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In recent years, modified gravity theories have gained significant attention as potential replacements for
the general theory of relativity. Neutron stars, which are dense compact objects, provide ideal astrophysical
laboratories for testing these theories. However, understanding the properties of neutron stars within the
framework of modified gravity theories requires careful consideration of the presently known uncertainty
of equations of state (EoS) that describe the behavior of matter at extreme densities. In this study, we
investigate three realistic EoS generated using a relativistic mean field framework, which covers the
currently known uncertainties in the stiffness of neutron star matter. We then employ a Bayesian approach
to statistically analyze the posterior distribution of the free parameter α of the fðRÞ gravity model,
specifically fðRÞ ¼ Rþ αR2. By using this approach, we are able to account for our limited understanding
of the interiors of neutron stars as well as the uncertainties associated with the modified gravity theory. We
impose observational constraints on our analysis, including the maximum mass, and the radius of a neutron
star with a mass of 1.4M⊙ and 2.08M⊙, which are obtained from x-ray NICER observations. By
considering these constraints, we are able to robustly investigate the relationship between the fðRÞ gravity
model parameter α and the maximum mass of neutron stars. Our results reveal a universality relationship
between the fðRÞ gravity model parameter α and the maximum mass of neutron stars. This relationship
provides insights into the behavior of neutron stars in modified gravity theories and helps us understand the
degeneracies arising from our current limited knowledge of the interiors of neutron stars and the free
parameter α of the modified gravity theory.
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I. INTRODUCTION

A supernova is triggered by the relentless pull of
gravity as a massive star exhausts its nuclear fuel. The
star’s core implodes, undergoing a dramatic collapse,
and compressing matter into an incredibly dense neutron
star (NS). An NS is a compact stellar object composed
primarily of neutrons. With a radius of just a few kilo-
meters, yet a mass similar to that of the Sun [1,2], NS are
remarkably compact objects. The cores of NS believed
to contain extremely rare phases of matter [3]. When it
comes to high density matter, many different phases or
compositions may occur, including hyperons, quarks,
superconducting matter, or colored superconducting matter.
Understanding their internal structure requires a deep
understanding of both the behavior of matter at extreme
densities and the principles of gravity.
Extensive research is underway in the field of astro-

physics to investigate the EoS of NS, which plays a crucial

role in determining their fundamental properties such as
mass, radius, and thermal evolution. Despite significant
efforts, our current understanding of fundamental physics
remains inadequate at high densities, leading to the absence
of a unique EoS for NS [4–6]. Challenges in obtaining
precise nuclear physics experimental data, uncertainties in
the characteristics of nuclear matter, and limitations in
observational data pose significant obstacles in accurately
determining the EoS of NS. Nevertheless, recent advance-
ments in multimessenger observations are providing fresh
perspectives and valuable insights into the elusive EoS of
these celestial objects. Several groups try to infer the EoS of
NS by using astrophysical data [7–13].
Conversely, one area of research that has gained signifi-

cant attention in recent years is modified gravity theories.
These theories propose modifications to Einstein’s general
relativity (GR) to explain certain phenomena, such as the
accelerated expansion of the universe or compatibility with
quantum mechanics [14–18]. One of the key predictions of
modified gravity theories is the existence of scalar fields
[17,19,20]. These scalar fields can affect the properties of a*nobleson.phy@gmail.com
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NS, such as its mass-radius relation and its moment of
inertia [21–23]. The study of NS in the context of modified
gravity theories is an active area of research, as it offers the
possibility of testing the predictions of these theories
against observational data [24–27]. In particular, some
modified gravity theories predict that NS can have a larger
radius than predicted by GR [23,26,28–32].
On one hand, our limited knowledge of the constituents of

the NS contributes to the degeneracy in mass-radius esti-
mates. On the other hand, the free parameter of the modified
gravity also contributes to the degeneracy in mass-radius
estimates. Understanding the NS properties of different EoS
within the framework of a modified gravity helps us
constrain the degeneracies caused by EoS and the free
parameter of the modified gravity [33]. Observations of NS
can be used to test the predictions of modified gravity
theories. For example, measurements of the mass and radius
of a NS [34–36], tidal deformability in a coalescing binary
NSmerger [37] can be used to constrain the properties of the
scalar field and to test the theory’s predictions. Additionally,
measurements of the moment of inertia and tidal deform-
ability ofNS can also be used to put the theory’s claims about
the NS compactness to the test [38,39].
Bayesian analysis [40] is a very strong statistical

approach that uses probability theory to make predictions
and draw conclusions about the NS properties using mass,
radius, and tidal deformability data. This way, we can
quantify the uncertainty associated with their measure-
ments and predictions, and improve our theoretical under-
standing. Bayesian analysis is routinely used in other major
astrophysics problems, i.e., to analyze gravitational-wave
signals [41], properties of short gamma-ray bursts [42], test
GR [43–45] and to study a wide range of properties of NS
[9,46,47], including their masses, radii, and EoS [48,49].
Several studies in the literature have investigated the

effects of using different EoS in fðRÞ gravity, but a
comprehensive statistical analysis is yet to be done. In
this study, we use the Bayesian inference method to
generate a complete snapshot of the fðRÞmodel for various
EoS. Our primary goal is to understand the relationships
between the properties of NS and the free parameter of the
fðRÞ model while taking the currently known uncertainties
of EoS into account. Our study will provide a compre-
hensive analysis of the relationship between fðRÞ param-
eter and NS properties, which could help us understand the
physics that governs their behavior. This insight can then be
utilized to further constrain the parameter of modified
gravity and to better understand the physics of NS. The
results of our study will also be relevant in future studies of
NS and other compact objects. The behavior of NS and
other compact objects may then be predicted more pre-
cisely using the knowledge gained from this.
The paper is organized as follows. In Sec. II, a brief

overview of the Tolman-Oppenheimer-Volkoff (TOV)
equations in fðRÞ gravity in its nonperturbative form is
given. We also describe the Bayesian framework used in

this study. In Sec. III, we present an overview of the EoSs
used in this work. In Sec. IV, we show the results obtained
by numerically solving the modified TOV equations for
various EoSs with different values of the free parameter α.
Finally, in the discussion section, we comment on the
results of this study.

II. FORMALISM

A. TOV in f ðRÞ
To derive the TOV equations, let us consider the

following action (in the units of G ¼ c ¼ 1):

S ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p
fðRÞ þ Smatter ð1Þ

where g is the determinant of the metric gμν, fðRÞ is
the functional form of Ricci scalar (in this case,
fðRÞ ¼ Rþ αR2, where α is the free parameter), and
Smatter is the action of the matter field which is assumed
to be perfect fluid. For compact objects, the metric can be
assumed to be spherically symmetric as described below.

ds2 ¼ −e2ϕðrÞdt2 þ e2λðrÞdr2 þ r2ðdθ2 þ sin2θdϑ2Þ ð2Þ

By varying the action with respect to gμν, we can derive the
TOV equations. We use the nonperturbative method to
derive the TOV equations that describe a static, spherically
symmetric mass distribution under hydrostatic equilibrium.
We introduce a new field Φ such that the scalar field

φ ¼
ffiffi
3

p
2
lnΦ. We define A2ðφÞ¼Φ−1ðφÞ¼expð−2φ= ffiffiffi

3
p Þ

and βðφÞ ¼ d lnAðφÞ
dφ ¼ − 1ffiffi

3
p . The full derivation of this

formalism can be found in [26,27,50]. The modified TOV
equations in the nonperturbative method are as follows:

dλ
dr

¼ e2λ
�
4πρrA4 þ re−2λ

2

�
dφ
dr

�
2

þ rð1 − A2Þ2
16α

−
ð1 − e−2λÞ

2r

�
ð3Þ

dϕ
dr

¼ e2λ
�
4πprA4 þ re−2λ

2

�
dφ
dr

�
2

−
rð1 − A2Þ2

16α
þ ð1 − e−2λÞ

2r

�
ð4Þ

d2φ
dr2

¼ e2λ
�
A2ð1 − A2Þ

4
ffiffiffi
3

p
α

−
4πA4ðρ − 3pÞffiffiffi

3
p

�

−
dφ
dr

�
dϕ
dr

−
dλ
dr

þ 2

r

�
ð5Þ

dp
dr

¼ −ðpþ ρÞ
�
dϕ
dr

−
1ffiffiffi
3

p
�
dφ
dr

��
ð6Þ
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where ϕ and λ terms are taken from Eq. (2). The usual
boundary conditions, i.e., regularity of the scalar field φ at
the star’s core ðdφdr ð0Þ ¼ 0Þ and asymptotic flatness at
infinity ðlimr→∞φðrÞ ¼ 0Þ should be enforced. This implies
that the spacetime outside the NS is not Schwarzschild
spacetime. Setting ρ ¼ p ¼ 0 yields the equations defining
the spacetime metric and the scalar field outside the NS. We
provide the EoS for the NS matter p ¼ pðρÞ and apply the
boundary conditions in order to solve our systems of
differential equations for the interior and exterior of the
NS. The dimensions of the parameter α is in terms of r2g,
where rg ¼ 1.47664 km corresponds to one solar mass.

B. Bayesian estimation

The Bayesian approach can do a comprehensive stat-
istical analysis of a model’s parameters for a given set of
data. It provides the joint posterior distributions of model
parameters, allowing one to investigate the distributions of
given parameters and the correlations between them. The
joint posterior distribution of the parameters PðΘjDÞ based
on the Bayes theorem [40] can be written as

PðΘjDÞ ¼ LðDjΘÞPðΘÞ
Z

ð7Þ

where D and Θ are the data and set of model parameters
respectively. Here PðΘÞ is the prior for model parameters,
LðDjΘÞ is the likelihood function and Z is the evidence.
The posterior distribution was evaluated by Pymultinest
[51] implementation.

1. The prior

Our chosen model of fðRÞ has only one parameter, α. We
have taken a uniform distribution [3.5, 2000] to determine
the prior on α. The models with α < 3.5 and α > 2000 are
very close to the cases of α ¼ 0 and α ¼ 2000, respectively.
Similar behavior for α is also reported by [26].

2. The fit data

The constraints used to fit for the parameter of fðRÞ
model is based on the NS observational properties, such as
maximum mass (Mmax), radius at maximum mass (R2.08),
and at 1.4M⊙ (R1.4) listed in Table I.

3. The log-likelihood

The log-likelihood for mass, radius at maximum mass,
and radius at M1.4 are defined as follows:

logMmax ¼ log

2
64 1

exp
h
Mcal−Mobs

ΔM

i
þ 1

3
75 ð8Þ

logR2.08 ¼ −0.5
�
R2.08calc − R2.08obs

ΔR2.08

�
2

þ log½2πΔR2
2.08� ð9Þ

logR1.4 ¼ −0.5
�
R1.4calc − R1.4obs

ΔR1.4

�
2

þ log½2πΔR2
1.4� ð10Þ

The GR maximummass for DD2, SFHx, and FSU2R are
2.40M⊙, 2.13M⊙, and 2.06M⊙, respectively. ΔR and ΔM
represent the uncertainty in the measurement of mass and
radius from the observations.

III. EQUATIONS OF STATE

In this study, we focus on the EoS using only nucleonic
degrees of freedom to investigate the impact of fðRÞ
gravity versus GR. There are several EoS available which
make use of different approaches such as piecewise-poly-
tropic, constant speed of sound, Taylor expansion around
the nuclear matter point, relativistic mean field (RMF)
model, etc. Relativistic models are always causal, which
means that the speed of sound is always slower than the
speed of light. These models are tractable because of the
potential for adding various interaction terms. However,
the couplings are fixed by the properties of nuclear
matter at saturation density, such as binding energy, or the
symmetry energy and its slope L, etc. One may question the
validity of the couplings at higher densities, which are
typical of NS interiors. One particular advantage of these
models is that they can be extended to the suitable range of
temperatures and proton fractions, relevant for NS merger.
We have selected three different models for the nuclear
EoS, all of which are based on a RMF framework: SFHx
[52], FSU2R [53], and DD2 [54,55]. These are based on
the covariant field-theoretical approach to hadronic matter
[56,57]. Table II provides a list of the nuclear saturation
properties for each of these models.
SFHx— In the SFHx [52] EoS, the Lagrangian is based

on the interchange of isoscalar-scalar σ, isoscalar-vector ω,
and isovector-vector ρ-mesons. Fits from the experimental
data are required to estimate the free parameters in the
lagrangian. It is based on an interpolation of two parameter

TABLE I. The constraints imposed in the Bayesian inference:
Observed maximum mass of NS, Radius of 2.08M⊙ NS, Radius
of 1.4M⊙ NS.

Constraints

Quantity Value=Band Reference

Mmax >2.0M⊙ [36]
R2.08 12.4� 1.0 km [36]
R1.4 13.02� 1.24 km [34]

Note: Please note that the NS maximum mass does not affect the
likelihood in our case, and it has been included for completeness
only. This is because the f(R) parameter, denoted as α, can only
increase the mass of NS. Furthermore, the EoS that we have
chosen already predict NS with maximum masses above 2M⊙ in
GR (α ¼ 0).
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sets, TM1 and TM2 [58], which were fitted to binding
energies and charge radii of light (TM2) and heavy nuclei,
respectively (TM1). To have a fair description of nuclei
throughout the full mass number range, the coupling
parameters gi of the set TMA are chosen to be mass-
number dependent of the form gi ¼ ai þ bi=A0.4, with ai
and bi being constants. The couplings become constants for
uniform nuclear matter and are given by ai.
FSU2R—The nucleonic EoS is derived as a new para-

metrization of the nonlinear realization of the RMF model.
Beginning with the current RMF parameter set FSU2 [59],
if the pressure of NS matter in the vicinity of saturation is
reduced, it allows for smaller stellar radii while maintaining
nuclear matter and finite nuclei properties. Furthermore, the
pressure at high densities are preserved consistent with
high-energy heavy-ion collisions findings and sufficiently
stiff to support 2M⊙ NS [60].
DD2—The basic relativistic Lagrangian has effective

interaction via contributions from σ, ω, and ρ mesons
without any self-coupling factors. The density-dependent
couplings allow the pressure term to rearrange and account
for the system’s energy-momentum conservation and
thermodynamic consistency [54,61]. The DD2 model
satisfies the constraints on nuclear symmetry energy and
its slope parameter, as well as the incompressibility from
the nuclear physics experiments [62]. As emphasized in
[63], proper core-crust matching is critical to avoiding
uncertainty in the macroscopic properties of stars. The DD2
EoS uses the same lagrangian density to describe both the
low-density crust and the high-density core, allowing for a
smooth transition between the two.
In Fig. 1, we plot the pressure versus the baryonic

number density for the three RMF EoS used in this study:
DD2 (black, solid line), FSU2R (blue, dotted line), and
SFHx (pink, dashed line). The gray band (hatched gray) is
the prediction from the GW170817 event [64]. These EoS
satisfy the maximum mass and radius constraints from the
observation [65–68].

IV. RESULTS

The posterior probability distributions of the fðRÞmodel
parameter α are analyzed as follows. Our Bayesian
approach to estimating the parameter α utilizes a uniform
(“uninformative”) prior, as described in the Sec. II. To

incorporate the well-known uncertainty of nuclear matter
EoS, we have employed three distinct nuclear matter EoS
models: DD2, FSU2R, and SFHx described in the Sec. III.
Together, these models span the majority of the presently
known range of uncertainty for dense matter NS EoS. They
allow us to analyse the effect of modified gravity and its
dependence, if any, on these EoS.
In Fig. 2, we present a visual representation of the

posterior probability distributions for the fðRÞ model
parameter α obtained using three different nuclear matter
EoS models. Each distribution is represented by a curve,
and the vertical lines indicate the 90% confidence interval
for each case. It is interesting to observe the way the
distribution’s shape varies depending on the stiffness of the
EoS. Specifically, the distribution is smaller (i.e., more

FIG. 1. Pressure versus the baryonic number density for the
three different RMF EoS employed for this work: DD2 (black),
FSU2R (blue), and SFHx (pink). There is also a band (hatched
gray) that has been predicted based on the GW170817 event.

TABLE II. For the EoS model employed in the work, namely
SFHx [52], FSU2R [53], and DD2 [54,55], we compile the
nuclear matter saturation properties.

EoS
n0B

(fm−3)
B=A
(MeV)

K0

(MeV)
Q0

(MeV)
J0

(MeV)
L0

(MeV)

SFHx 0.160 −16.16 239 −457 28.7 23.2
FSU2R 0.151 −16.28 238 −135 30.7 47.0
DD2 0.149 −16.02 243 169 31.7 55.0

FIG. 2. For three different EoS model, namely DD2, FSU2R,
and SFHx, the final posteriors of the parameter α for fðRÞ gravity
are plotted. The vertical lines show the 1σ (68%) credible
intervals (CIs).
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constrained) for stiffer EoS and larger (i.e., less con-
strained) for softer EoS. This is due to the fact that fðRÞ
parameter α only increases the mass and radius of a NS. For
a stiff EoS, the cost we employed for radius measurement
from NICER imposes greater constraints on the value of α,
i.e., if the calculated value is very large or very small in
comparison to the observed value, then such α value is less
preferred. It is important to emphasize that the distributions
of α are heavy-tailed, i.e., goes to zero slower than one with
exponential tail. Therefore, the probability values presented
in the plot are normalized to the tail of the distribution.
Additionally, it is worth noting that the effect of α on the
properties of a NS can only be observed within a certain

range of values. Beyond this range, increasing the value of
α has no impact on the star’s properties (see Sec. II B 1).
The full posterior of α was used to generate the entire

mass-radius domain for three different models, namely
DD2, FSU2R, and SFHx in Fig. 3. The gray zones in the
figure’s lower left corner, which represent the 90% (solid)
and 50% (dashed) confidence intervals for the binary
components of the GW170817 event [64], serve as a
baseline for comparison. Also, the 1σ (68%) credible zone
of the 2-D posterior distribution in the mass-radius domain
obtained from millisecond pulsars PSR J0030þ 0451
(light green and light blue) [65,66] and PSR J0740þ
6620 (light orange) [67,68] for the NICER X-ray data is
plotted. The error bars, both horizontal (radius) and vertical
(mass), represent the 1-D marginalized posterior distribu-
tion’s 1σ credible interval. The figure also shows that
measurement of NS radius at higher masses can greatly
constrain the fðRÞ parameter when compared to lower
mass NS. It is worth noting that the fðRÞ parameter, α, can
only broaden the MR curve in higher mass. Observations of
NS with high masses can thus provide valuable insights
into the fundamental nature of these objects.
In Fig. 4, a Kendall rank correlation coefficient [69] is

presented, which represents the correlation between the
parameter α for fðRÞ and NS properties for different mass
ranges. This correlation coefficient is derived from the
final posteriors of three different EoS: DD2, FSU2R,
and SFHx, for the NS maximum mass (Mmax), maximum
radius (Rmax), and radius for 1.4, 1.6, and 1.8M⊙ NS. It is
noteworthy that Pearson’s correlation coefficient is typically
employed in such figures to measure the linear relationship
between two variables. However, Kendall’s correlation
coefficient is used here as it measures a monotonic relation-
ship between two variables. Regardless of the EoS
model chosen, the results show that the parameter α in
fðRÞ is strongly correlated with the NS maximum mass.
Furthermore, there seems to be a strong correlation between
the parameter α and the radius of the NS as the star’s mass
increases.As themass of theNSgoes from1.4M⊙ to 2.0M⊙,
the Kendall rank goes from−0.20 to 0.92 for DD2,−0.44 to
0.90 for FSU2R, and 0.39 to 0.89 for SFHx. The use of
different EoS provides a comprehensive understanding

FIG. 3. The entire M-R domain is plotted for three different
EoS models, namely DD2, FSU2R, SFHx obtained for the full
posteriors of the parameter α for fðRÞ gravity. The gray zones
indicate the 90% (solid) and 50% (dashed) credible interval for
the binary components of the GW170817 event. The 1σ (68%)
credible zone of the 2-D posterior distribution in mass-radii
domain from millisecond pulsar PSR J0030þ 0451 (light green
and light blue) as well as PSR J0740þ 6620 (light orange) are
shown for the NICER x-ray data. The horizontal (radius)
and vertical (mass) error bars reflect the 1σ credible interval
derived for the same NICER data’s 1-D marginalized posterior
distribution.

FIG. 4. We plot the Kendall rank correlation coefficients between parameter α for fðRÞ and NS properties of different mass ranges,
such as NS maximum mass Mmax, maximum radius Rmax, and radius for 1.4, 1.6 and 1.8M⊙ NS obtained for the final posterior of three
different EOSs: (left) DD2, (middle) FSU2R, and (right) SFHx.
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of the correlation between the fðRÞ parameter and NS
properties.
In Fig. 5, we define normalized radius Rn as

RnfðRÞ=RnGR where “n” is the mass of the NS, and plot
α versus Rn for the three EoS models—DD2 (black),
FSU2R (blue), and SFHx (pink)—for NS with mass of
1.4M⊙, 1.8M⊙, and 2.0M⊙. In the left panel of Fig. 5, for
NS with mass of 1.4M⊙, the normalized radiusR increases
as α increases up to about α ¼ 40. While for SFHx the
value of R asymptotically reaches the value of 1.17, for
DD2 and FSU2R the value decreases. The value of R is
comparable for DD2 and FSU2R, whereas, for SFHx the
value is significantly higher than the other EoS. In the
middle panel, for NS with mass of 1.8M⊙, the normalized
radius R increases as α increases up to about α ¼ 50. The
value of R asymptotically reaches 1.16, 1.65, and 1.18 for
FSU2R, DD2, and SFHx, respectively. The relative offset
between the curves is reduced compared to the plot on the
left. In the right panel, for NS with mass of 2.0M⊙, the

normalized radius R increases as α increases up to about
α ¼ 50. The value of R asymptotically reaches 1.17, 1.18,
and 1.19 for FSU2R, DD2, and SFHx, respectively. The
relative offset between the curves is minimum compared to
the left and middle plots. At lower mass (left plot), there is
an indication of EoS dependence of R versus α. As the
mass increases from 1.4M⊙ to 2.0M⊙, the EoS dependence
is reduced significantly.
In Fig. 6, the mass and radius for each EoS are estimated

with the posteriors estimated of the parameter α. The
normalized mass M ¼ MfðRÞ=MGR is defined and plotted
versus the parameter α. It can be seen that any givenM can
be generated by a value of α and a few additional values in a
small neighborhood around it. As M increases, the
neighborhood around α also increases. The following
function is then used to fit the results:

MðαÞ ¼ aþ becα ð11Þ

FIG. 5. The dependence of normalized radius on the fðRÞ parameter α, as obtained from the final posterior, is shown for three different
models—DD2 (black), FSU2R (blue), and SFHx (pink)—and three different NS masses, ranging from 1.4 to 2.0M⊙ (left to right).

FIG. 6. The dependence of normalized NS maximum mass as a function of fðRÞ parameter α, as obtained from the final posterior, is
presented for three different models—DD2 (black), FSU2R (blue), and SFHx (pink). The green curve represents the fit curve for
individual EoS. The cyan curve represents the combined fit. (see text for details).
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The fitting parameters for EoS DD2, FSU2R, and SFHx
and the combined data are presented in Table III. Q90

denotes the maximum percentage of relative uncertainty
within a 90% confidence interval. In the first subplot, the
normalized mass M for DD2 is plotted against the
parameter α. M asymptotically reaches to 1.16 as α
increases. In the second subplot, M versus α is plotted
for FSU2R. M asymptotically reaches to 1.19 as α
increases. In the third one, M versus α is plotted for
SFHx.M asymptotically reaches to 1.18 as α increases. In
the right most subplot, M versus α for all the three EoS
are plotted. A curve is fitted to the combined data which is
represented by the cyan curve. M asymptotically reaches
to 1.18 as α increases. It is interesting to note that the
stiffer EoS has relatively smaller values for “a” and higher
values for “b.” Using this universal relationship, we can
estimate the mass of the NS for any given value of α
within Q90.
In earlier works [70,71], the authors showed that in GR

there is a strong model independent correlation between the
maximum mass star’s central density ρc and its radius Rmax
for various EoS.Wewant to investigate if there are any such
relationships in the fðRÞ domain. In Fig. 7, we plot
normalized radius Rn obtained for various α versus nor-
malized central density ρn at which the maximum mass
occurs in fðRÞ according to the following expressions.

ρn ¼
ρc

0.16 fm−3 ; Rn ¼
Rmax

10 km
ð12Þ

The authors of [71] proposed a linear relation with m0 ¼
−11.618� 0.018 and c0 ¼ 19.255� 0.019. In the figure it
is represented by a green curve.

ρc
0.16 fm−3 ¼ m0

�
Rmax

10 km

�
þ c0 ð13Þ

The authors of [70] proposed a quadratic relation with d0 ¼
27.6 and d1 ¼ 7.55 with a 3.7% standard deviation. This is
represented by a orange curve in Fig. 7.

ρc
0.16 fm−3 ¼ d0

�
1 −

Rmax

10 km

�
þ d1

�
Rmax

10 km

�
2

ð14Þ

In Fig. 7, unlike GR, the data do not support the existence
of a relationship between the variables under consideration
in fðRÞ.

V. CONCLUSIONS

In summary, NS are important compact objects that
help in the study of the EoS of matter at high densities.
Understanding NS properties fully for various EoS within
a modified gravity theory is critical for evaluating the
degeneracies resulting by our limited knowledge of NS
interiors. We use the nonperturbative TOV equations for
fðRÞ gravity in this study and a Bayesian approach to
estimate the posterior distributions of model parameters.
We explore the impact of fðRÞ gravity on the parameters
of the NS of three EoS using nucleonic degrees of
freedom with varied stiffness and compared it to the
results of GR.
We find that the measurement of NS radius at higher

masses can significantly constrain the fðRÞ parameter as
compared to lower mass NS. We also find a strong
correlation between the free parameter α and NS mass,
regardless of the EoS used. Furthermore, we see that theR
of a low-mass NS is highly sensitive to EoS, whereas the
high-mass counterparts are not. Our findings reveal a
universal relationship between α and normalized mass M
that allows us to estimate the maximum mass of an NS for
any arbitrary α. In contrast to GR, the data do not support

TABLE III. The fit for M-R curves are listed for the EoS DD2,
FSU2R, and SFHx as well as a common fit for the combined data.
The maximum percentage of relative uncertainty within 90% con-
fidence interval is indicated in Q90.

Fit values

EoS a b c Q90

DD2 1.165 −0.141 −0.0156 <1%
FSU2R 1.205 −0.176 −0.0134 <1%
SFHx 1.200 −0.157 −0.0116 <1%
Combined 1.196 −0.165 −0.0124 <2%

FIG. 7. The correlation between normalized central density and the normalized radius of the maximum mass in fðRÞ for the values of
the free parameter α from the posterior for three different models—DD2 (black), FSU2R (blue), and SFHx (pink) are plotted. The green
curve represents a linear fit and orange curve represents a quadratic curve (see text for details).
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the existence of a relationship between the maximum mass
star’s central density and its radius in fðRÞ.
Overall, this study discusses the significance of under-

standing the properties of NS in modified gravity theories
and provides valuable insights into the nature of these
compact objects. In future, this study may be extended to
include a variety of EoS classes and verify the validity of
this universal relationship. More observations and theo-
retical models are required in order to completely under-
stand the EoS of NS and to explore the possibilities of
modified gravity theories for these objects.
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