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paper we generalise these results, studying cocompleteness with respect to a given
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Introduction
This work continues the research line of previous papers, aiming to use cat-

egorical tools in the study of topological structures. Indeed, the perspective
proposed in [2, 6] of looking at topological structures as (Eilenberg-Moore)
lax algebras and, simultaneously, as a monad enrichment of V-enriched cate-
gories, has shown to be very effective in the study of special morphisms – like
effective descent and exponentiable ones – at a first step [3, 4], and recently
in the study of (Lawvere/Cauchy-)completeness and injectivity [5, 11, 10].
The results we present here complement this study of injectivity. More pre-
cisely, in the spirit of Kelly-Schmitt [12] we generalise the results of [10],
showing that injectivity and cocompleteness – when considered relative to a
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de Coimbra/FCT and Unidade de Investigação e Desenvolvimento Matemática e Aplicações da
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class of distributors – still coincide. Suitable choices of this class of distrib-
utors allow us to recover, in the V-enriched setting, results on injectivity of
Escardó-Flagg [7].

The starting point of our study of injectivity is the notion of distribu-
tor (or bimodule, or profunctor), which allowed the study of weighted col-
imit, presheaf category, and the Yoneda embedding. It was then a natural
step to ‘relativize’ these ingredients and to consider cocompleteness with re-
spect to a class of distributors Φ. Namely, we introduce the notion of Φ-
cocomplete category, we construct the Φ-presheaf category, and we prove
that Φ-cocompleteness is equivalent to the existence of a left adjoint of the
Yoneda embedding into the Φ-presheaf category. Furthermore, the class Φ
determines a class of embeddings so that the injective T-categories with re-
spect to this class are precisely the Φ-cocomplete categories. This result links
our work with [7], where the authors study systematically semantic domains
and injectivity characterisations with the help of Kock-Zöberlein monads.

1. The Setting
Throughout this paper we consider a (strict) topological theory as intro-

duced in [9]. Such a theory T = (T,V, ξ) consists of:

(1) a commutative quantale V = (V,⊗, k),
(2) a Set-monad T = (T, e,m), where T and m satisfy (BC); that is, T

sends pullbacks to weak pullbacks and each naturality square of m is
a weak pullback, and

(3) a T-algebra structure ξ : TV −→ V on V such that:
(a) ⊗ : V × V −→ V and k : 1 −→ V, ∗ 7−→ k, are T-algebra

homomorphisms making (V, ξ) a monoid in SetT; that is, the
following diagrams

T1

!
��

Tk // TV

ξ
��

1
k

// V

T (V × V)
T (⊗)

//

〈ξ·Tπ1,ξ·Tπ2〉
��

TV

ξ
��

V × V
⊗

// V

are commutative;

(b) For each set X, ξX : VX −→ VTX , (X
ϕ

−→ V) 7−→ (TX
Tϕ
−→

TV
ξ

−→ V), defines a natural transformation (ξX)X : P −→ PT :
Set −→ Ord.



RELATIVE INJECTIVITY AS COCOMPLETENESS FOR A CLASS OF DISTRIBUTORS 3

Here P : Set −→ Ord is the V-powerset functor defined as follows. We put
PX = VX with the pointwise order. Each map f : X −→ Y defines a
monotone map Vf : VY −→ VX , ϕ 7−→ ϕ · f . Since Vf preserves all infima
and all suprema, it has a left adjoint Pf . Explicitly, for ϕ ∈ VX we have
Pf(ϕ)(y) =

∨

{ϕ(x) | x ∈ X, f(x) = y}.

Examples. Throughout this paper we will keep in mind the following topo-
logical theories:

(1) The identity theory I = (1,V, 1V), for each quantale V, where 1 =
(Id, 1, 1) denotes the identity monad.

(2) U2 = (U, 2, ξ2), where U = (U, e,m) denotes the ultrafilter monad
and ξ2 is essentially the identity map.

(3) UP
+

= (U,P
+
, ξP

+
) where P

+
= ([0,∞]op,+, 0) and

ξP
+

: UP
+
−→ P

+
, x 7−→ inf{v ∈ P

+
| [0, v] ∈ x}.

(4) The word theory (L,V, ξ
⊗
), for each quantale V, where L = (L, e,m)

is the word monad and

ξ
⊗

: LV −→ V.

(v1, . . . , vn) 7−→ v1 ⊗ . . .⊗ vn

() 7−→ k

Every topological theory T = (T,V, ξ) encompasses several interesting in-
gredients.

I. The quantaloid V-Rel with sets as objects and V-relations (also called V-
matrices, see [1]) r : X × Y −→ V as morphisms. We use the usual notation
for relations, denoting the V-relation r : X × Y −→ V by r : X−→7 Y . Since
every map f : X −→ Y can be thought of as a V-relation f : X × Y −→ V

through its graph, there is an injective on objects and faithful functor Set −→
V-Rel, unless V is degenerate (i.e. k is the bottom element). Moreover,
V-Rel has an involution (−)◦ : V-Rel −→ V-Rel, assigning to r : X−→7 Y

the V-relation r◦ : Y−→7 X, with r◦(y, x) := r(x, y). For each V-relation
r : X−→7 Y , the maps

(−)·r : V-Rel(Y, Z) −→ V-Rel(X,Z) and r·(−) : V-Rel(Z,X) −→ V-Rel(Z, Y )

preserve suprema; hence they have right adjoints,

(−) •− r : V-Rel(X,Z) −→ V-Rel(Y, Z), r −• (−) : V-Rel(Z, Y ) −→ V-Rel(Z,X).
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II. The Set-functor T extends to a 2-functor T
ξ
: V-Rel −→ V-Rel . To each

V-relation r : X × Y −→ V, T
ξ

assigns a V-relation T
ξ
r : TX × TY −→ V,

which is the smallest (order-preserving) map s : TX × TY −→ V such that
ξ · Tr ≤ s · 〈Tπ1, Tπ2〉.

T (X × Y )
〈Tπ1,T π2〉

//

ξX×Y (r)=ξ·Tr %%JJ

J

J

J

J

J

J

J

J

J

TX × TY

T
ξ
r

yy
V

≤

Hence, for x ∈ TX and y ∈ TY ,

T
ξ
r(x, y) =

∨

{

ξ · Tr(w)
∣

∣

∣
w ∈ T (X × Y ), Tπ1(w) = x, Tπ2(w) = y

}

.

This 2-functor T
ξ

preserves the involution, i.e. T
ξ
(r◦) = T

ξ
(r)◦ (and we write

T
ξ
r◦) for each V-relation r : X−→7 Y , m becomes a natural transformation

m : T
ξ
T

ξ
−→ T

ξ
and e an op-lax natural transformation e : Id −→ T

ξ
, i.e.

eY ◦ r ≤ T
ξ
r ◦ eX for all r : X−→7 Y in V-Rel.

III. A V-relation of the form α : TX−→7 Y , called a T-relation and denoted
by α : X −⇀7 Y , will play an important role here. Given two T-relations
α : X −⇀7 Y and β : Y −⇀7 Z, their Kleisli convolution β ◦ α : X −⇀7 Z is
defined as

β ◦ α = β · T
ξ
α ·m◦

X .

This operation is associative and has the T-relation e◦X : X −⇀7 X as a lax
identity: a ◦ e◦X = a and e◦Y ◦ a ≥ a for any a : X −⇀7 Y .

IV. T-relations satisfying the usual unit and associativity categorical rules
define T-categories: a T-category is a pair (X, a) consisting of a set X and a
T-relation a : X −⇀7 X on X such that

e◦X ≤ a and a ◦ a ≤ a.

Expressed elementwise, these conditions become

k ≤ a(eX(x), x) and T
ξ
a(X, x) ⊗ a(x, x) ≤ a(mX(X), x)

for all X ∈ TTX, x ∈ TX and x ∈ X. A function f : X −→ Y between T-
categories (X, a) and (Y, b) is a T-functor if f ·a ≤ b ·Tf , which in pointwise
notation reads as

a(x, x) ≤ b(Tf(x), f(x))
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for all x ∈ TX, x ∈ X. The category of T-categories and T-functors is
denoted by T-Cat.

V. In particular, the quantale V is a T-category V = (V, homξ), where

homξ : TV × V −→ V, (v, v) 7−→ hom(ξ(v), v).

VI. The forgetful functor O : T-Cat −→ Set, (X, a) 7−→ X, is topological,
hence it has a left and a right adjoint. In particular, the free T-category on
a one-element set is given by G = (1, e◦1).

VII. A V-relation ϕ : X −⇀7 Y between T-categories X = (X, a) and Y =
(Y, b) is a T-distributor, denoted as ϕ : X −⇀◦ Y , if ϕ ◦ a ≤ ϕ and b ◦ ϕ ≤ ϕ.
Note that we always have ϕ ◦ a ≥ ϕ and b ◦ ϕ ≥ ϕ, so that the T-distributor
conditions above are in fact equalities. T-categories and T-distributors form
a 2-category, denoted by T-Mod, with Kleisli convolution as composition and
with the 2-categorical structure inherited from V-Rel.

VIII. Each T-functor f : (X, a) −→ (Y, b) induces an adjunction f∗ ⊣ f ∗

in T-Mod, with f∗ : X −⇀7 Y and f ∗ : Y −⇀7 X defined as f∗ = b · Tf and
f ∗ = f ◦ · b respectively. In fact, these assignments are functorial, i.e. they
define two functors:

(−)∗ : T-Catco −→ T-Mod and (−)∗ : T-Catop −→ T-Mod,

X 7−→ X∗ = X X 7−→ X∗ = X

f 7−→ f∗ = b · Tf f 7−→ f ∗ = f ◦ · b

A T-functor f : X −→ Y is called fully faithful if f ∗ ◦ f∗ = 1∗X , while it is
called dense if f∗ ◦ f

∗ = 1∗Y . Note that f is fully faithful if and only if, for all
x ∈ TX and x ∈ X, a(x, x) = b(Tf(x), f(x)).

IX. For a T-distributor α : X −⇀◦ Y , the composition function − ◦ α has
a right adjoint (−) ◦− α where, for a given T-distributor γ : X −⇀◦ Z, the
extension γ ◦− α : Y −⇀◦ Z is constructed in V-Rel as the extension γ ◦− α =
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γ •− (T
ξ
α ·m◦

X).

TX
�

γ
//

_m◦
X

��

Z.

TTX
_T

ξ
α

��

TY

J

DD

The following rules are easily checked.

Lemma. The following assertions hold.

(1) If α is a right adjoint, then α ◦ (ϕ ◦− ψ) = (α ◦ ϕ) ◦− ψ.
(2) If γ ⊣ δ, then (α ◦− β) ◦ γ = α ◦− (δ ◦ β).
(3) If γ ⊣ δ, then (α ◦ γ) ◦− β = α ◦− (β ◦ δ).

X. It is also important the interplay of several functors relating the struc-
tures, i.e. Eilenberg-Moore algebras, T-categories and V-categories. The in-
clusion functor SetT →֒ T-Cat, given by regarding the structure map α :
TX −→ X of an Eilenberg-Moore algebra (X,α) as a T-relation α : X −⇀7 X,
has a left adjoint, constructed à la Čech-Stone compactification in [2].

SetT � � ⊥ // T-Cat
tt

We denote by |X| the free Eilenberg-Moore algebra (TX,mX) considered as
a T-category.

Making use of the identity e : Id −→ T of the monad, to each T-category
X = (X, a) we assign a V-category structure on X, a · eX : X−→7 X. This
correspondence defines a functor S : T-Cat −→ V-Cat, which has also a left
adjoint A : V-Cat −→ T-Cat, with A(X, a) := (X, e◦X · T

ξ
r).

T-Cat ⊥

S
// V-Cat.

A
ss

Furthermore, making now use of the multiplication m : T 2 −→ T of the
monad, one can define a functor

M : T-Cat −→ V-Cat

which sends a T-category (X, a) to the V-category (TX, T
ξ
a ·m◦

X).
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We can now define the process of dualizing a T-category as the composition
of the following functors

T-Cat

M
��

( )op
// T-Cat

V-Cat
( )op

// V-Cat

A

OO

that is, the dual of a T-category (X, a) is defined as

Xop = A(M(X)op),

which is a structure on TX. If T is the identity monad, then Xop is indeed
the dual V-category of X.

XI. The tensor product on V can be transported to T-Cat by putting

(X, a) ⊗ (Y, b) = (X × Y, c),

with

c(w, (x, y)) = a(Tπ1(w), x) ⊗ b(Tπ2(w), y),

where w ∈ T (X × Y ), x ∈ X, y ∈ Y . The T-category E = (1, k) is a ⊗-
neutral object, where 1 is a singleton set and k : T1 × 1 −→ V the constant
relation with value k ∈ V. For each set X, the functor |X| ⊗ (−) : T-Cat −→
T-Cat has a right adjoint (−)|X | : T-Cat −→ T-Cat. Explicitly, the structure
J−,−K on V|X | is given by the formula

Jp, ψK =
∧

q∈T (|X |×V|X|)
q 7−→p

hom(ξ · T ev(q), ψ(mX · Tπ1(q))),

for each p ∈ TV|X | and ψ ∈ V|X |.

Theorem. [5] For T-categories (X, a) and (Y, b), and a T-relation ψ : X −⇀7 Y ,
the following assertions are equivalent.

(i) ψ : (X, a)−⇀◦ (Y, b) is a T-distributor.
(ii) Both ψ : |X| ⊗ Y −→ V and ψ : Xop ⊗ Y −→ V are T-functors.
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XII. Hence, each T-distributor ϕ : X −⇀◦ Y provides a T-functor
pϕq : Y −→ V|X |

which factors through the embedding PX →֒ V|X |, where PX = {ψ ∈ V|X | |
ψ : X −⇀◦ G} is the T-category of contravariant presheafs on X:

Y
pϕq

//

pϕq !!C
C

C

C

C

C

C

C

V|X |

PX
� ?

OO

In particular, for each T-category X = (X, a), the V-relation a : TX×X −→
V is a T-distributor a : X −⇀◦ X, and therefore we have the Yoneda functor

y
X

= paq : X −→ PX.

Theorem. [10] Let ψ : X −⇀◦ Z and ϕ : X −⇀◦ Y be T-distributors. Then,
for all z ∈ TZ and y ∈ Y ,

JT pψq(z), pϕq(y)K = (ϕ ◦− ψ)(z, y).

Corollary. [10] For each ϕ ∈ X̂ and each x ∈ TX, ϕ(x) = JT y
X

(x), ϕK, that

is, (y
X

)∗ : X −⇀◦ X̂ is given by the evaluation map ev : TX × X̂ −→ V. As

a consequence, y
X

: X −→ X̂ is fully faithful.

XIII. Transporting the order-structure on hom-sets from T-Mod to T-Cat

via the functor (−)∗ : T-Catop −→ T-Mod, T-Cat becomes a 2-category. That
is, for T-functors f, g : X −→ Y we define f ≤ g whenever f ∗ ≤ g∗, which in
turn is equivalent to g∗ ≤ f∗. We call f, g : X −→ Y equivalent, and write
f ∼= g, if f ≤ g and g ≤ f . Hence, f ∼= g if and only if f ∗ = g∗ if and only
if f∗ = g∗. A T-category X is called separated (see [11] for details) whenever
f ∼= g implies f = g, for all T-functors f, g : Y −→ X with codomain X.
One easily verifies that the T-category V = (V, homξ) is separated, and so is
each T-category of the form PX for a T-category X. The full subcategory
of T-Cat consisting of all separated T-categories is denoted by T-Catsep. The
2-categorical structure on T-Cat allows us to consider adjoint T-functors: T-
functor f : X −→ Y is left adjoint if there exists a T-functor g : Y −→ X

such that 1X ≤ g · f and 1Y ≥ f · g. Considering the corresponding T-
distributors, f is left adjoint to g if and only if g∗ ⊣ f∗, that is, if and only if
f∗ = g∗.

A more complete study of this subject can be found in [9, 10].
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2. The results
In the sequel we consider a class Φ of T-distributors subject to the following

axioms.

(Ax 1) For each T-functor f , f ∗ ∈ Φ.
(Ax 2) For all ϕ ∈ Φ and all T-functors f : A −→ X we have

f ∗ ◦ ϕ ∈ Φ, ϕ ◦ f ∗ ∈ Φ, f∗ ∈ Φ ⇒ ϕ ◦ f∗ ∈ Φ;

whenever the compositions are defined.
(Ax 3) For all ϕ : X −⇀◦ Y ∈ T-Mod,

(∀y ∈ Y . y∗ ◦ ϕ ∈ Φ) ⇒ ϕ ∈ Φ

where y∗ is induced by y : 1 −→ Y , ∗ 7−→ y.

Condition (Ax 2) requires that Φ is closed under certain compositions. In
fact, in most examples Φ will be closed under arbitrary compositions. Fur-
thermore, there is a largest and a smallest such class of T-distributors, namely
the class P of all T-distributors and the class R = {f ∗ | f : X −→ Y } of all
representable T-distributors.

We call a T-functor f : X −→ Y Φ-dense if f∗ ∈ Φ. Certainly, if f is a
left adjoint T-functor, with f ⊣ g, then f∗ = g∗ ∈ Φ, i.e. f is Φ-dense. A
T-category X is called Φ-injective if, for all T-functors f : A −→ X and fully
faithful Φ-dense T-functors i : A −→ B, there exists a T-functor g : B −→ X

such that g · i ∼= f . Furthermore, X is called Φ-cocomplete if each weighted
diagram

Y
h //

◦ϕ
�

X

Z

with ϕ ∈ Φ has a colimit g ∼= colim(ϕ, h) : Z −→ X. A T-functor f :
X −→ Y is Φ-cocontinuous if f preserves all existing Φ-weighted colimits.
Note that in both cases it is enough to consider diagrams where h = 1X .
We denote by T-CocontΦ the 2-category of all Φ-cocomplete T-categories and
Φ-cocontinuous T-functors, and by T-CocontΦsep its full subcategory of all Φ-
cocomplete and separated T-categories.

If Φ is the class P of all T-distributors, then T-CocontΦ is the category of
cocomplete T-categories and left adjoint T-functors (as shown in [10, Prop.
2.12]).
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Lemma. Consider the (up to isomorphism) commutative triangle

X

f
��

h

∼=   @
@

@

@

@

@

@

Y g
// Z

of T-functors. Then the following assertions hold.

(1) If g and f are Φ-dense, then so is h.
(2) If h is Φ-dense and g is fully faithful, then f is Φ-dense.
(3) If h is Φ-dense and f is dense, then g is Φ-dense.

Proof : The proof is straightforward: (1) h∗ = g∗ ◦ f∗ ∈ Φ by (Ax 2), since
g∗, f∗ ∈ Φ; (2) f∗ = g∗ ◦ g∗ ◦ f∗ = g∗ ◦ h∗ ∈ Φ by (Ax 2), since h∗ ∈ Φ; (3)
g∗ = g∗ ◦ f∗ ◦ f

∗ = h∗ ◦ f
∗ ∈ Φ by (Ax 2), since h∗ ∈ Φ.

We put now
ΦX = {ψ ∈ PX | ψ ∈ Φ}

considered as a subcategory of PX. We have the restriction

y
Φ
X

: X −→ ΦX

of the Yoneda map, and each ψ ∈ ΦX is a Φ-weighted colimit of representa-
bles (see [10, Proposition 2.5]).

Lemma. The following assertions hold.

(1) y Φ
X

: X −→ ΦX is Φ-dense.

(2) For each T-distributor ϕ : X −⇀◦ Y , ϕ ∈ Φ if and only if pϕq : Y −→
PX factors through the embedding ΦX →֒ PX.

Proof : By the Yoneda Lemma (Corollary 1), for any ψ ∈ ΦX we have ψ∗ ◦
(yΦ

X
)∗ = ψ ∈ Φ, therefore (yΦ

X
)∗ ∈ Φ by (Ax 3) and the assertion (1) follows.

To see (2), just observe that pϕq(y) = y∗ ◦ ϕ, and use again (Ax 3).

Our next result extends Theorem 2.6 of [10]. We omit its proof because it
uses exactly the same arguments.

Theorem. The following assertions are equivalent, for a T-category X.

(i) X is Φ-injective.
(ii) y Φ

X
: X −→ ΦX has a left inverse SupΦ

X : ΦX −→ X.

(iii) y Φ
X

: X −→ ΦX has a left adjoint SupΦ
X : ΦX −→ X.

(iv) X is Φ-cocomplete.
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Recall from [10] that, for a given T-functor f : X −→ Y , we have an adjoint
pair of T-functors Pf ⊣ f−1 where

Pf : PX −→ PY and f−1 : PY −→ PX.

ψ 7−→ ψ ◦ f ∗ ψ 7−→ ψ ◦ f∗

By (Ax 1) and (Ax 2), the T-functor Pf : PX −→ PY restricts to a T-
functor Φf : ΦX −→ ΦY . On the other hand, f−1 : PY −→ PX restricts
to f−1 : ΦY −→ ΦX provided that f is Φ-dense.

Proposition. The following conditions are equivalent for a T-functor f :
X −→ Y .

(i) f is Φ-dense.
(ii) Φf is left adjoint.
(iii) Φf is Φ-dense.

Proof : (i) ⇒ (ii): If f is Φ-dense, then Φf ⊣ f−1 : ΦY −→ ΦX defined
above. (ii) ⇒ (iii): If Φf ⊣ g, then (Φf)∗ = g∗ ∈ Φ, i.e. Φf is Φ-dense. (iii)
⇒ (i): Consider the diagram

X
y
Φ
X //

f
��

ΦX

Φf
��

Y
y
Φ
Y

// ΦY

If Φf is Φ-dense, then y Φ
Y
·f = Φf · y Φ

X
is Φ-dense, and so by 2(2) f is Φ-dense

because y Φ
Y

is fully faithful.

In particular, for each T-category X, Φ yΦ
X

: ΦX −→ ΦΦX has a right

adjoint, (yΦ
X

)−1. We show next that (yΦ
X

)−1 has also a right adjoint, y ΦΦX
:

ΦX −→ ΦΦX, so that:

Φ yΦ
X
⊣ (yΦ

X
)−1 = SupΦ

ΦX ⊣ y ΦΦX
.

Proposition. For each T-category X, ΦX is Φ-cocomplete where SupΦ
ΦX =

(yΦ
X

)−1.

Proof : Since y Φ
X

is Φ-dense, we may define SupΦ
ΦX := (yΦ

X
)−1. We have to

show that SupΦ
ΦX is a left inverse for yΦΦX

; that is, (yΦ
X

)−1 · y ΦΦX
= 1ΦX : for

each ψ ∈ ΦX, ((yΦ
X

)−1 · yΦΦX
)(ψ) = ψ∗ ◦ (yΦ

X
)∗ = ψ.
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In [10] we constructed Pf as the colimit Pf ∼= colim((y
X

)∗, y Y ·f), and
a straightforward calculation shows that also Φf ∼= colim((yΦ

X
)∗, y

Φ
Y
·f), for

each T-functor f : X −→ Y . To see this, we consider the commutative
diagrams

X
y
Φ
X //

f
��

y
X

%%
ΦX,

iX //

Φf
��

PX

Pf
��

Y
y
Φ
Y

//

y
Y

99ΦY
iY

// PY

and obtain

(Φf)∗ = i∗Y ◦ iY ∗ ◦ (Φf)∗

= i∗Y ◦ (Pf)∗ ◦ iX∗

= i∗Y ◦ ((y
Y ∗

◦ f∗) ◦− yX∗
) ◦ iX∗ since Pf ∼= colim((y

X
)∗, y Y ·f)

= (i∗Y ◦ y
Y ∗

◦ f∗) ◦− (iX
∗ ◦ y

X∗
) by Lemma 1

= (y Φ
Y ∗

◦ f∗) ◦− y
Φ
X∗
.

Proposition. Let f : X −→ Y a T-functor where X and Y are Φ-cocomplete.

(1) The following assertions are equivalent.
(a) f is Φ-cocontinuous.
(b) We have f · SupΦ

X
∼= SupΦ

Y ·Φf .

ΦX
Φf

//

SupΦ
X

��
∼=

ΦY

SupΦ
Y

��

X
f

// Y

(2) If f is Φ-cocontinuous, then f is Φ-dense if and only it is a left adjoint.

Proof : (1) (a) ⇒ (b): Recall that

X
1X //

◦(yΦ
X

)∗
�

X

ΦX
(SupΦ

X)∗=1X◦−(yΦ
X

)∗

<<
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Hence
(f · SupΦ

X)∗ = f∗ ◦− (yΦ
X

)∗
= ((SupΦ

Y )∗ ◦ (y Φ
Y
)∗ ◦ f∗) ◦− (yΦ

X
)∗

= (SupΦ
Y )∗ ◦ ((yΦ

Y
)∗ ◦ f∗ ◦− (yΦ

X
)∗)

= (SupΦ
Y )∗ ◦ Φf∗.

(b)⇒ (a): Consider

X ◦
1∗X /

◦ϕ
�

X
f

// Y

A
(SupΦ

X · pϕq)∗

>>

Then
(f · SupΦ

X · pϕq) = SupΦ
Y ·Φf · pϕq

= SupΦ
Y · pϕ · f ∗q

∼= colim(ϕ, f)

(2) If f is Φ-cocontinuous and Φ-dense, from the commutative diagram of
(1)(b) we have f ⊣ SupΦ

X ·f−1 · y Φ
Y

since f · SupΦ
X = SupΦ

Y ·Φf ⊣ f−1 · y Φ
Y

and

SupΦ
X · y Φ

X
= 1X . The converse is trivially true.

Corollary. ΦX is closed in PX under Φ-weighted colimits.

Proof : We show that the inclusion functor i : ΦX −→ PX is Φ-cocontinuous,
which, by the proposition above, is equivalent to the commutativity of the
diagram

ΦΦX
Φi //

SupΦ
ΦX

��

ΦPX

SupΦ
PX

��

ΦX
i

// PX.

In Proposition 2 we observed SupΦ
ΦX = (y Φ

X
)−1, and from Theorem 2 and [10,

Theorem 2.8] follows that SupΦ
PX is the restriction of y−1

X
: PPX −→ PX to

ΦPX. Let Ψ ∈ ΦΦX. Then

i · (y Φ
X

)−1(Ψ) = Ψ ◦ (y Φ
X

)∗

and

y
−1
X

·Φi(Ψ) = y−1
X

(Ψ ◦ i∗) = Ψ ◦ i∗ ◦ (y
X

)∗ = Ψ ◦ (y Φ
X

)∗,

and the assertion follows.
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Theorem 2 says in particular that, for each T-functor f : A −→ X, Φ-
injective T-category X and fully faithful Φ-dense T-functor i : A −→ B, we
have a canonical extension g : B −→ X of f along i, namely g ∼= colim(i∗, f),
giving us an alternative description of Φf .

Theorem. Composition with y Φ
X

: X −→ ΦX defines an equivalence

T-CocontΦ(ΦX, Y ) −→ T-Cat(X, Y )

of ordered sets, for each Φ-cocomplete T-category Y .

The series of results above tell us that T-CocontΦsep is actually a (non-full) re-

flective subcategory of T-Cat, with left adjoint Φ : T-Cat −→ T-CocontΦsep. In

fact, Φ is a 2-functor and one verifies as in [10] that the induced monad IΦ =
(Φ, yΦ, (yΦ)−1) on T-Cat is of Kock-Zöberlein type. Theorem 2 and Proposi-

tion 2 imply that T-CocontΦsep is equivalent to the category of Eilenberg-Moore

algebras of IΦ.
Finally, we wish to study monadicity of the canonical forgetful functor

G : T-CocontΦsep −→ Set.

Certainly,

(a) G has a left adjoint given by the composite

Set
disc

−−−−−→ T-Cat
Φ

−−−−→ T-CocontΦsep,

where disc(X) = (X, e◦X), and disc(f) = f .

In order to prove monadicity of G we will impose, in addition to (Ax 1)-
(Ax 3),

(Ax 4). For each surjective T-functor f , f∗ ∈ Φ.

Hence, any bijective f : X −→ Y in T-CocontΦsep is Φ-dense and therefore left
adjoint. By [10, Lemma 2.16], f is invertible and we have seen that

(b) G reflects isomorphisms.

In order to conclude that G is monadic, it is left to show that

(c) T-CocontΦsep has and G preserves coequaliser of G-equivalence relations

(see, for instance, [14, Corollary 2.7]). To do so, let π1, π2 : R ⇉ X in
T-CocontΦsep be an equivalence relation in Set, where π1 and π2 are the pro-
jection maps, and let q : X −→ Q be its coequaliser in T-Cat. The proof in
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[10, Section 2.6] rests on the observation that

PR
Pπ1 //

Pπ2

// PX
Pq

// PQ

is a split fork in T-Catsep. Naturally, we wish to show that, in our setting,

ΦR
Φπ1 //

Φπ2

// ΦX
Φq

// ΦQ

gives rise to a split fork in T-Catsep as well. Since π1, π2 and q are surjective,
the T-functors π1, π2 and q are Φ-dense and therefore we have T-functors
q−1 : ΦQ −→ ΦX and π−1

1 : ΦX −→ ΦR. Furthermore, Φq · q−1 = 1ΦX =
Φπ1 · π

−1
1 . It is left to show that

q−1 · Φq = Φπ2 · π
−1
1 ,

which can be shown with the same calculation as in [10], based on the fol-
lowing proposition.

Proposition. Consider the following diagram in T-Cat

R
π1 //

π2

// X
q

// Q

with π1, π2 : R ⇉ X in T-CocontΦsep, (π1, π2) an equivalence relation in Set,
and q : X −→ Q its coequaliser in T-Cat.

(1) If π1, π2 are left adjoints, then q is proper.
(2) The diagram

ΦR
Φπ1 //

Φπ2

// ΦX

π−1
1

}} Φq
// ΦQ

q−1

}}

is a split fork in T-Cat.

Proof : (1) As in [10, Lemma 2.19 and Corollary 2.20].
(2) Analogous to the proof presented in [10, Section 2.6].

Finally, we conclude that:

Theorem. Under (Ax 1)-(Ax 4), the forgetful functor

G : T-CocontΦsep −→ Set

is monadic.
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Proof : In order to show that T-CocontΦsep has and G preserves coequaliser of
G-equivalence relations, consider again the first diagram of Proposition 2.
We have seen that

ΦR
Φπ1 //

Φπ2

// ΦX

π−1
1

}} Φq
// ΦQ

q−1

}}

is a split fork and hence a coequaliser diagram in T-Cat. Since π1 and π2 are Φ-
cocontinuous, there is a T-functor SupΦ

Q : ΦQ −→ Q which, since q : X −→ Q

is the coequaliser of π1, π2 : R ⇉ X in T-Cat, satisfies SupΦ
Q · y Φ

Q
= 1Q. The

situation is depicted in the following diagram.

R
π1 //

π2

//

y
Φ
R

��

X
q

//

y
Φ
X

��

Q

y
Φ
Q

��
1Q

{{

ΦR
Φπ1 //

Φπ2

//

SupΦ
R

��

ΦX
Φq

//

SupΦ
X

��

ΦQ

SupΦ
Q

��

R
π1 //

π2

// X
q

// Q

We conclude that Q is separated and Φ-cocomplete, and q : X −→ Q is
Φ-cocontinuous. Finally, to see that q : X −→ Q is the coequaliser of
π1, π2 : R ⇉ X in T-CocontΦsep, let h : X −→ Y be in T-CocontΦsep with
h · π1 = h · π2. Then, since Φq is the coequaliser of Φπ1,Φπ2 : ΦR ⇉ ΦX
in T-CocontΦsep, there is a Φ-cocontinuous T-functor f : ΦQ −→ Y such that

f · Φq = h · SupΦ
X . Then

f · yΦ
Q
·q = f · Φq · y Φ

X
= h · SupΦ

X · y Φ
X

= h

and

SupΦ
Y ·Φf · Φ yΦ

Q
·Φq = f · SupΦ

ΦQ ·Φ yΦ
Q
·Φq = f · Φq = h · SupΦ

X

= f · y Φ
Q
·q · SupΦ

X = f · y Φ
Q
· SupΦ

Q ·Φq,

hence SupY ·Φ(f · yΦ
Q
) = f · y Φ

Q
· SupΦ

Q, that is, f · y Φ
Q

is Φ-cocontinuous.
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3. The examples
3.1. All distributors. The class Φ = P of all distributors satisfies obviously
all four axioms. In fact, this is the situation studied in [10].

3.2. Representable distributors. The smallest possible choice is Φ = R
being the class of all representable T-distributorsR = {f ∗ | f is a T-functor}.
Clearly, R satisfies (Ax 1), (Ax 2) and (Ax 3) but not (Ax 4). We have
R(X) = {x∗ | x ∈ X}, each T-category is R-cocomplete and each T-functor
is R-cocontinuous, and therefore T-CocontRsep = T-Catsep. This case is cer-
tainly not very interesting; however, our results tell us that the inclusion
functor T-Catsep →֒ T-Cat is monadic. In particular, the category Top0 of
topological T0-spaces and continuous maps is a monadic subcategory of Top.

3.3. Almost representable distributors. We can modify slightly the
example above and consider Φ = R0 the class of all almost representable T-
distributors, where a T-distributor ϕ : X −⇀◦ Y is called almost representable
whenever, for each y ∈ Y , either y∗ ◦ ϕ = ⊥ or y∗ ◦ ϕ = x∗ for some x ∈ X.
As above, R0 satisfies (Ax 1), (Ax 2) and (Ax 3) but not (Ax 4).

By definition, for a T-category X we have

R0(X) = {ψ ∈ PX | ψ ∈ R0} = {x∗ | x ∈ X} ∪ {⊥},

with the structure inherited from PX. Furthermore, a T-functor f : (X, a) −→
(Y, b) is R0-dense whenever, for each y ∈ Y ,

∃x ∈ TX . b(Tf(x), y) > ⊥ ⇒ ∃x ∈ X ∀x ∈ TX . b(Tf(x), y) = a(x, x).

Hence, with
Y0 = {y ∈ Y | ∃x ∈ TX . b(Tf(x), y) > ⊥}

we can factorise an R0-dense T-functor f : X −→ Y as

X
f

−−→ Y0 →֒ Y,

where Y0 →֒ Y is fully faithful and X
f

−→ Y0 is left adjoint. If we consider
f : X −→ Y in Top, then Y0 = f(X) is the closure of the image of f , so
that each R0-dense continuous map factors as a left adjoint continuous map
followed by a closed embedding. Consequently, for a topological space X, the
following assertions are equivalent:

(i) X is injective with respect to R0-dense fully faithful continuous maps.
(ii) X is injective with respect to closed embeddings.



18 MARIA MANUEL CLEMENTINO AND DIRK HOFMANN

Note that in this example we are working with the dual order, compared
with [7, Section 11].

3.4. Right adjoint distributors. Now we consider Φ = L the class of all
right adjoint T-distributors. This class contains all distributors of the form
f ∗, for a T-functor f , and it is closed under composition. Since adjointness
of a T-distributor ϕ : X −⇀◦ Y can be tested pointwise in Y , the axioms
(Ax 1), (Ax 2) and (Ax 3) are satisfied. By definition, L(X) = {ψ ∈ PX |
ψ is right adjoint}, and a T-category is L-cocomplete if each pair ϕ ⊣ ψ,
ϕ : Y −⇀◦ X, ψ : X −⇀◦ Y , of adjoint T-distributors is of the form f∗ ⊣ f ∗,
for a T-functor f : Y −→ X. For V-categories, this is precisely the well-
known notion of Cauchy-completeness as introduced by Lawvere in [13] as
a generalisation of the classical notion for metric spaces. However, Lawvere
never proposed the name “Cauchy-complete”, and, while working on this
notion in the context of T-categories in [5] and [11], we used instead Lawvere-
complete and L-complete, respectively. Furthermore, one easily verifies that
each T-functor is L-cocontinuous, i.e. (right adjoint)-weighted colimits are
absolute, so that T-CocontLsep = T-Catcpl is the full subcategory of T-Cat

consisting of all separated and Lawvere complete T-categories.
On the other hand, for a surjective T-functor f , f∗ does not need to be right

adjoint, so that (Ax 4) is in general not satisfied. This is not a surprise, since
natural instances of this example fail Theorem 2. Indeed, in the category of
ordered sets and monotone maps, any ordered set is Lawvere-complete, hence
the category of Lawvere-complete and separated ordered sets coincides with
the category of anti-symmetric ordered sets. The canonical forgetful functor
from this category to Set is surely not monadic. Also, the canonical forgetful
functor from the category of Lawvere-complete and separated topological
spaces (= sober spaces) and continuous maps to Set is also not monadic.

3.5. Inhabited distributors. Another class of distributors considered in
[10] is Φ = I the class of all inhabited T-distributors. Here a T-distributor
ϕ : X −⇀◦ Y is called inhabited if

∀y ∈ Y . k ≤
∨

x∈TX

ϕ(x, y).

(Ax 3) is satisfied by definition, and in [10] we showed already the validity of
(Ax 1) and (Ax 2). Furthermore, one easily verifies that (Ax 4) is satisfied.
Hence, as already observed in [10], all results stated in Section 2 are available
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for this class of distributors. Let us recall that, specialised to Top, inhabited-
dense continuous maps are precisely the topologically dense continuous maps,
and the injective spaces with respect to topologically dense embeddings are
known as Scott domains [8].

3.6. “Closed” distributors. A further interesting class of distributors is
given by

Φ = {ϕ : X −⇀◦ Y | ∀y ∈ Y, x ∈ TX . ϕ(x, y) ≤
∨

x∈X

a(x, x) ⊗ ϕ(eX(x), y)},

that is, ϕ ∈ Φ if and only if ϕ ≤ ϕ · eX · a. Clearly, (Ax 3) is satisfied. For
each T-functor g : (Y, b) −→ (X, a) we have

g∗ · eX · a = g◦ · a · eX · a ≥ g◦ · a = g∗,

hence g∗ ∈ Φ. Furthermore, given T-distributors ϕ : X −⇀◦ Y and ψ : Y −⇀◦ Z

in Φ, then

ψ ◦ ϕ = ψ · T
ξ
ϕ ·m◦

X ≤ ψ · eY · b · T
ξ
ϕ ·m◦

X = ψ · eY · ϕ ≤ ψ · eY · ϕ · eX · a

≤ ψ · T
ξ
ϕ · eTX · eX · a ≤ ψ · T

ξ
ϕ ·m◦

X · eX · a = (ψ ◦ ϕ) · eX · a

and therefore also ψ ◦ ϕ ∈ Φ. We have seen that this class of distributors
satisfies (Ax 1), (Ax 2) and (Ax 3). On the other hand, (Ax 4) is not satisfied.

By definition, a T-functor f : (X, a) −→ (Y, b) is Φ-dense whenever, for all
x ∈ TX and y ∈ Y ,

b(Tf(x), y) ≤
∨

x∈X

a(x, x) ⊗ b(eY (f(x)), y).

Hence, each proper T-functor (see [3]) is Φ-dense. In fact, Φ-dense T-functors
can be seen as “proper over V-Cat”, and the condition above states exactly
properness of f if the underlying V-category SY of Y = (Y, b) is discrete.
Furthermore, each surjective Φ-dense T-functor is final with respect to the
forgetful functor S : T-Cat −→ V-Cat. To see this, let f : (X, a) −→ (Y, b) be
a surjective Φ-dense T-functor, Z = (Z, c) a T-category and g : SY −→ SZ a
V-functor such that gf is a T-functor. We have to show that g is a T-functor.
Let y ∈ TY and y ∈ Y . Since Tf is surjective, there is some x ∈ TX with
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Tf(x) = y. We conclude

b(y, y) = b(Tf(x), y)

≤
∨

x∈X

a(x, x) ⊗ b(eY (f(x)), y)

≤
∨

x∈X

c(T (gf)(x), gf(x)⊗ c(eZ(gf(x)), g(y))

≤ c(Tg(y), g(y)).

3.7. Further examples. A wide class of examples of injective topological
spaces is described in [7], where the authors consider injectivity with respect
to a class of embeddings f : X −→ Y such that the induced frame morphism
f∗ : ΩX −→ ΩY preserves certain suprema. A similar construction can
be done in our setting; to do so we assume from now on T1 = 1. For a
T-category X, the V-category of covariant presheafs VX is defined as

VX = {α : 1−⇀◦ X | α is a T-distributor} = {α : X −→ V | α is a T-functor},

and the V-categorical structure [α, β] ∈ V is given as the lifting

X 1,◦
β

o

◦
α⊸β=:[α,β]�

1

◦α

O

for all α, β ∈ VX . Since e1 : 1 −→ T1 is an isomorphism, this lifting of
T-distributors does exist and can be calculated as the corresponding lifting
of V-distributors

X 1.◦
β

oo

◦
~~

1

◦α

OO

Each T-distributor ϕ : X −⇀◦ Y induces a V-functor

ϕ ◦ (−) : VX −→ VY , α 7−→ ϕ ◦ α,

which is right adjoint if ϕ is a right adjoint T-distributor. Given now a class Ψ
of V-distributors, we may consider the class Φ of all those T-distributors ϕ for
which ϕ◦ (−) preserves Ψ-weighted limits. This class of T-distributors is cer-
tainly closed under composition, and contains all right adjoint T-distributors,
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hence it includes all representable ones. Finally, if Ψ-weighted limits are cal-
culated pointwise in VX , then also (Ax 3) is fulfilled. As particular examples
we have the class Φ of all T-distributors ϕ : X −⇀◦ Y for which ϕ ◦ (−)
preserves

(1) the top element of VX , that is, for which ϕ ◦ ⊤ = ⊤. In pointwise
notation, this reads as

∀y ∈ Y .⊤ =
∨

x∈TX

ϕ(x, y) ⊗⊤.

If k = ⊤, then this class of T-distributors coincides with the class of
inhabited T-distributors considered in 3.5.

(2) cotensors, that is, for each u ∈ V and each α ∈ VX , ϕ ◦ hom(u, α) =
hom(u, ϕ ◦ α).

(3) finite infima (cf. [7, Section 6]).
(4) arbitrary infima (cf. [7, Section 7]).
(5) codirected infima (cf. [7, Section 8]).
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