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Abstract: We report the DNA-binding properties of three porphyrins with peripheral thienyl sub-
stituents (TThPor, PdTThPor and PtTThPor). The binding capacity of each porphyrin with DNA
was determined by UV-Vis and steady-state fluorescence emission spectroscopy combined with
molecular docking calculations. The results suggest that the interaction of these compounds probably
occurs via secondary interactions via external grooves (minor grooves) around the DNA macro-
molecule. Moreover, porphyrins containing peripheral Pd(II) or Pt(II) complexes (PdTThPor and
PtTThPor) were able to promote photo-damage in the DNA.

Keywords: porphyrins; thienyl-porphyrins; Pt(II) and Pd(II) complexes; DNA; photobiology

1. Introduction

Porphyrins belong to a large family of tetrapyrrole macrocycles. These heterocycles are
present in nature and play a key role in the metabolism of organisms and plants. Generally,
they can be found in metalloenzymes and used as inorganic dyes, photosensitizers and
catalysts for chemical and biological purposes [1–5]. Based on the chemical and physi-
cal properties of porphyrins, these compounds are often studied as photosensitizers in
photodynamic therapy (PDT) and photodynamic inactivation (PDI) treatments [6,7]. PDT
is a non-invasive targeted approach that incorporates a photosensitizer (PS), which can
bio-accumulate in malignant tumor cells. Thus, the combination of PS, light sources and
molecular oxygen can induce microorganism inactivation and tumor cell destruction. In
PDT or PDI treatments, for example, photosensitizers generate singlet oxygen (1O2) by
energy transfer (Type II) or radical species (such as •OH and O2

•−) by electron transfer
(Type I) using appropriate light dosage [8,9].

Notably, tetra(thienyl)porphyrin derivatives (TThPor) and their metallo-complexes are
a relatively underexplored class of aryl-substituted porphyrins that deserve investigation
due to their photophysical, photochemical and chemical properties [10]. Different from
tetra(phenyl)porphyrin derivatives (TPPs), the TThPor compounds differ not only by the
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molecular formula but also by how the aryl rings are conjugated with the porphyrin core
structure, with the thienyl moieties almost in a coplanar conformation in relation to the core
structure. This very particular structural property may also result in different biological
interactions [10]. Therefore, the use of square-planar complexes of Pd(II) and Pt(II) on the
periphery of porphyrins is suitable due to their favorable stereochemistry and possible
lability of ligands during the interaction.

Palladium(II) and platinum(II) complexes can interact with DNA through supramolec-
ular properties or even through the formation of covalent bonds in nucleobases, thus
hindering replication of the resulting DNA. This biomacromolecule exists in many possible
conformations, including the most common forms such as the A-DNA, B-DNA and Z-DNA
polymorphs, with the B-DNA and Z-DNA forms being the most commonly observed in
most organisms. In general, oxidative damage to DNA leads to mutations. Although
guanine is present with cytosine, dihydroguanine (8-oxoG), which is the most frequent
type of oxidative damage to this nucleobase, can cause improper pairing with adenine
through a conformational change, which is a route for mutations [11,12]. In recent years,
several studies have reported DNA interactions with this type of complex [13–18]. Con-
cerning inducing cancer cell death, developing compounds that target and damage DNA
transcription and replication may represent an effective antitumor strategy.

Based on the photophysical properties and biological importance of thienyl-porphyrins
and considering the window of opportunities for biological studies with these com-
pounds, in this study we report preliminary studies on the interaction of tetrathienyl
porphyrins with peripheral Pd(II) or Pt(II) complexes (PdTThPor and PtTThPor, Figure 1)
and biomolecules. The interaction of the porphyrins with DNA was evaluated by multiple
spectroscopic techniques (UV-Vis, circular dichroism and steady-state fluorescence) and
viscosity analysis, combined with molecular docking calculations. Additionally, DNA
breakage damage by capillary electrophoresis technique and photo-oxidation studies by
UV-Vis analysis were also performed.
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Figure 1. Representative structures of tetra(2-thienyl)porphyrins (a) free-base TThPor, (b) palla-
dium(II) PdTThPor and (c) platinum(II) PtTThPor complexes.
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2. Results
2.1. Thienyl-Porphyrins

The free-base meso-tetra(2-thienyl)porphyrin TThPor was previously synthesized and
fully characterized as described in the literature [10]. The meso-tetra(2-thienyl)porphyrin
with Pd(II) and Pt(II) peripheral complexes PdTThPor and PtTThPor were also prepared
and fully characterized as described by Tisoco and co-workers [19].

2.2. DNA-Binding Assays
2.2.1. Binding Properties of DNA by UV-Vis Analysis

Aiming at evaluating the interaction between calf-thymus (CT-DNA) and the
porphyrins TThPor, PdTThPor or PtTThPor, absorption analyses were carried out. The
UV-Vis spectra for the thienyl porphyrins in the absence and presence of successive ad-
ditions of CT-DNA concentrations are shown in Figure 2, and the DNA-binding proper-
ties are listed in Table 1. All UV-Vis spectra of porphyrin TThPor are presented in the
Supplementary Information section (Figure S1).
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Observing the absorption analyses, the successive additions of DNA to Pd(II) and
Pt(II) compound solutions caused hyperchromic effects at the Soret and Q bands without
a red or blue shift, indicating that the porphyrins can interact with DNA, probably via
secondary interactions by external grooves around the DNA macromolecule. As derivatives
containing peripheral complexes of Pd(II) and Pt(II) are positively charged (cationic),
they have potential cationic-anionic electrostatic binding properties with DNA phosphate
units, thus demonstrating a great interaction with nucleic acids, which is in agreement
with several previous studies that reported the activity of positively charged tetrapyrrolic
macrocycles [20–23].
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In this way, the binding constant (Kb) values were determined and are in the order
of 104 M−1 (Table 1), indicating that both porphyrins interact with CT-DNA and that
the presence of peripheral complexes can interfere with the binding affinity of the DNA
structure. Thermodynamic analysis via Gibbs free energy by ∆G◦ values (Table 1) indicated
that all compounds interact spontaneously with DNA, thus reinforcing the results observed
by Kb values. In the next section, the possibilities of interaction between these tetrathienyl
porphyrins in terms of intercalation or via grooves are also investigated by steady-state
fluorescence emission techniques.

2.2.2. Competitive Binding Assays with DNA by Steady-State Fluorescence Emission

The steady-state fluorescence emission analysis involving the competition assays for
the binding between porphyrins and DNA:dye adducts was performed using porphyrin
PtTThPor (Figure 3). The fluorescence Stern-Volmer (KSV), bimolecular quenching rate (kq),
binding (Kb) and ∆G◦ parameters for DNA:dye:porphyrin are listed in Table 1. All fluores-
cence emission spectra of porphyrins TThPor and PdTThPor with DNA:dye adducts are
presented in the Supplementary Information section (Figures S2–S9).

As an example, the fluorescence emission spectra for ethidium bromide (EB) bound to
DNA (fluorescence emission at 652 nm when excited at 510 nm) in the absence and presence
of Pt(II) porphyrin PtTThPor are depicted in Figure 3a. When the porphyrin derivatives
were added to DNA pre-treated with EB dye (general intercalator dye), the PtTThPor
induced a decrease in the fluorescence intensity of the EB:DNA adduct, indicating a
displacement of EB from DNA, which can be assigned as a viable competition between
ethidium bromide dye and porphyrin for DNA strands. Additionally, the same behavior
was observed for the other studied derivatives.
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For acridine orange (AO) competition assays, the steady-state fluorescence emission
spectra for AO bound to DNA (fluorescence emission at 534 nm when excited at 480 nm) in
the absence and presence of porphyrin PtTThPor are depicted in Figure 3b. In this case,
when porphyrins were added to DNA pre-treated with AO dye, the PtTThPor induced
a slight decrease in the fluorescence intensity of the AO:DNA adduct, indicating a little
displacement of AO from DNA, and the corresponding KSV, kq and Kb constant values in
the presence of the studied porphyrins. These values are listed in Table 1.

To evaluate whether the possible interaction of thienyl porphyrins occurs via the
groove site, the minor and major grooves’ dyes: 4′,6-diamidino-2-phenylindole (DAPI)
and methyl green (MG), respectively, were used for the steady-state fluorescence emission
quenching assays (Figure 3c,d). In independent experiments, it was possible to observe
a significant fluorescence quenching of DAPI:DNA and MG:DNA upon successive addi-
tions of porphyrins. Comparing both KSV and Kb values for competitive binding assays
into intercalator dyes EB:DNA and AO:DNA adducts, it can be inferred that there is a
significant variation in the fluorescence quenching constants, mainly in the presence of the
studied porphyrins (Table 1). Overall, the KSV and Kb data variation (~104 M−1) can be
attributed to a preference for porphyrin interaction by the external grooves and not only
by an intercalation phenomenon, agreeing with the CD, viscosity and molecular docking
calculations as described in the next sections as well as in the literature [24,25].

Moreover, the kq~1012 M−1s−1 values for the porphyrins in DAPI and MG solu-
tions are higher than the diffusion rate constant according to literature [26], thus indicat-
ing a ground-state interaction between porphyrins and DNA nuleobases, probably by a
static mechanism).



Molecules 2023, 28, 5217 6 of 16

Table 1. DNA-binding properties of porphyrins TThPor, PdTThPor and PtTThPor by UV-Vis and
steady-state fluorescence emission analysis.

UV-Vis Analysis

Porphyrin H (%) a ∆λ (nm) b Kb (×104; M−1) c ∆G◦ (kcal mol −1) d

TThPor 63.0 0.0 0.92 ± 0.09 −5.40
PdTThPor 44.5 0.0 1.59 ± 0.13 −5.75
PtTThPor 40.0 0.0 1.39 ± 0.21 −5.65

Steady-State Fluorescence Emission Analysis

EB:DNA

Q (%) e KSV (×103; M−1) f kq (×1011; M−1s−1) g Kb (×103; M−1) h ∆G◦ (kcal mol−1) d

TThPor 20.0 4.86 ± 0.04 2.11 ± 0.08 7.44 ± 0.47 −5.30
PdTThPor 27.0 6.14 ± 0.08 2.67 ± 0.15 14.3 ± 0.23 −5.65
PtTThPor 28.0 7.43 ± 0.01 3.23 ± 0.02 11.1 ± 0.18 −5.50

AO:DNA

Q (%) e KSV (×103; M−1) f kq (×1012; M−1s−1) i Kb (×103; M−1) h ∆G◦ (kcal mol−1) d

TThPor 23.0 5.27 ± 0.01 3.10 ± 0.02 5.35 ± 0.55 −5.10
PdTThPor 8.0 1.72 ± 0.01 1.01 ± 0.02 2.01 ± 0.83 −4.50
PtTThPor 7.5 1.50 ± 0.02 0.88 ± 0.04 1.63 ± 0.79 −4.40

DAPI:DNA

Q (%) e KSV (×104; M−1) f kq (×1012; M−1s−1) j Kb (×104; M−1) h ∆G◦ (kcal mol−1) d

TThPor 54.0 2.31 ± 0.05 10.5 ± 0.10 1.42 ± 0.13 −5.65
PdTThPor 36.0 8.98 ± 0.02 40.8 ± 0.04 0.96 ± 0.37 −5.45
PtTThPor 54.0 2.29 ± 0.03 10.4 ± 0.06 2.36 ± 0.14 −5.95

MG:DNA

Q (%) e KSV (×104; M−1) f kq (×1012; M−1s−1) k Kb (×104; M−1) h ∆G◦ (kcal mol−1) d

TThPor 38.5 1.25 ± 0.02 4.46 ± 0.04 3.58 ± 0.28 −6.20
PdTThPor 63.0 3.50 ± 0.02 12.5 ± 0.04 3.74 ± 0.03 −6.25
PtTThPor 62.0 3.42 ± 0.04 12.2 ± 0.08 2.77 ± 0.17 −6.05

a H(%) = (A0 − A)/A × 100%; b Red-shift; c Binding constant by Benesi-Hidelbrandt equation; d Determined
by Gibbs free-energy equation; e Q(%) = (F0 − F)/F × 100%; f Determined by Stern-Volmer quenching constant;
g Determined by the KSV/τ0 ratio, where τ0 = 23 ns (EB:DNA) [27]; h Determined by the modified Stern-Volmer
equation; i Determined by the KSV/τ0 ratio, where τ0 = 1.70 ns (AO:DNA) [28]; j Determined by the KSV/τ0 ratio,
where τ0 = 2.20 ns (DAPI:DNA) [29]; k Determined by the KSV/τ0 ratio, where τ0 = 2.80 ns (MG:DNA) [30].

2.2.3. Viscosity Measurements with DNA and Porphyrins

It is known that viscosity assays are sensitive to changes in DNA structure. As
a complementary technique, viscosity analysis can be considered an efficient method
to determine the possible intercalation or non-intercalation of compounds into DNA
nucleobases [31]. The results of viscosity measurements of all porphyrins, TThPor, PdTTh-
Por and PtTThPor are shown in Figure 4. The DNA viscosity remains almost unchanged
upon the addition of porphyrin derivatives, with an increase in the ratio [porphyrin]/[CT-
DNA]. These results indicate that tetra-thienyl porphyrins are not performing intercalation
between the DNA bases, and they corroborate the steady-state fluorescence measurements
in the presence of EB, DAPI, AO or MG (which probably bind to minor/major grooves).
Despite the relative planarity of thienyl porphyrin derivatives, this is an expected result
since these derivatives still have a steric volume that is not favorable to promoting an
efficient intercalation phenomenon.
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2.2.4. Circular Dichroism (CD) Analysis with DNA

The CD spectra illustrated in Figure 5 reveal that the tetra-cationic Pd(II) and Pt(II)
porphyrins PdTThPor and PtTThPor interact with DNA since their addition causes a
hypochromic effect in the bands present at 219, 246 and 275 nm, thus indicating an alteration
in the DNA strands. In the CD spectra, the helicity characteristic of right-handed B-form
DNA is represented by a negative band at 246 nm, while base stacking is identified by the
positive band at 275 nm (Figure 5a,b). The CD spectra of free-base porphyrin TThPor are
listed in the Supplementary Information section (Figure S10).
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The first transition occurs in the band referring to amides, that is, the peptide bonds of
DNA, while the transitions at 246 and 275 nm are attributed to aromatic amino acids [32,33].
Therefore, these last two bands strongly indicate an interaction of the DNA base pairs and
porphyrins, since the addition of compounds directly affects the DNA structure, especially
in the aromatic regions, altering the molar absorptivity at these wavelengths of circularly
polarized light due to the drastic conformational changes in the overall structure [34,35].
This same behavior has already been observed for similar porphyrin derivatives containing
peripheral platinum(II) complexes [36].

2.2.5. Molecular Docking Analysis with DNA

Molecular docking is a useful approach to offering a molecular-level explanation of the
binding capacity of small compounds to DNA [25]. Thus, in silico calculations via molecular
docking were carried out to suggest the main intermolecular forces responsible for the
binding process between the tetra-thienyl porphyrins and the DNA double-strand, as well
as the corresponding binding site, i.e., minor or major groove and the key nucleobases. The
docking score value (dimensionless) for DNA:porphyrins inside the most possible binding
sites is shown in Table 2.

Table 2. Molecular docking score values (dimensionless) for the interaction between DNA and the
porphyrins under study at the corresponding binding site.

Compound Minor Groove Major Groove

TThPor 69.0 44.5
PdTThPor 66.3 43.5
PdTThPor 62.3 42.2

In the interaction between DNA and studied porphyrins, the highest docking
score value was obtained for the minor groove, e.g., docking scores for DNA:TThPor of
69.0 and 44.5 in the minor and major grooves, respectively, suggesting that the porphyrins
bind preferentially in the minor groove of DNA [37], agreeing with the experimental data
reported above (dye displacement studies). Data from literature also indicated the minor
groove of DNA strands as the main region for other porphyrins, including Ni(II)-[tetra-N-
methyl-pyridyl]porphyrin [38], Mn(III)-bis-aqua-meso-tetrakis(4-N-methylpyridiniumyl)-
porphyrin [39], free-base and Zn(II)-meso-tetra(ruthenated)porphyrins [23].

The best docking pose for the interaction between DNA:porphyrins in a minor groove
is depicted in Figure 6. Molecular docking results suggested that the peripheral groups con-
nected in the meso position of the porphyrin structure are interacting with the nucleobases,
and the porphyrin core is more accessible to the aqueous medium than buried inside the
DNA strands. Van der Waals interactions are the main forces responsible for the interaction
between DNA and porphyrins, relating mainly with adenine and thymine nucleobases
in the minor groove (see Supplementary Information section—Table S1). Finally, in silico
calculations did not detect the possibility of intercalation between the porphyrins and DNA
strands, corroborating the experimental viscometry data (see Section 2.2.3).

2.3. DNA Photo-Oxidation and Damage
2.3.1. DNA Photo-Oxidation by Absorption Analysis

Aiming at evaluating the photo-oxidation processes between DNA and the studied
porphyrins TThPor, PdTThPor and PtTThPor, UV-Vis absorption analyses were carried
out in the presence of white-light irradiation conditions (irradiance of 50 mW cm−2 and a
total light dosage of 90 J cm−2) at 298.15 K. All UV-Vis spectra of compounds are presented
in the Supplementary Information section (Figures S11–S13).
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chloro: green, Pt(II): silver; and Pd(II): dark green.

As previously reported by Tisoco and co-workers, tetra-thienyl porphyrins containing
Pd(II) and Pt(II) polypyridyl complexes generate reactive oxygen species (ROS) under light
irradiation and can cause photo-damage to biomolecules such as serum albumins (in this
case, HSA) [19]. The DNA photo-oxidation parameters in the absence and presence of
selected porphyrins at fixed concentrations are shown in Table 3. It is possible to notice that
the derivatives containing the peripheral complexes of Pd(II) and Pt(II) provide a decay of
the DNA absorbance peak at 260 nm as the solution is irradiated with a white LED source.
This fact agrees with the possibility of these derivatives to photo-oxidize biomolecules,
and this is proven in the next tests of DNA damage by electrophoresis technique (see
next section).

Table 3. Photo-oxidation rate (kpo) constants and half-life times in white-light LED conditions
(irradiance of 50 mW cm−2 and a total light dosage of 90 J cm−2) for 30 min, using TThPor, PdTThPor
and PtTThPor, in the presence of DNA, by absorption analysis at 298.15 K.

Porphyrin Q (%) a kpo (min−1) t1/2 (h)

TThPor 18.0 6.18 × 10−3 ± 0.03 1.87
PdTThPor 25.5 9.41 × 10−3 ± 0.05 1.23
PtTThPor 27.5 1.12 × 10−2 ± 0.04 1.03

a Quenching (Q%) = A0 − A/A0 × 100%.
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2.3.2. DNA Oxidative Damage by Electrophoresis

Analyzing the gels, it is possible to observe the formation of DNA lesions when
exposing the free-base TThPor to white-light conditions (see Supplementary Information
section—Figure S14), mainly at 10 µM. These results, however, do not differ significantly
from the control (p > 0.05). In dark conditions, there is no induction of damage by the
tetra-thienyl porphyrin.

On the other hand, PdTThPor porphyrin caused significant DNA damage propor-
tional to the increase in its concentration when exposed to white light conditions, and the
genotoxicity of the Pd(II) compound remained in the dark (Figure 7a,b). The experimental
control showed considerably more breaks per 1000 base pairs (kbp) when compared to
the negative control, as well as the three concentrations of porphyrin when exposed in
the dark (p < 0.0001). The PtTThPor induced significant DNA damage at the two highest
concentrations (10 µM: p = 0.0005 and 20 µM: p < 0.0001), which was also maintained in
the dark with DNA in solution with 20 µM of porphyrin (p = 0.0033) (Figure 7c,d). For all
treatments, most of the damage identified was in purines, since the Fpg enzyme showed
more activity in all tests.
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Figure 7. Quantification of DNA lesions generated by porphyrins (a) PtTThPor (dark), (b) PtTThPor
(light), (c) PdTThPor (dark) and (d) PdTThPor (light), using a white-light LED source (irradiance of
50 mW cm−2 and a total light dosage of 270 J cm−2) for 90 min. C-: negative control; EC: experiment
control. SSB: single-strand breakage of DNA. FPG SS: Formamido-pyrimidine DNA Glycosylase
Sensitive Sites. ENDO III SS: Endonuclease III sensitive sites. Mean and standard deviation of three
independent experiments. ** p = 0.0033; *** p = 0.0005; **** p < 0.0001.

3. Materials and Methods
3.1. General

All chemical reagents were of analytical grade and purchased from Sigma-Aldrich®

(Burlington, MA, USA) and Oakwood Chemical® (Estill, SC, USA) without any further
purification. The calf-thymus acid desoxyribonucleic (CT-DNA) was lyophilized powder
(Sigma-Aldrich®, São Paulo, Brazil, purity ≥ 99%). The concentration of the stock solutions
of DNA was confirmed by UV-Vis analysis through the Beer-Lambert equation with the
molar absorptivity (ε) value of 6600 M−1 cm−1 for CT-DNA at 260 nm (per nucleic acid) in
Tris-HCl buffer (pH 7.4) solution and the water used in all experiments was milliQ grade.
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3.2. Photobiological Parameters of Porphyrins

Stability, photo-stability, aggregation, ROS generation (by spectroscopy and EPR
analysis) and partition coefficients of porphyrins TThPor, PdTThPor and PtTThPor were
previously described by Tisoco and co-workers [19].

3.3. DNA Interactive Studies

UV-Vis absorption analysis for each porphyrin without and in the presence of suc-
cessive additions of CT-DNA solution was obtained at 298.15 K in a DMSO(5%)/Tris-HCl
pH 7.4 mixture buffered solution in the 250 to 800 nm range. The porphyrin concentration
was fixed at 5.0 µM and CT-DNA was in the 0 to 50 µM range. The hyperchromicity (H%),
red-shift (∆λ), binding constant (Kb) and Gibb’s free-energy (∆G◦) values of the porphyrins
TThPor, PdTThPor and PtTThPor were calculated according to the literature through
Benesi-Hildebrand and free-energy equations [31].

Competitive binding assays between CT-DNA:dyes and thienyl-porphyrins by steady-
state fluorescence emission analysis are recorded and the porphyrins TThPor, PdTThPor
and PtTThPor in DMSO (5%)/Tris-HCl pH 7.4 mixture buffered solution (0 to 100 µM) were
gradually added in a fixed concentration of ethidium bromide (EB; general intercalator;
10 µM; λexc = 510 nm, λem = 550–800 nm), acridine orange (AO; A-T rich intercalator;
10 µM; λexc = 490 nm, λem = 500–800 nm), 4′,6-diamidino-2-phenylindole (DAPI; minor
groove binder; 10 µM; λexc = 359 nm, λem = 380–700 nm), methyl green (MG, major groove
binder; 10 µM, λexc = 318 nm, λem = 330–600 nm) and CT-DNA (10 µM) in DMSO(5%)/Tris-
HCl pH 7.4 mixture buffered solution. The DNA:dye adducts were incubated for 5 min
after porphyrin addition for each measurement. The Stern-Volmer quenching (KSV) and
bimolecular quenching rate (kq) constants of derivatives were calculated according to the
DNA:dye fluorescence quenching using a plot of F0/F versus [porphyrin] and a ratio
of KSV/τ0, where the τ0 denotes the fluorescence lifetime of DNA:dye (EB = 23.0 ns;
AO = 2.20 ns; DAPI = 1.70 ns; MG = 2.80 ns), respectively. Binding (Kb) constant and
free-energy interaction (∆G◦) values are obtained by modifying Stern-Volmer and Gibb’s
equation according to the literature [40].

Viscosity analyses were carried out using an Ostwald viscometer immersed in a water
bath maintained at 298.15 K, according to the literature [41]. The CT-DNA concentration
was kept constant in all experiments, while the porphyrin concentration was increased in
the DMSO(5%)/Tris-HCl pH 7.4 mixture buffered solution. The flow time was measured
at least three times with a digital stopwatch (Casio®), and the mean value was calculated.
Data are presented as (η/η0)1/3 versus the ratio [porphyrin]/[CT-DNA], where η and η0 are
the specific viscosities of CT-DNA in the presence and absence of the porphyrins TThPor,
PdTThPor and PtTThPor, respectively.

Also, the circular dichroism (CD) spectra of the DNA solutions and in the presence of
porphyrins TThPor, PdTThPor and PtTThPor were recorded in a Jasco spectropolarimeter,
model J810-150S, at 298.15 K. The experiment was carried out starting with a solution of
DNA dissolved in 50 mM Tris-HCl buffer (pH = 7.4) with 1.0% DMSO. The CD spectrum
of this solution was recorded, and then aliquots of the solutions of each porphyrin were
added in a concentration range between 11 and 55 µM with the same solvent, recording the
spectrum after each addition.

3.4. Molecular Docking Procedure with DNA

The crystallographic structure of the DNA was obtained from the Protein Data Bank
(PDB) with access code 1BNA [37]. The chemical structure of the porphyrins TThP,
PdTThPor and PtTThP was built and minimized in terms of energy by Density Func-
tional Theory (DFT), available in the Spartan’18 software (Wavefunction, Inc., Irvine, CA,
USA) [42]. Molecular docking calculations were performed with GOLD 5.7 software
(Cambridge Crystallographic Data Centre, Cambridge, CB2 1EZ, UK) [43]. Hydrogen
atoms were added to the DNA following tautomeric states and ionization data inferred
by GOLD 5.7 software (version 2022.3, Cambridge, UK). In silico calculations were per-
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formed in a 10 Å radius around the two main possible binding sites (major and minor
grooves) [44]. The standard ChemPLP was used as a scoring function due to the best
results obtained in previous work for porphyrins [45]. The figures for the best docking pose
were generated with PyMOL Delano Scientific LLC software (Schrödinger, New York, NY,
USA) [45]. Additionally, this same software was also used to detect the main interactions
among TThP/PdTThPor/PtTThPor and nucleobases through a cut-off for the interaction
of 4.2 Å [46] and an analysis of van der Waals radius superposition.

3.5. DNA Photo-Oxidation by UV-Vis Analysis

The photo-oxidation assays of DNA were conducted by absorption UV-Vis analysis
at room temperature. Stock solutions of DNA (5.0 µM) were prepared in Tris-HCl buffer
(pH 7.4) containing TThP, PdTThPor and PtTThP (at 5.0 µM) and the solutions were
irradiated with a white-light LED source (irradiance of 50 mW cm−2 and a total light
dosage of 90 J cm−2) in a time period of 30 min. The DNA was absorbed at 260 nm, and the
plots of ln A0/A versus time for DNA gave a straight line from which the photo-oxidation
rate (kpo) constant was calculated.

3.6. Electrophoresis and Detection of DNA Oxidative Damage

The DNA template used for the detection and quantification of oxidative damage
by porphyrins TThP, PdTThPor and PtTThP was the plasmid pCMUT, extracted from
Escherichia coli. The plasmid was exposed to concentrations of 5.0 µM, 10 µM and 20 µM of
the porphyrins, in the dark and in white-light LED conditions (irradiance of 50 mW cm−2

and a total light dosage of 270 J cm−2) for a period of 90 min using the DNA dosimeter
system. After exposure, the DNA was incubated at 37 ◦C for 60 min with the enzymes
formamido-pyrimidine DNA glycosylase (Fpg) and endonuclease III (Endo III), which
recognize and cleave oxidized bases, mainly purines and pyrimidines, respectively.

In addition, the DNA was incubated without the presence of enzymes to detect
single-stranded breakage (SSB). Then, the solutions were submitted to 0.8% agarose gel
electrophoresis. The documentation of this gel was performed using the photo-documenter
Amersham Imager 600 (General Electronic). In the gel, we are able to see if the exposure to
the porphyrins under different conditions caused damage to DNA. When there is no DNA
damage, a lower band is formed in the gel (FI), since the plasmid will stay in its supercoiled
form. In the case of DNA damage, a second upper band is formed since the DNA is in a
more relaxed form due to the enzyme’s activity.

Damage quantification was performed by band densitometry using the Image Quant
300 program (GE Healthcare, USA) [47]. Statistical analysis was performed using the
GraphPad Prism program using the One-Way ANOVA test followed by Sidak, with a
confidence interval of 95% (p < 0.05).

4. Conclusions

In summary, these results indicate that the thienyl-porphyrins with Pd(II) or Pt(II)
polypyridyl complexes are promising dyes for DNA interaction. The insertion of the periph-
erally coordinated Pt(II) or Pd(II) complexes resulted in increased interaction with nucleic
acids when compared to the non-cationic free-base porphyrin TThPor. These derivatives
interact probably via secondary interactions via minor grooves around the DNA nucle-
obases, showing good binding parameters determined by absorption and emission analysis
and molecular docking calculations. Additionally, Pd(II) or Pt(II) complexes (PdTThPor
and PtTThPor) were able to promote photo-damage in the DNA, thus evidencing the main
purpose of this work, which was to demonstrate the potential interaction and damage
induction of these porphyrins in DNA. These findings may open up many opportunities
for further studies on PDT treatments and their mechanisms of action.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28135217/s1, Figure S1: UV-Vis spectra of the TThPor
upon successive additions of CT-DNA concentrations (0 to 50 µM) in DMSO(5%)/Tris-HCl pH 7.4
mixture buffered solution. Graph plots of A0/(A – A0) versus 1/[CT-DNA]; Figure S2: Steady-
state fluorescence emission spectra for EB:DNA without and in the presence of porphyrin TThPor,
in DMSO(5%)/Tris-HCl pH 7.4 mixture buffered solution. Graphs plots shows the F0/F versus
[porphyrin]; Figure S3: Steady-state fluorescence emission spectra for AO:DNA without and in the
presence of porphyrin TThPor, in DMSO(5%)/Tris-HCl pH 7.4 mixture buffered solution. Graphs
plots shows the F0/F versus [porphyrin]; Figure S4: Steady-state fluorescence emission spectra
for DAPI:DNA without and in the presence of porphyrin TThPor, in DMSO(5%)/Tris-HCl pH 7.4
mixture buffered solution. Graphs plots shows the F0/F versus [porphyrin]; Figure S5: Steady-
state fluorescence emission spectra for MG:DNA without and in the presence of porphyrin TThPor,
in DMSO(5%)/Tris-HCl pH 7.4 mixture buffered solution. Graphs plots shows the F0/F versus
[porphyrin]; Figure S6: Steady-state fluorescence emission spectra for EB:DNA without and in the
presence of porphyrin PdTThPor, in DMSO(5%)/Tris-HCl pH 7.4 mixture buffered solution. Graphs
plots shows the F0/F versus [porphyrin]; Figure S7: Steady-state fluorescence emission spectra
for AO:DNA without and in the presence of porphyrin PdTThPor, in DMSO(5%)/Tris-HCl pH 7.4
mixture buffered solution. Graphs plots shows the F0/F versus [porphyrin]; Figure S8: Steady-state
fluorescence emission spectra for DAPI:DNA without and in the presence of porphyrin PdTThPor,
in DMSO(5%)/Tris-HCl pH 7.4 mixture buffered solution. Graphs plots shows the F0/F versus
[porphyrin]; Figure S9: Steady-state fluorescence emission spectra for MG:DNA without and in the
presence of porphyrin PdTThPor, in DMSO(5%)/Tris-HCl pH 7.4 mixture buffered solution. Graphs
plots shows the F0/F versus [porphyrin]; Figure S10: CD spectra for DNA solution in Tris-HCl buffer
(pH = 7.4, 1% DMSO) before and after successive additions of porphyrin TThPor; Figure S11: DNA
photo-oxidation assay by UV-Vis analysis in DMSO(5%)/Tris-HCl pH 7.4 mixture buffered solution
of porphyrin TThPor; Figure S12: DNA photo-oxidation assay by UV-Vis analysis in DMSO(5%)/Tris-
HCl pH 7.4 mixture buffered solution of porphyrin PdTThPor; Figure S13: DNA photo-oxidation
assay by UV-Vis analysis in DMSO(5%)/Tris-HCl pH 7.4 mixture buffered solution of porphyrin
PtTThPor; Figure S14: Quantification of DNA lesions generated by porphyrins (a) TThPor (dark)
and (b) TThPor (light), using white-light LED source (irradiance of 50 mW cm−2 and a total light
dosage of 270 J cm−2) for 90 min. C-: negative control, EC: experiment control. SSB: single-strand
breakage of DNA. FPG SS: Formamido-pyrimidine DNA Glycosylase Sensitive Sites. ENDO III SS:
Endonuclease III sensitive sites. Mean and standard deviation of three independent experiments.
** p = 0.0033; *** p = 0.0005; **** p < 0.0001; Table S1: Molecular docking results for the interaction
between DNA:TThPor, DNA:PtTThPor, and DNA:PdTThPor in the minor groove.
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