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Abstract: This paper addresses the problem of summer branch drop (SBD) in urban forests, namely
through detecting the causes of this unpredictable event, aiming at preventing and increasing the
control of this phenomenon, while using the most recent methodologies to detect wood deterioration,
namely visual tree assessment (VTA), drilling resistance, and acoustic tomography, in an isolated
and associated way. The study considers events in the cities of Arcos de Valdevez in Viana do
Castelo district (Site 1), Ponte de Lima in Viana do Castelo district (Site 2), Montemor-o-Novo in
Évora district (Site 3), and Paços de Ferreira in Porto district (Site 4), targeting trees of public interest.
Given the phytosanitary condition recognized using nondestructive equipment, a set of measures
for the preservation of the tree elements and their history are suggested. SBD is mostly related to
internal degradation. A VTA diagnosis, applied in isolation, could lead to an incorrect prognosis
of the internal degradation. So, it is important to confirm of the presence of biotic agents through
equipment (acoustic tomography and drilling resistance). Even with instrumental diagnostics, for
reducing the subjectivity of the approach to estimating the SBD, a global analysis is necessary,
including dendrometric parameters, predisposing or inciting factors, lower tree defences against
internal degradation due to environmental conditions, and biotic agents.

Keywords: nondestructive testing; physical and biological investigations; urban forest; tree health
assessment; ultrasonic waves

1. Introduction

Great benefits can be obtained from the presence of trees in an urban environment,
namely the improvement of air quality, the thermal regulation of cities, the preservation
of local biodiversity, and the contribution to the infiltration of water into the soil [1,2].
However, the maintenance of green spaces in general should not overlook the existence of
potential events causing damage both in people and public and private property, particu-
larly in urban centres.

Tree growth is determined by climate (exposure to the elements and water availability),
location, species, age, and time of the year. In addition to genetic variability, there is a wide
range of actions that must be differentiated, even in specimens of the same species and age,
from the improvement of infrastructures to fertilization, phytosanitary treatments, pruning,
surgeries, and fertility corrections [3,4].

The overall condition of the tree allows for an analysis of the interventions to be
considered to improve the phytosanitary health of each specimen, as well as its viability
and safety. The phytosanitary evaluation comprises the overall condition of the tree, both
in quantity and quality, and the explanation of all parameters analysed from root/column,
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stem, and crown, among others. For that, it is necessary to determine physical and mechan-
ical properties, besides stability and the normal and shear stresses [2–6], and to develop
procedures for testing the presence of decay [3,7–13]. Overall, it is about determining tree
health condition without the use of invasive tests that will harm it [13–20].

One of the visual risk assessment methods most commonly used is visual tree as-
sessment (VTA), which provides basic information about tree growth performance and
stability [21], considering failure potential, likelihood of impact, and consequences of
failure [22–26]. It allows the identification of symptoms of fragility and signs of cubic
brown rot at the crown collar and stem, and some weakness of the crown, given its
overall transparency.

To better consider the phytosanitary and stability conditions of the tree, it is necessary
to consider the predisposing, inciting and contributing factors that underline the spiral of
decline model proposed by Manion [27].

Predisposing factors are intrinsic to the site or the tree and can influence the condition
of the tree in the medium or long term, for example, urban environment, soil compaction,
and lack of light. Inciting factors are those that refer to abiotic or man-made episodes, for
example, severe pruning, root cutting and air pollution. Contributing factors are those
that contribute to accelerating the decline of the phytosanitary condition of the tree, such
as deterioration by biological agents. These factors contribute to accelerating decline and,
in most cases, result from multiple causes, for example, Armillaria mellea and Ganoderma
lucidum [27–29].

Tree inspection is conducted through employing either a combination or independent
utilization of nondestructive methods, which include visual assessment, drilling techniques,
acoustic methods, tomography, and ground-penetrating radar [30].

Relying solely on visual assessment is inadequate since it does not always enable
us to accurately determine the health conditions of trees. To supplement these findings,
additional analyses are necessary. Instrumental analysis plays a crucial role in minimizing
variability and enhancing the current understanding of tree risk assessments. In this regard,
various technological tools are available to aid tree inspection [31], providing parameters
for calculating the risk of tree fall [32–34].

These nondestructive techniques are used to determine wood’s physical and mechani-
cal properties [35] and presence of decay [36], which is the focus of this paper.

Acoustic techniques (stress wave and ultrasound) and drilling resistance stand out
due to low cost and portability. With the technology bases of acoustic techniques al-
ready consolidated, studies aiming at tree inspections target improvement and evolution
including equipment, probes, algorithms, and system optimization, contributing to a bet-
ter understanding of elastic wave propagation and application of anisotropy correction
factors [37–41].

Acoustic tomography detects the presence of anomalies or deterioration using charac-
teristic parameters of the wave (propagation time, amplitude, or spectrum frequency) [37].
Wave propagation is affected by materials with different acoustic impedance and therefore
different velocities [37,42].

In solids with cavities, the velocity of wave propagation decreases. The deviations
occur because mechanical waves seek out a material medium to propagate [43]. The
principle of operation considers the velocity of wave propagation in a solid body. The
velocity will be greater the higher the material homogeneity, that is, stress waves
are slower in deteriorated wood than in solid wood. Wood mechanical and acoustic
properties are influenced by changes in the wood structure [37], such as the tree age,
sanity condition, and height of the stem [44,45], or defects caused by irregularities of
different natural growth patterns (grain deviation, knots, pockets, resin, etc.), generat-
ing differences in material and consequent variation in wave propagation velocity and
the amplitude of the emitted signal.
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The output of the sonic or ultrasonic tomography will be images, which represent
the velocity ranges obtained inside the material [36,46]. Earlier difficulties were found
regarding ultrasound tomography, which led to the use of stress waves in the first proposals
for generating tomography from wave propagation measurements. In fact, the control of
the frequency used enables one to adjust the frequency to the material and therefore obtain
better results [47–49]. For example, in the case of large trees, the propagation of the wave
throughout the wood suffers a decrease, and so using low-power ultrasound equipment in
these cases will not work properly.

The images resulting from analysis via acoustic technologies (stress wave or ultra-
sound) are created combining colours with velocity bands. It is possible to detect variations
in tissue characteristics (biodeterioration due to fungal attacks) with consequent variations
in stiffness and strength, and also with variations in the wave path caused by the presence
of cracks or cavities. When it comes to wood, the fact that it is an orthotropic material (three
perpendicular directions in which the properties are different) results in a special difficulty
for the interpretation of tomography results; hence, it is not adequate to use a reference
velocity [48,49], as is normally used in homogeneous and isotropic materials. So, for wood,
the more effective method is to use, as a reference, the maximum velocity obtained in the
inspected material itself.

There has been considerable research on improving techniques that can detect and
locate internal defects on woods using images obtained from tomography, and that can
measure the accuracy of the acoustic tomograph [39,48,50–52]. The results obtained with
acoustic tomography must be interpreted taking into account the following inputs: the
ones used during the measurement (type of mesh and number of measurement points),
the construction of images (software, interpolation algorithms), and the reference velocity
to identify areas inside the stem (sound and deteriorated wood as well as cavities) [53].
In the end, it is essential to be able to recognise patterns, both the interference generated
by the simplified interpolation method used by the software and the recognition of areas
effectively affected by different types of deterioration.

For better certainty of observations, the tomographic images should be complemented
with measurements of drilling resistance, as it allows for a higher resolution along the
reading line and confirms the biodeterioration processes or cavities observed in sonic
tomography [54,55]. Wood drilling resistance has been used since 1988 [56], targeting
the identification of deteriorated areas in wooden structures, logs, or trees [9,10,54,57–59].
Measurements are made along the penetration of a drill, with constant rotation and trans-
lation movement. Furthermore, the digital wood inspection drill, when applied together
with VTA and tomography, contributes to a more accurate assessment of biodeterioration
processes [10]. Notice that the isolated use of this technique is only reliable in advanced
stages of decay [60]. For this technology, the drill needs to be very thin (approximately
5 mm in diameter) in order to capture variations in the material’s drilling resistance with-
out causing damage to the material and simultaneously avoiding resonance effect [61].
During the drilling process, the feed force and the feed rate can be measured continuously
as a function of the position of the drill bit in its path. As the drill moves through the
wood in a linear path, the penetration resistance along its path is measured and recorded.
The pattern of change in relative resistance is recorded in an amplitude graphic through
digital representation.

Summer branch drop (SBD) may be the result of an internal weakening of the branch
and stress factors triggering the break. The initial weakening may result from winter storm
damage or snow accumulation producing internal cracks and stresses.

SBD is commonly associated with calm weather conditions following a heavy rain
shower which terminates a period of increasing soil dryness. The trigger may be water
stress; this is known to cause cracks in conifer stems and may be responsible for producing
an analogous condition in broadleaved trees. During the early summer, the weight of fresh
foliage and new shoots, combined with the weight of developing fruits, may be increased so
much by surface water following a rain shower that a turning moment develops, resulting
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in branch fracture. Alternatively, incipient decay may also reduce the strength of the wood
and could account for the short fracture sometimes recorded. In other words, SBD refers to
the occurrence of mature branches failing during the summer season. This phenomenon is
unpredictable, making it a challenge for scientists to identify its underlying causes. This
occurrence can be surprising and concerning, as branches may fall unexpectedly, posing a
risk to people and property beneath the trees.

Considering the technologies available for the inspection of urban trees, this paper
focuses on the assessment of SBD in urban forests, namely on detecting the causes and
analysing the SBD of wood within the separation that has happened, using case studies of
events that occurred in four Portuguese cities.

2. Materials and Methods
2.1. Study Site

This paper refers to a case study of four Portuguese cities (Figure 1), corresponding to
four sites. Site 1 (S1) is in Parque da Ínsua, in the city of Arcos de Valdevez, in Viana do
Castelo district. Site 2 (S2) is in Palacete Villa Morais and Platanus Avenue, in the city of
Ponte de Lima, in Viana do Castelo district. Site 3 (S3) is in Mercado Municipal of the city
of Montemor-o-Novo, in Évora district. Site 4 (S4) is in the Praça Dr. Luís Garden, in the
city of Paços de Ferreira, in Porto district.
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The diagnosis was performed considering dendrometric and phytosanitary parame-
ters. Dendrometric equipment and the VTA (visual tree assessment) method were used,
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as described in Sections 2.2 and 2.3. To estimate the failure condition where the area and
severity of the injury was higher, diagnostic aids were used, with the methodology pre-
sented in Section 2.4. This analysis aims to incorporate data regarding the quantification of
deterioration. In Section 2.5, the laboratory analysis methodology used in S4 are presented.
The analyses aim to approach the association of biology and engineering knowledge.

For all sites, we addressed the dendrometric measurements and VTA analyses. In S1,
only VTA was addressed to verify if only VTA analysis is enough or if it is necessary to
use instrumental diagnostics to improve the identification of the dimension and severity
of internal lesions and decrease the uncertainly of the probability of fracture from SBD.
In S2, S3, and S4, instrumental analysis was addressed. In S1 and S2, the risk matrix
was addressed. In S3 and S4, the risk matrix was not generated because the analysis was
performed after SBD.

2.2. Dendrometry

The dendrometric parameters measured were the diameter of breast height (DBH),
perimeter of breast height (PBH), height of the tree (H), height of the base of the crown
(HBC), and average crown diameter (ACD). For H, HBC, and ACD measurements, an
electronic hypsometer (Vertex IV, Haglöf, Sweden) was used with 1-decimetre precision.

For measuring the average crown diameter (ACD), the vertical projection of the end
of the branches was estimated visually, measuring to the other end. Height of the base of
the crown (HBC) refers to the average height of the first living branches and twigs, which
are often at a height lower than the insertion of the first branches.

To obtain the exact geographical coordinates (latitude and longitude), a new generation
Global Navigation Satellite Systems (GNSS) receiver was used (Spectra Geospatial SP60,
Trimble Inc., USA), with simultaneous signal reception from satellites in the US constellation
(NAVSTAR GPS), Russia (Glonass), Europe (Galieleu), China (BeiDou) (SBAS-EGNOS),
and the SERVIR network, programmed to the global geographic datum in WGS84 (World
Geodetical System, 1984). Please state the name of the manufacturer, city, and country from
where the equipment was sourced.

In field work, the tree was identified on the stem with a temporary tag, recording
the sector and specimen number. This numbering allows a more precise identification
of the trees in the field during the different evaluation work or the implementation of
the proposed interventions. All these data were inserted in the IDTREE application,
Ref. [62] a valuable resource in field work of urban forestry studies. This application creates
a database concerning tree health assessment, related to diagnoses and interventions,
making it accessible in real time to all involved in the management of green spaces, and
consequently substantially reducing the time spent in field work. In other words, the
application creates a history for each tree and allows greater agility in the management
of the interventions to be carried out; that is, it contributes to the best systematization of
data, facilitating their editing process during field work and their further analysis. It also
implies the improvement of the management of arboreal heritage in urban environments.
The IDTREE application is created from the Appsheet platform. It allows information on
tree assessments to be entered and updated in an alphanumeric database, in this case, a
Google Drive spreadsheet [63].

2.3. Visual Analysis

Visual tree assessment analysis (VTA) provides basic information about tree growth
performance and stability, considering the failure potential, likelihood of impact, and
consequences of failure [62]. This method is based on the axiom of constant tension, i.e.,
the fact that trees grow while maintaining uniform tension throughout their structure [64].
When this model is altered by a situation of decay, biotic or abiotic aggression, the tree
tends to re-establish balance with a deposition of reparative material [36].

To better assess the phytosanitary and stability conditions of the tree, a number of
predisposing, inciting and contributing factors were considered, as displayed in Table 1 [27].
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Table 1. Factors that underlie the spiral of decline model proposed by [24]. Adapted from [32].

Predisposing Factors Inciting Factors Contributing Factor

Urban environment Drought Biotic agents

Soil compaction Floods

Genetic potential Severe pruning

Age Excavation

Lack of light Air pollution

Sea proximity Overwatering

Root cutting

Table 2 displays the indicative signs or symptoms related to visual analysis that were
considered.

Table 2. Indicative signs or symptoms related to visual analysis [32].

Root Cavity; Injury; Surface

Stem Cavity; Injury; Codominance; Inclined; Adventitious; Spheroplast;
Included bark; Protuberance

Branch Cavity; Wound; Codominance; Dense; Dry: Large; Slender

Twig Adventitious; Dry; Low; Dense

Leaf Dry; Necrosis; Chlorosis; Small; Large; Perforated; Epinasty

Crown Dead; Dieback; Transparent; Inclined; High; Low; Unbalanced; Dense

Biotic Agents White rot; Brown rot; Soft rot; Fumagine; Aphids; Anthracnose;
Xanthogaleruca luteola; Termite; Other phytopathogeneses

Lesion Height; Width; Depth; Height above the ground; Distance to the back
wall; Thickness of the front wall; Tree diameter at lesion entrance

2.4. Risk Matrix

The risk scale combines colours relating to the tree risk with the tree’s contributions
to the urban benefits. Tree risk relates to the probability of damage or health problems
occurring in the event of falling branches or tipping of the tree.

The green colour represents low risk, light yellow represents moderate risk, dark
yellow represents high risk, and ultimately, red represents an extreme level of risk.

For the tree risk, the following variables were considered:

(a) Tree height (0–40 m; 25% weighting);
(b) Probable target relative to the occupation of the space (1–5; 20% weighting);
(c) Visual analysis (0–20; 25% weighting);
(d) Probability of fracture (0–1; 30% weighting).

For the tree’s contribution to the urban ecosystem, the tree height was considered.

2.5. Instrumental Analysis

In the instrumental analysis, the Arbotom (Rinntech Arbotom Tomograph) and Resisto-
graph (Rinntech MHL 50) were used. These instruments represent the techniques of acoustic
tomography and drilling resistance.

For tomography, the arrangement of the 13 sensors was used in a radial direction to
ensure a good diffraction mesh (Figure 2).
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Figure 2. Example of diffraction mesh and arrangement of the 13 sensors (1–13) used in sonic
tomography in Quercus robur.

The assessment was performed on the stem at a height of 2.20 m with the reception
and emission of the sound waves around the stem (Figure 3).

Mechanical behaviour is obtained through the Arbotom equipment and indicates
the evaluation and visual presentation of strength for any cross-sectional geometry. It is
possible to verify the failure moment for all wind directions. All the deteriorated areas and
the different tensile and compressive strengths of the wood were considered.

For drilling resistance, several measurements were taken with the resistograph, both
on the stem and on the branches, in the failure area. This test allows us to obtain a graphic
of drilling resistance amplitude versus drilling depth, used to visualize and measure drops
in amplitude, which is representative of decreases in drilling resistance in the section
traversed by the needle.
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2.6. Laboratory Analysis

Laboratory analysis was carried out to identify the fungi involved in wood degrada-
tion. The plant material received in the laboratory was cut into 3 mm pieces and laboratory
analysis was performed with the following analytical methods:

− Surface disinfection in 70% alcohol;
− Immersion of the plant material in sterile distilled water;
− Inoculation of the plant material in PDA (potato dextrose agar) medium;
− Incubation of Petri dishes at 30 ◦C for 36 h;
− Periodic observation and transfer of colonies morphologically resembling typical Gan-

oderma lucidum colonies from PDA to SNA (Spezieller-Nährstoffarmer agar) medium;
− Incubation at 30 ◦C;
− Microscopic observation and evaluation of morphological characteristics;
− Periodic observations of fungal colonies with identification based on reproduction structures.
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The primary objective of the laboratory analysis is to uncover a potential biotic agent
that may have gone unnoticed during visual assessment. Once successfully identified,
it becomes imperative to ascertain whether this biotic agent possesses the capability to
degrade lignin. Such a metabolic ability significantly impacts the structural integrity of
wood; for this reason, morphologically similar colonies were transferred from PDA to
SNA medium. This approach combines biology knowledge (biotic agents) and engineering
knowledge (structural stability).

3. Data Analysis and Results
3.1. Dendrometry

The trees that were subject to analysis had a height varying around 11 to 31 m
and DBH around 60 to 150 cm (Table 3), and so it was very important to carry out
tree risk assessment.

Table 3. Dendrometric parameters—perimeter of breast height (PBH); diameter of breast height
(DBH); average crown diameter (ACD); height of the base of the crown (HBC); height of the tree (H);
age (A).

SITE SPECIE PBH (cm) DBH (cm) ACD (m) HBC (m) H (m) A (years)

S1 Tilia tomentosa 73.2 12.0 3.2 27.0 41—50

S1 Populus nigra 91.4 22.2 3.9 30.7 31—40

S2 Platanus x hispanica 357.8 113.9 19.6 7.2 28.5 130

S2 Fagus sylvatica 149.3 15.0 5.8 22.1

S3 Ulmus carpinifolia 188.5 60.0 14.4 2.5 17.4 60—70

S3 Tilia cordata 58.5 8.1 2.4 11.2 30—40

S4 Quercus robur 391.1 124.5 22.3 1.8 18.0 >150

3.2. Assessment of SBD in Site 1—Arcos de Valdevez

The first diagnosis was made in May 2022. The evaluation was conducted utilizing a
lifting platform to provide a comprehensive assessment of the branches. This approach was
chosen to better examine the condition of the branches, especially considering factors such
as codominance, an unbalanced crown, and the overall height of the specimen. The use of a
lifting platform facilitated a more thorough and accurate evaluation of the tree’s branches.

During the diagnosis, large branches were observed but without decay symptoms.
Furthermore, no lesions were observed on branch insertion. In August 2022, a big branch
collapsed and a few symptoms of decay on insertion were observed. The collapse was also
induced by the weight and length of the branch (Figure 4).
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Another case study in S1 was a Populus nigra. This specimen had several serious
problems in all organs. The crown had dieback symptoms, with dry branches (Figure 5).
The predisposing factor for this tree was the age.
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Cavities were observed in the stem and the presence of the biotic agent Ganoderma sp.
was detected on a large scale (Figure 6).
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Figure 6. Ganoderma sp.

The degeneration of woody tissues in this specimen is extensive, not only of tissues
responsible for structural strength (xylem), but also of tissues that allow the flow of water
and nutrients (phloem) between all organs of the tree, leading to a bad overall quantitative
condition, and it is recommended to replace it with another tree. To detect a potential SBD,
it is important to look for signs of stress, such as dieback, cracks, splits, or decay.

Figure 7 shows the risk matrix. The evaluated tree is inserted in the range of high risk
to people and property. This result was due to its height, its poor phytosanitary situation
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with problems in all its organs, and the presence of biotic agents. All symptoms indicate an
SBD specimen, and a pathology at high temperatures represents a reason for SBD.
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3.3. Assessment of SBD in Site 2—Ponte de Lima

The first diagnosis was made in May 2022. During the diagnosis, a large branch
infected with white degradation was observed at the insertion. The dimensions of the
lesion were evaluated with drilling resistance and the reduction of the branch was advised.
In August 2022, the branch collapsed due to rapid wood degradation. The velocity of
degradation by Ganoderma lucidum may be related to the very hot and dry period of that
month and represents a reason for SBD. (Figure 8).Forests 2023, 14, x FOR PEER REVIEW 13 of 28 
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Another case study in S2 was a Fagus sylvatica. The specimen had dry and codominant
branches. In the stem, cavities were observed (Figure 9). Regarding predisposing factors,
age was the main attribute for the evaluated specimen.
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In addition to the noted phytosanitary concerns (Table 4), the reasonable overall quali-
tative condition of the area was influenced by the presence of the biotic agent Ganoderma sp.
(Figure 10). The selected numerical condition for analysis is 10, which falls within a range
of values from 0 to 20 (Table 5). This specific condition was chosen due to the presence of
cavities and biotic agents in the stem (Tables 4 and 5).

Table 4. Visual tree assessment—Fagus sylvatica.

Specie Stem Branch Twig

Fagus sylvatica Cavities Codominant Dry
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Table 5. Global qualitative condition—Fagus sylvatica.

Predisposing Factor Biotic Agent Numerical Condition Global Qualitative

Age Ganoderma sp. 10 Reasonable

Measurements of drilling resistance in the stem (h: 1.30 m) at the degeneration area,
which was detected visually, shows a drop in drilling resistance amplitude (Figure 11).
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Figure 11. Drop in drilling resistance amplitude showing possible Xylem degeneration in the stem
(h: 1.30 m).

However, the branches have natural joints increasing the stability of the tree. It is
recommended to drain the water out and remove the cable attached to the other tree.
Additionally, it is also recommended to install a metallic structure inside the stem that
contributes to the anchorage of this specimen.

The risk matrix (Figure 12) shows where this specimen falls within the range of
moderate risk to people and property.
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3.4. Assessment of SBD in Site 3—Montemor-o-Novo

In August 2022, a branch in a Ulmus carpinifolia collapsed due to brown decay, and the
event also represents a reason for SBD. This degradation originated after the branch was
cut four years ago, but it was difficult to predict from the ground. The speed of degradation
may be related to the very hot and dry period of that month (Figure 13).
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Another case study in S3 was a Tilia cordata. The specimen had a cavity and degenera-
tion of xylem tissue (Figure 14).
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The white and brown cubic rot originated from the cutting of a branch. The cavity
boundaries are well compartmentalized by barrier 4 [65,66]. Even so, the loss of structural
strength approached 50% (Figure 15).
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Figure 15. Loss of structural strength (h: 0.40 m—stem).

The proposed intervention for this specimen would be a safety pruning due to the
fragility of the wood in the root collar area. It is recommended to remove any degraded
tissue present in the root collar area, as well as in the stem and branch cavities. To effec-
tively remove dead tissues, it is essential to remove the accumulated water within the
cavities. This stagnant water promotes the growth of ants and fungi, which accelerate the
degradation of the wood.

3.5. Assessment of SBD in Site 4—Paços de Ferreira

Regarding phytosanitary aspects, an analysis of images taken prior to the branch fall
did not reveal any indications of crown fragility. The branches and leaves appeared dense,
without any signs of dieback or the presence of dry branches.

In the case of this study, recent ground cover can be considered an important inducing factor.
With a simple test, pouring out a bucket of water, one can see almost complete runoff

and thus very little infiltration. The difficulty of gas exchange is manifested by the presence
of fine roots developing in the last layer of soil, because that is where some air diffusion
will occur. (Figure 16).
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Figure 16. Ground cover and permeability test (August 2022).

Among the predisposing factors, one can consider relatively old soil compaction or
sealing, injuries (biotic or abiotic), lack of light (shading), excessive pruning, exigent gutters,
prevailing winds, and advanced age. For this specimen, advanced age can be considered
the main factor influencing the loss of resilience.

The branch failure occurred after a very dry and hot summer. In view of this, it is
possible to observe some relevant points, such as the fact that the sudden failure of the
branches is not related to the incidence of critical winds, since they often occur in the
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afternoon, on hot days and with low wind velocity. In Figure 17, on the day of the failure,
wind velocities were low, and the summer of 2022 was extraordinarily dry.
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Figure 17. Wind velocity and wind direction in Porto District.

It was also possible to verify that failure generally occurs between 0.9 m and 3.6 m
away from the stem. In addition, as the first branch collapses, it is likely that other branches
will fail in a short period of time, if they are interconnected, for reasons of structural
stability [36].

A laboratory analysis was performed after taking tissue samples near the failure zone.
The analysis comprises macroscopic and microscopic observation.

The samples presented colonies and structures like the species Ganoderma lucidum in
macroscopic observation, which presents yellow exudation, a characteristic of this species
(as well as in the species Ganoderma resinaceum) (Figure 18).
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Figure 18. Macroscopic observation of a culture of Ganoderma lucidum, after 7 days in PDA culture
medium, with presence of yellow exudation.

In cultures in SNA medium (poor in nutrients), no structures/characteristics were
observed that could validate the results obtained in the PDA culture medium. The results
obtained from microscopic observation in the PDA culture are in Figure 19.

After laboratory analyses, structures corresponding to the genus Ganoderma were
identified. Colonies of this genus are white, dense, and with texture similar to cotton. The
basidiomycete Ganoderma lucidum causes white rot; that is, it degrades mainly lignin. This
type of degradation is internal and substantially affects the structural component of the
wood. It is a silent degradation for which there may be few symptoms in the crown.

In the case under study, no signs were observed on the outside of the wood. These are
manifested by the presence of mushrooms (carpophores) that have the role of disseminating
spores of a sexual nature. Moreover, in several fungi that cause white rot, as in the case
under study, the mushroom has the important role of contributing to gas exchange with the
mycelium inside the tree. This contributes to the improvement of the degradation capacity
of the wood.
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Figure 19. Microscopic observation of Ganoderma lucidum culture in culture medium PDA. (A) 
Mycelium, after 7 days in culture; (B) chlamydospores, after 7 days in culture; (C) presence of spore-
like structures, after 8 days in culture; (D) spores and filaments after 10 days in culture; (E) presence 
of basidiospore-like structure after 10 days in culture; (F) formation of mycelium pellets after 14 
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Figure 19. Microscopic observation of Ganoderma lucidum culture in culture medium PDA.
(A) Mycelium, after 7 days in culture; (B) chlamydospores, after 7 days in culture; (C) presence
of spore-like structures, after 8 days in culture; (D) spores and filaments after 10 days in culture;
(E) presence of basidiospore-like structure after 10 days in culture; (F) formation of mycelium pellets
after 14 days in culture.

Brown cubic rot was also observed in the branches of the tree under study, especially
in the heartwood area. This means that the biodegradation process was already some years
old (Figure 20).
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Figure 20. White and brown rot on damaged branch. No signs present on the periphery.

Acoustic tomography shows that the inner area of the wood, at the point of failure, is
quite affected (Figure 21). The branches of the oak under study were inserted in the same
point at a height of 2.20–2.60 m and were also interconnected. The low velocities (red zones)
in tomography image (Figure 21) allow us to infer that the loss of strength of the affected
tissue led to the failure of the first branch, and due to the consequent imbalance, failures of
the following branches occurred.
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The structural stability of the tree is not only affected by the quality of the wood,
but also by its geometric shape. Compared to a circular cross-section shape, an elliptical
cross-section can withstand different loads depending on the direction of the force. This
effect is described as a “failure moment” and varies depending on the shape of the structure
and the direction of the load.

A significant failure moment indicates that a tree possesses a high capacity to with-
stand external loads and strong winds. However, internal decay naturally diminishes
the cross-sectional area of the tree stem, consequently reducing the failure moment. The
authors of [67] conducted a study examining the impact of reducing the area moment of
inertia through cross-sectional reduction. Through employing the stress equation, ref. [67]
observed that the moment of inertia, rather than the rupture moment, is the variable depen-
dent on the section. This means that reducing the section, for example, due to the presence
of a cavity, leads to an increase in stress even when the force remains constant. This paper
delves into this issue in a more theoretical manner.

In the graph of mechanical behaviour (Figure 22), the green line corresponds to the
failure moment without considering deterioration, and the red line already considers the
deterioration and other existing defects, so it is possible to verify that internal deterioration
is the main factor responsible of the loss of mechanical strength.
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Figure 22. Mechanical chart of the inspected cross-section.

The graphic of drilling resistance (amplitude) produced by the resistograph indicates
that the stem exhibits a solid structure and does not display any symptoms associated with
fragility. No points of wood weakness or fragility are detected (Figure 23).
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Figure 23. Amplitude of drilling resistance in the stem—direction 1.

On the other hand, in the readings taken on the branches, at the point of failure, a
substantial loss of wood drilling resistance (amplitude) is observed (Figures 24 and 25).
As observed in the laboratory, the branch was attacked by brown cubic rot. The graphs
(Figures 24 and 25) also confirm the results of tomography (Figure 21).

Figure 24. Amplitude of drilling resistance on the branch—direction 2.

It is important to emphasize that while watering is essential for maintaining the health
of most ornamental trees in hot summer climates, it can also promote the growth of biotic
agents in the root system. These biotic agents have the potential to negatively impact the
structural stability of the tree.
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Figure 25. Amplitude of drilling resistance on the branch—direction 3.

The initial failure can be attributed to a combination of factors, such as: hormonal com-
ponents, biophysical components, and biotic components. In terms of hormonal aspects, it
has been observed that water stress, particularly during hot afternoons, leads to a reduc-
tion in water flow and an increase in temperature within the stem and branches [68,69].
High temperatures create favourable conditions for wood fungi, increasing the potential
for degradation. Additionally, high temperatures combined with high humidity can re-
sult in increased water pressure within the branches, leading to structural weaknesses
and eventual branch failure. Simultaneously, there is an increase in the concentration of
ethylene in the tissues. High levels of ethylene can weaken the cementation of cell walls.
This weakening is related to reduced transpiration, increased root pressure, and internal
depression in the xylem vessels. Internal depression usually leads to an increase in the
weight of the tree at the end of the day, due to water replenishment. This increase in weight
further enhances the likelihood of failure [68–73].

Regarding the biophysical aspects, it is significant to highlight that even with maxi-
mum stomatal closure, there is still some water loss, responsible for generating marked
negative pressure in the vessels. With the opening of the stomas at the end of the day, it will
accelerate the upward flow of water and also the increase in weight of the branches [70].

In addition, an important factor responsible for the structural fragility of the tree
element is the presence of the biotic agent Ganoderma lucidum (Curtis) P. Karst.

As seen in this discussion, branches that drop are frequently long and drawn out, at
least 10 cm in diameter, and they usually extend to or beyond the edge of the crown of
the tree. Frequently, but not invariably, the break occurs some distance from a fork. The
wood at the point of fracture may appear sound, but for part of the branch diameter, the
break is often short, that is, at right angles to the axis of the branch cutting across the wood
fibres. A short fracture is often associated with decay, but where the wood appears sound,
an internal defect or earlier weakening, not visible on the exterior of the tree, may exist.

Wood deterioration was a determining factor for SBD. However, the identification of
Ganoderma lucidum would be unfeasible only using the visual method, commonly known as
VTA (visual tree assessment). As a consequence of the absence of signs (Ganoderma lucidum
on the surface of the branches), the instrumental analysis could not be carried out during
the diagnosis and as demonstrated in this discussion, instrumental analysis (tomography



Forests 2023, 14, 1398 22 of 25

and drilling resistance) would allow the identification of the dimension and severity of
internal lesions.

Managing SBD necessitates a blend of preventive measures and consistent tree main-
tenance. Monitoring specimens is crucial for recommending the most effective strategies
for their preservation, dissemination, and propagation, be it through clonal or seminal
methods. Through closely monitoring trees, appropriate measures can be implemented
to ensure their well-being and enable successful propagation, whether through cloning or
seed propagation. The strategies to mitigate the risks associated with this phenomenon
include regular tree inspections, proper tree intervention techniques, structural support
to better distribute weight and provide additional stability to weak branches, proper care
practices (adequate watering, mulching, and fertilization), and reducing excessive foliage
loads to alleviate stress on the branches.

4. Conclusions

This paper refers to several studies cases related to SBD observed in Portugal. The
common subject is related to the difficulty of predicting the event, which can be made
through estimating the probability of fracture.

The combination of observations made in the reported case studies allows us to
conclude that:

− SBD is mostly related to internal degradation, making it difficult to predict the fall
when only considering environmental conditions, but lowered tree defences against
internal degradation due to environmental conditions are an element that must
be considered.

− VTA diagnosis, applied in isolation, could lead to an incorrect prognosis of internal
degradation. So, it is important to confirm of the presence of biotic agents using
equipment (acoustic tomography and drilling resistance).

− Instrumental diagnostic tests that considering the date of evaluation are very helpful,
but for a more complete answer regarding degradation, reducing the subjectivity of the
approach to estimating the probability of fracture, a global analysis is necessary, includ-
ing dendrometric parameters, predisposing and inciting factors, lower tree defences
against internal degradation due to environmental conditions, and biotic agents.

− The deconstruction of the natural architecture of the branches seems to be an element
that affects the natural processes of decline. So, it is recommended that large branches
remain in place.
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