades, Gram-negative bacterial resistance to antibiotics has
been increasing at a global level, especially carbapenem-resistant bacteria, constituting a
current and future public health issue that must be addressed. A collaborative approach
involving both researchers and pharmaceutical industries has recently provided novel
promising antimicrobials that have broadened the therapeutic armamentarium. Clinical
trials and some case reports have shown that cefiderocol is an effective treatment for the
majority of MDR Gram-negative infections, including carbapenem-resistant Enterobacterales,
P. aeruginosa, and A. baumannii. Its excellent antibacterial activity mostly lies in its unique
way of penetrating the bacterial cell, quickly reaching the targets located in the outer leaflet
of the cytoplasmic membrane. Its stereochemical structure also allows a relative stability
against hydrolysis for most carbapenemases, namely the most frequently identified (KPC,
NDM, VIM, IMP, and OXA-carbapenemases). Nevertheless, resistance to cefiderocol has
already been reported, even in strains never before exposed to this antibiotic, due to al-
terations in the iron transporters. A few clinical cases showed development of resistance
in vivo during patient treatment with cefiderocol, which is a huge concern. The studies
reporting reduced susceptibility to cefiderocol suggest that in clinical strains more than
one mechanism of resistance is involved. It should be taken in consideration that EUCAST
firstly recommended that the antimicrobial susceptibility testing to cefiderocol could be
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performed using broth microdilution or disk diffusion; in the former case, iron-depleted
Mueller–Hinton broth should be employed [102]. However, due to limitations in MIC
determination with commercially available tests, the current recommendations of EUCAST
are the determination of the antimicrobial susceptibility to cefiderocol using disk diffusion
(https://www.eucast.org/ast-of-bacteria/warnings accessed on 14 June 2023). Addition-
ally, clinicians should be aware that cefiderocol has strict therapeutic guidelines and it is
only recommended in cUTI and HABP infections caused by bacteria that are already MDR
and have underlying multiple resistance mechanisms. Also, the expression of multiple
copies of β-lactamase appears to affect its efficient activity. Apparently, the association of
cefiderocol with a new β-lactamase inhibitor could be a promising strategy, as suggested
in a study with A. baumannii infections. Indeed, this pathogen remains quite challenging,
with some case reports showing conflict on the efficacy of cefiderocol versus other antibi-
otics. So far, cefiderocol must be used with caution, following the guidelines of regulatory
agencies and evaluating the need of patient therapy that requires the knowledge of the
pathogen species and antibiogram, prior colonization, previous antibiotic therapy failure,
and local of infection to optimize antibiotic prescription. Many more studies are required
to establish a clinically efficient profile for cefiderocol and to understand the potential of
resistance emergence.
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