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Abstract: This work assesses the flexural performance of prestressed concrete beams with external
carbon fiber-reinforced polymer (CFRP) tendons, focusing on tendon-related variables. A finite
element analysis (FEA) method is verified. A numerical parametric analysis of prestressed concrete
beams with external CFRP tendons is carried out. Four tendon-related variables are considered,
namely, the area, initial prestress, depth and elastic modulus of tendons. The analysis shows that
flexural ductility decreases as the tendon area, initial prestress or elastic modulus increases but
is insensitive to the tendon depth. The ultimate tendon stress increment (∆σp) is influenced by
all of the four variables investigated. JGJ 92-2016 (Chinese technical specification for concrete
structures prestressed with unbonded tendons) significantly underestimates ∆σp and, hence, is over-
conservative for the strength design of these beams. An equation is proposed for calculating ∆σp,
taking into account all four variables investigated. An analytical model is then developed to estimate
the flexural strength (Mu) of prestressed concrete beams with external CFRP tendons. The proposed
analytical model shows good agreement with FEA, i.e., the mean discrepancy for ∆σp is 0.9% with a
standard deviation of 11.1%; and the mean discrepancy for Mu is −1.6% with a standard deviation
of 2.1%.

Keywords: external prestressing; CFRP tendon; flexural strength; tendon stress; numerical modeling;
analytical model

1. Introduction

External prestressing is a powerful technique for structural rehabilitation and con-
struction [1,2]. The major concern for this technique is the corrosive damage of external
tendons made of conventional prestressing steel. The utilization of fiber-reinforced polymer
(FRP) reinforcement in engineering is widespread [3,4]. The composite reinforcement may
be made of glass fiber-reinforced polymer (GFRP) [5], aramid fiber-reinforced polymer
(AFRP) [6], basalt fiber-reinforced polymer (BFRP) [7] or carbon fiber-reinforced polymer
(CFRP) [8]. Of various FRP composites, carbon fiber-reinforced polymer (CFRP) possesses
the best resistance to creep, namely, it can sustain around 80% of the tensile strength
without experiencing creep rupture [9,10]. Therefore, CFRP is recognized to be ideal for
prestressing applications [11–13]. This non-corrosive composite material is particularly
suitable for external tendons in lieu of conventional prestressing steel in overcoming the
corrosive problem [14,15], as these tendons are exposed to harsh conditions.

Researchers have paid much attention to prestressed concrete beams with external
CFRP tendons. Grace et al. [16] performed a set of laboratory tests including one refer-
ence box-specimen without external tendons, one box-specimen prestressed by external
CFRP tendons and one box-specimen with external CFRP tendons without prestressing.
Their tests showed that the prestressing of girders by external CFRP tendons significantly
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increased the ultimate load-carrying capacities but reduced the ultimate deflection and
flexural ductility. Bennitz et al. [17] tested seven reinforced concrete T-beams including
one reference specimen without external prestressing and six specimens prestressed with
external CFRP tendons. The main investigated variables were the deviator configuration
(no deviators or one deviator at midspan), initial tendon depth and initial prestress level.
Some of the specimens were designed based on the specimens that were prestressed with
external steel tendons and tested by Tan and Ng [18] (i.e., using CFRP tendons instead
of steel tendons). Similar to the findings concluded by Grace et al. [16], the test results
demonstrated that beams with external CFRP tendons experienced higher flexural strength
and lower ductility than the reference beam. In addition, beams with external CFRP ten-
dons exhibited similar behavior compared to the counterparts with external steel tendons.
The slight performance difference between beams with external CFRP and steel tendons
was attributed to their difference in the tendon modulus of elasticity. This observation
was later confirmed by a numerical work in terms of comprehensive aspects of behavior,
including deformation, neutral axis evolution, tendon stress and flexural strength [19].
Contrary to the limited influence of the external tendon type, a numerical study performed
by Pang et al. [20] showed that using FRP rebars instead of steel rebars significantly affected
the structural behavior of concrete beams prestressed with external CFRP tendons.

Although much investigation has been performed, knowledge about externally CFRP
prestressed beams has yet to be further developed. For example, the prestressing tendons
are the primary material controlling the overall behavior of externally post-tensioned beams.
Variables related to CFRP tendons include the tendon area, prestress level, tendon depth
and modulus of elasticity. Note that the CFRP modulus of elasticity covers a large range
and may vary from 80 to 500 GPa according to [10]. So far, the effects of these variables on
the flexural response have not been fully addressed.

In this paper, a finite element analysis (FEA) method is verified with experimental
data. A numerical study is carried out to examine the effects of various tendon-related
variables. Based on the results of numerical parametric analysis, an analytical model is
developed to predict the ultimate tendon stress and the flexural strength of prestressed
concrete beams with external CFRP tendons.

2. Materials, Method and Verification
2.1. Materials and Method

According to [21], the stress–strain (σc–εc) law for compressive concrete is represented by

σc

fck + 8
=

k(εc/ε0)− (εc/ε0)
2

1 + (k− 2)(εc/ε0)
(1)

where fck is the cylinder compressive strength; k is a coefficient and εc0 is the strain corre-
sponding to peak stress.

According to [22], the stress–strain law for tensile concrete is represented by

σc =


Ecεc for εc ≤ εcr

ft

(
εu−εc

εt0−εcr

)
for εcr < εc ≤ εt0

0 for εc > εt0

(2)

where Ec is the concrete elastic modulus; ft is the tensile strength; εcr is the cracking strain
and εt0 = 10εcr.

The stress–strain (σp–εp) law for CFRP prestressing tendons [10] is represented by

σp =

{
Epεp for εp ≤ εpu

0 for εp > εpu
(3)

where Ep is the tendon elastic modulus and εpu is the ultimate tendon strain.
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It is assumed that the stress–strain (σs–εs) law for steel bars [10] is represented by

σs =

{
Esεs for εs ≤ εy

0 for εs > εy
(4)

where Es is the steel elastic modulus and εy is the yield strain.
An FEA method for prestressed beams with external tendons was developed [23]. The

following assumptions are adopted: (1) plane section remaining plane (excluding external
tendons due to their unbonded nature [24]); (2) negligible bond-slip for internal steel bars;
(3) negligible shear deformation (given that prestressed concrete beams generally have a
high slenderness); (4) negligible frictional loss between external tendons and deviators
(this assumption is reasonable in practice but may lead to a bit of an overestimation of
the tendon stress). The Euler–Bernoulli beam theory is employed. The material laws
for concrete and steel bars are introduced by applying the layered method. External
prestressing is transformed into equivalent loads. The analysis consists of two steps. The
first step is to determine the stress and deformation at self-weight only. The second step is
to perform the full-range analysis from zero loads up to failure. During the analysis, as
long as concrete crushing or reinforcement rupture occurs, the beam fails. Details of the
FEA method were reported in [23].

2.2. Verification

Two beam specimens (B4 and B5) are selected herein [17]. The T-beams had a clear
span of 3000 mm, subjected to two concentrated loads at third points, as illustrated in
Figure 1. External tendons were attached with one deviator at the midspan. The specimens
were designed to be identical except for the prestress level, i.e., the initial prestress was
396 MPa for B4 and 889 MPa for B5. CFRP tendons had an area of 100.5 mm2, an elastic
modulus of 158 GPa and a rupture strength of 2790 MPa. The bottom steel bars had an
area of 402 mm2, an elastic modulus of 172 GPa and a yield strength of 560 MPa. The top
steel bars had an area of 201 mm2, an elastic modulus of 187 GPa and a yield strength of
510 MPa. The targeted fck was 30 MPa.
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Figure 1. Specimens prestressed with external CFRP tendons [17].

A comparison between the test and FEA results regarding the load versus deflection
and load versus tendon force for two specimens is illustrated in Figure 2. It is seen that
the FEA is able to reasonably capture the key response characteristics of the specimens
during the complete loading stages, including the cracking, yielding and ultimate limit
states. In addition, both test and FEA results demonstrate that Specimen B5 exhibits higher
cracking and ultimate loads but a lower ultimate deflection and an increase in the tendon
force compared to Specimen B4. This observation indicates the importance of the prestress
level. In the following section, this variable is analyzed in more detail along with other
important variables related to CFRP tendons (tendon area, depth and elastic modulus)
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Figure 2. Comparison with FEA results for test specimens.

3. Numerical Study

Figure 3 shows an externally prestressed concrete reference beam for numerical para-
metric study. The fck is 60 MPa. The tendon area is 1100 mm2. CFRP tendons have a rupture
strength of 1840 MPa, an elastic modulus of 150 GPa and an initial prestress of 1104 MPa.
Either the bottom or top steel bars have a cross-sectional area of 360 mm2, yield strength of
450 MPa and elastic modulus of 200 GPa.
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Figure 3. Externally prestressed concrete reference beam for investigation.

3.1. Effect of Tendon Area

The tendon area, Ap, varies between 200 and 2000 mm2 to examine its effect on the
structural response. Figure 4a shows that, at a small area of 200 mm2, the prestressing effect
is not prominent, just counteracting the effect of the self-weight, i.e., the initial deflection
prior to the live load is around zero. At Ap = 650 mm2 or above, the prestressing effect
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becomes pronounced, leading to an upward deflection at the initial state. However, at
high areas of 1550 and 2000 mm2, there occur excessive prestressing effects. In these cases,
the top face of the critical section has cracked prior to load application, and the upward
deflection is rather big (13.5 and 18.3 mm). It is observed in Figure 4a that as the tendon
area increases, the cracking and ultimate loads significantly increase, while the ultimate
deflection obviously decreases. In this analysis, increasing the tendon area from 200 to
2000 mm2 leads to an increase in the ultimate load by 528.5% and a decrease in the ultimate
deflection by 18.3%. Figure 4b shows that, at the initial state, the self-weight moment is
56 kN·m. A higher tendon area causes substantially higher flexural stiffness and flexural
strength but a markedly smaller ultimate curvature.

Materials 2023, 16, x FOR PEER REVIEW 5 of 16 
 

 

3.1. Effect of Tendon Area 

The tendon area, Ap, varies between 200 and 2000 mm2 to examine its effect on the 

structural response. Figure 4a shows that, at a small area of 200 mm2, the prestressing 

effect is not prominent, just counteracting the effect of the self-weight, i.e., the initial de-

flection prior to the live load is around zero. At Ap = 650 mm2 or above, the prestressing 

effect becomes pronounced, leading to an upward deflection at the initial state. However, 

at high areas of 1550 and 2000 mm2, there occur excessive prestressing effects. In these 

cases, the top face of the critical section has cracked prior to load application, and the 

upward deflection is rather big (13.5 and 18.3 mm). It is observed in Figure 4a that as the 

tendon area increases, the cracking and ultimate loads significantly increase, while the 

ultimate deflection obviously decreases. In this analysis, increasing the tendon area from 

200 to 2000 mm2 leads to an increase in the ultimate load by 528.5% and a decrease in the 

ultimate deflection by 18.3%. Figure 4b shows that, at the initial state, the self-weight mo-

ment is 56 kN·m. A higher tendon area causes substantially higher flexural stiffness and 

flexural strength but a markedly smaller ultimate curvature. 

 

Figure 4. Effect of tendon area on the deformation development. (a) Load-deflection; (b) moment-

curvature. 

The flexural ductility can be expressed by either deflection or curvature ductility, de-

fined as the ratio of deflection or curvature at ultimate to that at yielding. Table 1 presents 

the data for the flexural ductility of beams with different tendon areas. It is seen that the 

flexural ductility quickly deceases as the tendon area increases, i.e., increasing the tendon 

area from 200 to 2000 mm2 leads to a decrease in deflection ductility by 70.8% and curva-

ture ductility by 73.9%. 

Table 1. Effect of tendon area on flexural ductility. 

Ap (mm2) 
Deflection (mm) Curvature (rad/mm) 

Deflection Ductility Curvature Ductility 
Yielding Ultimate Yielding Ultimate 

200 21.9  123.4  5.3  43.3  5.63  8.16  

650 43.2  119.1  5.9  34.3  2.75  5.78  

1100 52.7  110.0  6.6  27.8  2.09  4.24  

1550 57.3  102.7  7.0  20.0  1.79  2.86  

2000 61.4  100.9  7.5  15.9  1.64  2.13  

Figure 5a,b illustrate the tendon stress versus midspan moment and deflection for 

beams with various tendon areas, respectively. In the initial range of loading up to tensile 

cracking, the rate of increase in tendon stress with the moment is independent of the ten-

don area, as demonstrated in Figure 5a. A higher tendon area causes a higher cracking 

moment and, correspondingly, a larger increase in tendon stress at cracking. Moreover, 

Figure 4. Effect of tendon area on the deformation development. (a) Load-deflection; (b) moment-
curvature.

The flexural ductility can be expressed by either deflection or curvature ductility,
defined as the ratio of deflection or curvature at ultimate to that at yielding. Table 1
presents the data for the flexural ductility of beams with different tendon areas. It is seen
that the flexural ductility quickly deceases as the tendon area increases, i.e., increasing the
tendon area from 200 to 2000 mm2 leads to a decrease in deflection ductility by 70.8% and
curvature ductility by 73.9%.

Table 1. Effect of tendon area on flexural ductility.

Ap (mm2)
Deflection (mm) Curvature (rad/mm) Deflection

Ductility
Curvature
DuctilityYielding Ultimate Yielding Ultimate

200 21.9 123.4 5.3 43.3 5.63 8.16

650 43.2 119.1 5.9 34.3 2.75 5.78

1100 52.7 110.0 6.6 27.8 2.09 4.24

1550 57.3 102.7 7.0 20.0 1.79 2.86

2000 61.4 100.9 7.5 15.9 1.64 2.13

Figure 5a,b illustrate the tendon stress versus midspan moment and deflection for
beams with various tendon areas, respectively. In the initial range of loading up to tensile
cracking, the rate of increase in tendon stress with the moment is independent of the
tendon area, as demonstrated in Figure 5a. A higher tendon area causes a higher cracking
moment and, correspondingly, a larger increase in tendon stress at cracking. Moreover, the
ultimate stress increase in tendons decreases as the tendon area increases. In this analysis,
increasing the tendon area from 200 to 2000 mm2 reduces the ultimate stress increase in



Materials 2023, 16, 5197 6 of 16

external tendons by 24.4%. Figure 5b demonstrates that, for the same deflection, a high
tendon area causes a small increase in tendon stress. The slopes of the stress–deflection
relationship for beams with Ap = 200, 650, 1100, 1550 and 2000 mm2 are 2.54, 2.50, 2.45, 2.39
and 2.35 MPa/mm, respectively.
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3.2. Effect of Prestress Level

Five initial prestress levels are considered, i.e., 0, 20, 40, 60 and 80% of the rupture
strength, or, equivalently, the initial prestress, σp0, corresponds to 0, 368, 736, 1104 and
1472 MPa. Figure 6a,b show the load-deflection and moment-curvature behavior of beams
with various prestress levels.
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Figure 6. Effect of initial prestress on the deformation development. (a) Load-deflection; (b) moment-
curvature.

The initial deflection is highly dependent on the prestress level, i.e., a higher prestress
level corresponds to a larger upward deflection. At a prestress level of zero, there is a
downward deflection due to the self-weight effect, as expected. In addition, a higher
prestress level effectively improves not only the cracking load and moment but also the
ultimate load and flexural strength. It is worth mentioning that this observation is different
from the case using bonded tendons. Generally, bonded FRP tendons rupture at failure, and
therefore, the prestress level has practically no influence on the ultimate load or flexural
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strength of the beams [25]. On the other hand, the stress increase in external tendons is much
slower than that in bonded tendons due to strain incompatibility between external tendons
and the adjacent concrete and also the second-order effects [26]. Therefore, the ultimate
stress in external tendons is generally below their rupture strength. The ultimate load or
flexural strength is controlled by the tendon stress and is therefore strongly dependent
on the prestress level in external tendons. Moreover, a higher prestress level results in a
substantially higher flexural stiffness and lower ultimate curvature, while this variable
appears to have a marginal effect on the ultimate deflection. Table 2 presents the data for
flexural ductility for beams with different prestress levels. It is seen that as the prestress
level increases, the flexural ductility quickly decreases. Increasing the initial prestress from
0 to 1472 MPa leads to a decrease in deflection ductility by 70.3% and in curvature ductility
by 60.9%.

Table 2. Effect of initial prestress on flexural ductility.

σp0 (MPa)
Deflection (mm) Curvature (rad/mm) Deflection

Ductility
Curvature
DuctilityYielding Ultimate Yielding Ultimate

0 18.6 116.5 5.0 40.8 6.25 8.13

368 25.8 118.7 5.6 36.3 4.61 6.53

736 45.8 115.2 6.1 32.0 2.51 5.25

1104 52.7 110.0 6.6 27.8 2.09 4.24

1472 56.5 105.0 6.9 22.0 1.86 3.18

Figure 7a,b illustrate the effect of the initial prestress on the tendon stress versus
midspan moment and deflection, respectively. Over the elastic range, the initial prestress
has no impact on the increase in tendon stress as the moment develops, as shown in
Figure 7a. A higher initial prestress corresponds to a higher increment in tendon stress at
cracking but, generally, a lower one at ultimate. In this analysis, increasing the prestress
level from 20 to 80% causes a reduction in the ultimate stress increase in external tendons
by 10.7%. It is seen in Figure 7b that, when deflecting, the greater the initial prestress, the
slower the increase in tendon stress.
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Figure 7. Effect of initial prestress on tendon stress development. (a) Moment versus increase in
tendon stress; (b) increase in deflection versus increase in tendon stress.

3.3. Effect of Tendon Depth

The initial tendon depth (maximum depth), dp, ranging from 400 to 600 mm, is used to
investigate its effect on the structural response. The load-deflection and moment-curvature
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behavior are shown in Figure 8a,b, respectively. From Figure 8, it is seen that a larger
tendon depth registers a larger upward deflection prior to load application. In addition,
the cracking and ultimate loads or moments substantially increase as the tendon depth
increases. In this analysis, increasing the tendon depth from 400 to 600 mm2 causes an
increase in the ultimate load by 74.2%. However, the ultimate deflection, curvatures and
flexural ductility are insensitive to the tendon depth, as presented in Table 3.
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Figure 8. Effect of tendon depth on the deformation development. (a) Load-deflection; (b) moment-
curvature.

Table 3. Effect of tendon depth on flexural ductility.

dp (mm)
Deflection (mm) Curvature (rad/mm) Deflection

Ductility
Curvature
DuctilityYielding Ultimate Yielding Ultimate

400 50.4 110.4 6.5 28.6 2.19 4.42

450 52.0 110.1 6.5 28.2 2.12 4.32

500 52.7 110.0 6.6 27.8 2.09 4.24

550 53.6 109.7 6.6 27.2 2.05 4.13

600 53.8 110.1 6.6 26.7 2.04 4.06

Figure 9a,b illustrate the tendon stress versus midspan moment and deflection for
beams with various tendon depths, respectively. As the tendon depth increases, the ultimate
tendon stress increases substantially. As mentioned previously, the beams with different
tendon depths exhibit approximately the same deformation at ultimate, implying there
are approximately the same concrete strain distributions along the depth of the sections
of these beams. Therefore, the larger the tendon depth, the larger the average change in
the concrete strain at the same level of the external tendons and, thereby, the larger the
tendon stress increase. Due to a lower reduction in the effective tendon depth, a larger
tendon depth assumes relatively less significant second-order effects, which would reduce
relatively less tendon stresses. In this analysis, increasing the tendon depth from 400 to
600 mm causes an increase in the ultimate tendon stress increment by 93.2%. For the same
deflection, the greater the tendon depth, the greater the tendon stress increase. The slopes
of the stress–deflection relationship for beams with dp = 400, 450, 500, 550 and 600 mm are
1.70, 1.96, 2.45, 2.86 and 3.30 MPa/mm, respectively.
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3.4. Effect of Tendon Elastic Modulus

The elastic modulus of CFRP tendons, Ep, ranges from 80 to 500 GPa [10]. Figure 10a,b
show the effect of the tendon elastic modulus on the load-deflection and moment-curvature
behavior, respectively. The beams exhibit identical behavior up to cracking. After that,
the behaviors differ because the contribution of the external tendon becomes increasingly
important. A higher tendon modulus of elasticity mobilizes stiffer behavior of the beams.
As the tendon modulus of elasticity increases, the ultimate load and flexural strength
increase, while the ultimate deflection and curvature tend to decrease. As presented in
Table 4, increasing the tendon elastic modulus from 80 to 500 GPa leads to a decrease in
deflection ductility by 11.1% and in curvature ductility by 31.4%.
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Figure 10. Effect of tendon elastic modulus on the deformation development. (a) Load-deflection;
(b) moment-curvature.

Figure 11a,b show the effect of the tendon elastic modulus on the tendon stress versus
midspan moment and deflection, respectively. At a given moment or deflection level, a high
tendon elastic modulus corresponds to a significantly higher tendon stress. The ultimate
stress increase in external tendons with an elastic modulus of 500 GPa is 5.17 times that of
80 GPa. It should be noted that the stress ratio of 5.17 is smaller than the modulus ratio of
6.25, as a higher tendon elastic modulus would lead to a smaller ultimate tendon strain.
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The slopes of the stress–deflection relationship for beams with Ep = 80, 150, 250, 360 and
500 GPa are 1.33, 2.45, 3.98, 5.57 and 7.43 MPa/mm, respectively.

Table 4. Effect of tendon elastic modulus on flexural ductility.

Ep (GPa)
Deflection (mm) Curvature (rad/mm) Deflection

Ductility
Curvature
DuctilityYielding Ultimate Yielding Ultimate

80 52.6 111.2 6.5 29.0 2.12 4.45

150 52.7 110.0 6.6 27.8 2.09 4.24

250 53.5 107.8 6.6 25.6 2.01 3.87

360 54.6 105.9 6.7 23.2 1.94 3.47

500 54.6 102.7 6.8 20.6 1.88 3.05
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4. Analytical Study
4.1. Method

In externally post-tensioned members, the ultimate tendon stress, σpu, depends on
the whole member deformation, and therefore, its accurate predictions are complicated.
The calculation of σpu is essential for the flexural strength design of externally prestressed
members [27–32]. The stress σpu is commonly expressed by

σpu = σpe + ∆σp (5)

where ∆σp is the ultimate stress increment and σpe is the effective prestress.
JGJ 92-2016 [33] recommended the following equation for predicting ∆σp:

∆σp = (240− 335ω0)(0.45 + 5.5h/L)k1 (6)

where ω0 is the combined reinforcing index; h is the section height; L is the span and k1 is
a coefficient associated with the pattern of loading on continuous beams. For the simply
supported beams considered in this study, k1 = 1.0. The ω0 is expressed by

ω0 =
Apσpe + As fy

bdp fck
(7)

where b is the section width and As and fy are the tensile steel bar area and yield strength,
respectively.
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Figure 12 shows the ∆σp–ω0 relationships for the beams with different tendon-related
variables obtained by FEA along with the JGJ 92-2016 curve. By adopting the key parameter
ω0, JGJ 92-2016 takes into account the effect of the tendon area, prestress level and tendon
depth but neglects the effect of the tendon modulus of elasticity. In addition, JGJ 92-2016
significantly underestimates the value of ∆σp, except for the beam with Ep = 80 GPa.
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Figure 12. Relationships between ∆σp and ω0 according to FEA and JGJ 92-2016.

The numerical analysis demonstrates that the ultimate tendon stress is affected by
all four tendon-related variables, i.e., the tendon area, prestress level, tendon depth and
modulus of elasticity. As the parameter ω0 involves three of the tendon-related variables
(i.e., Ap, dp and σpe), this parameter is adopted in a new equation to be developed herein for
the prediction of ∆σp. As illustrated in Figure 13, fitting to the FEA data about the ∆σp–ω0
relationship of beams with various tendon areas leads to the following expression:

∆σp = 330− 372ω0 (8)
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Note that the above equation does not consider the tendon modulus of elasticity, which
has been demonstrated to be crucial for ∆σp. In order to include the effect of the tendon
elastic modulus, Equation (8) is modified by introducing a coefficient as follows:

∆σp = λE(330− 372ω0) (9)

where λE is a coefficient related with the tendon elastic modulus Ep. The FEA data regarding
the variation in λE against Ep/Eps is presented in Figure 14, where Eps is the elastic modulus
of prestressing steel, taken to be equal to 195 GPa. According to the fit curve, λE is
expressed by

λE = 0.172 + 1.047
(

Ep

Eps

)
(10)
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The axial equilibrium of beams is given by the following equation [34]:

0.85 fckbβ1cu = Apσpu + As fy − A′s f ′y (11)

where β1 = 0.85; A′s and f ′y are the compressive steel bar area and yield strength, respectively
and cu is the neutral axis depth. According to Equation (11), cu is calculated by

cu =
Apσpu + As fy − A′s f ′y

0.85 fckbβ1
(12)

The flexural strength is determined by the following equation [34]:

Mu = Apσpude + As fyds − A′s f ′yd′s − 0.85 fckb(β1cu)
2/2 (13)

where ds and d′s are the depths of tensile and compressive bars, respectively, and de is the
effective depth of external tendons, which is given by

de = Rddp (14)

where Rd is a reduction coefficient due to second-order effects. According to [35], for
third-point loading, the value of Rd is calculated from

Rd = 1.25− 0.01(L/dp)− 0.38(Sd/L) ≤ 1.0 (15)
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4.2. Results

A comparison of ∆σp and Mu for beams with different tendon-related variables pre-
dicted by the simplified models and FEA is presented in Table 5 and Figures 15 and 16.
It is seen that JGJ 92-2016 leads to significant underestimation in ∆σp, and, therefore, this
code underestimates the flexural strength of the beams. The predicted ∆σp is 53.5% of the
FEA data, on average, with a standard deviation of 16.2%, while the predicted Mu is 88.6%
of the FEA data, on average, with a standard deviation of 6.9%. The proposed simplified
model shows much better predictions than JGJ 92-2016. According to the proposed model,
the mean discrepancy for ∆σp is 0.9%, with a standard deviation of 11.1%, while the mean
discrepancy for Mu is −1.6%, with a standard deviation of 2.1%.
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Table 5. Comparison of ∆σp and Mu by simplified models with FEA data.

Ap

(mm2)
σp0

(MPa)
dp

(mm)
Ep

(GPa)

∆σp (MPa) Mu (kN m) (∆σp)sim/(∆σp)fea (Mu)sim/(Mu)fea

JGJ Pro FEA JGJ Pro FEA JGJ Pro JGJ Pro

200

1104 500 150

176 307 313 197 209 228 0.56 0.98 0.86 0.92
650 162 287 298 439 472 474 0.54 0.96 0.93 1.00

1100 147 267 270 655 703 707 0.55 0.99 0.93 0.99
1550 133 247 245 846 904 932 0.54 1.01 0.91 0.97
2000 118 227 237 1014 1078 1135 0.50 0.96 0.89 0.95

1100

0

500 150

182 316 285 172 238 243 0.64 1.11 0.71 0.98
368 171 300 292 343 402 400 0.59 1.03 0.86 1.01
736 159 283 283 504 558 554 0.56 1.00 0.91 1.01

1104 147 267 270 655 703 707 0.55 0.99 0.93 0.99
1472 135 251 255 795 838 867 0.53 0.98 0.92 0.97

1100 1104

400

150

137 253 188 497 530 537 0.73 1.35 0.93 0.99
450 143 261 228 576 616 620 0.63 1.14 0.93 0.99
500 147 267 270 655 703 707 0.55 0.99 0.93 0.99
550 151 272 313 734 790 798 0.48 0.87 0.92 0.99
600 154 276 363 813 877 894 0.42 0.76 0.91 0.98

1100 1104 500

80 147 164 148 655 661 660 1.00 1.11 0.99 1.00
150 147 267 270 655 703 707 0.55 0.99 0.93 0.99
250 147 414 429 655 761 770 0.34 0.96 0.85 0.99
360 147 575 590 655 822 835 0.25 0.97 0.78 0.98
500 147 780 763 655 897 902 0.19 1.02 0.73 0.99

Note: JGJ = JGJ 92-2016; Pro = proposed simplified model; (∆σp)sim and (∆σp)fea = ultimate stress increase in
external tendons predicted by simplified models and by FEA, respectively; (Mu)sim and (Mu)fea = flexural strength
by simplified models and FEA, respectively.

5. Conclusions

By applying a validated FEA method, a numerical study is carried out to examine the
flexural behavior of concrete beams prestressed with external CFRP tendons. Particular
focus is placed on variables related to CFRP tendons, i.e., the area, prestress level, depth
and elastic modulus of the tendons. An analytical model is also developed. The main
conclusions are:

• CFRP tendons play a crucial role in the structural performance of externally prestressed
beams, including the flexural stiffness, ultimate load-carrying capacity, stress increase
in external tendons, deformation and ductility. A higher tendon area, initial prestress or
elastic modulus causes a lower flexural ductility. The ∆σp decreases as the tendon area
or initial prestress level increases or as the tendon depth or elastic modulus increases.

• JGJ 92-2016 significantly underestimates the ultimate tendon stress, and hence, this
code is over-conservative for flexural strength predictions of externally CFRP pre-
stressed beams. The predicted ∆σp and Mu by JGJ 92-2016 are 53.5% and 88.6% of the
FEA data, on average, respectively.

• An equation is proposed to calculate ∆σp, considering the influence of the tendon area,
effective prestress, tendon depth and modulus of elasticity. The proposed analytical
model shows excellent predictions of tendon stress and flexural strength, i.e., the
mean discrepancy for ∆σp is 0.9% with a standard deviation of 11.1%, while the mean
discrepancy for Mu is −1.6% with a standard deviation of 2.1%.
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