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Abstract: Electric vehicles (EVs) can provide important flexibility to the integration of local energy
generation in buildings. Although most studies considering the integration of EVs and buildings are
focused on residential buildings, the number of publications regarding large buildings, in particular,
public buildings (PBs), has increased. However, the quantity of studies regarding the integration of
EVs and PBs is still limited. Additionally, there are no review studies approaching the integration of
EVs and buildings in one single framework. In this sense, this review aims to address the challenges
and trends associated with optimizing the charging of EVs in PBs by conducting a systematic review of
the existing literature. As contributions, this work develops a review that approaches the integration
of EVs and PBs using multiple strategies and structures, presents an integrated picture of the technical
and economic constraints, and addresses the future trends and research perspectives related to the
subject. Through the use of an open-access search engine (LENS), a cluster of 743 publications
was analyzed using two strings and a timeframe restriction. The most important contributions
regarding optimization strategies and their evolution are presented, followed by a comparison of the
findings with other review papers. As key findings, technical and economic constraints are identified
(uncertainties of driving behavior and local generation, battery degradation, “injection tariffs”, etc.),
as are future trends and perspectives (local generation legislation, incentives for purchasing EVs,
energy communities, etc.).

Keywords: electric vehicles; public buildings; charging; optimization; building microgrids

1. Introduction

In the race against the clock to minimize the effects of climate change caused by green-
house gas (GHG) emissions, the decarbonization of all areas is needed, with great attention
being paid to the transportation and energy sectors. In 2020, the energy sector was respon-
sible for 73.2% of global GHG emissions, while transportation and buildings (residential
and commercial combined) emitted 16.2 and 17.5% of global emissions, respectively [1].
Additionally, the number of electric vehicles (EVs) increased significantly in the last years,
as reported in [2], where a global panorama is presented in Figure 1.

Figure 1 presents the latest global sales of EVs from 2016 to 2022, and the individual
numbers of EV sales for each year in each country are presented in the lower part of the
table, expressed in millions of registrations. Additionally, an expected scenario for the
whole year of 2023 is projected. Referred to as “2023E”, the numbers are estimated based
on the market trends from the first quarter of 2023. Moreover, the global market share of
EVs grew from 4% in 2020 to 14% in 2022, and it is estimated that in 2030, 5 million oil
barrels will be avoided. Additionally, the report provided by [2] also shows that recent
policies regarding EVs in the USA (e.g., California’s Advanced Clean Cars II rule) could
increase the market share of these vehicles to 50% in 2030. Furthermore, there was a 65%
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global increase in demand for electric passenger car batteries, representing 550 GWh of
production capacity in 2022 against 330 GWh in 2021. The tendency is for these numbers
to keep growing in the next decades. However, the biggest challenge in promoting the
dissemination of EVs and simultaneously decreasing GHG emissions is to ensure that the
electricity used to charge the EVs comes from renewable energy sources (RES), such as
solar, wind, and hydroelectric generation, which have the greatest capacity today. In this
sense, Section 1.1 presents the importance of integrating RES with EVs and discusses some
studies that approach the topic.

Figure 1. Global sales of electric cars from 2016 to 2023E. Data from [2].

1.1. Integration of RES and EVs in Buildings

Concerning the complete transition to clean energies, considerable progress has been
achieved by increasing the share of RES in the global electricity matrix, highlighting wind
and solar power [3,4] due to their cleanness and, in the case of solar power, easy integration
into buildings through building-integrated photovoltaic (BIPV) technology [5,6]. Among
the multiple challenges regarding this topic, two of them present a higher difficulty level,
namely, the uncertainty of local energy generation and EV charging demand and the
development of an optimal energy management system (EMS) that can simultaneously
consider multiple components. As examples of advancements developed to address these
challenges, Ref. [7] proposed an EV-based decentralized charging (EBDC) algorithm based
on model predictive control (MPC) to optimally coordinate the charging of EVs in buildings
integrating wind turbines dealing with the uncertainty of local generation and charging
demand. The balance of the system was improved, and the combination of this method
with event-based optimization was suggested as future work.

Ref. [8] used BIPV technology to assess the economic potential of charging an e-car-
sharing fleet of a residential building considering multiple agents in Austria with mixed
integer linear programming (MILP) as the chosen optimization strategy. Through the
analysis of various scenarios, the results showed that the proposed model reduces energy
costs by up to 29% depending on the scenario. Furthermore, Ref. [9] also applied BIPV
to address both challenges simultaneously at an office building through the development
of two new algorithms, namely, stochastic programming and load forecasting, for energy
management with two stages (SPLET) and sample average approximation-based SPLET
(SAA-SPLET) with the participation of both day-ahead planning and real-time operation.
The combined use of these algorithms generated an average reduction in costs of 7.2% for
SPELT and 6.9% for SAA-SPET. In the following section, Section 1.2, we discus disruptive
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vehicle-to-grid technology and consider its advantages and practical cases as they align to
this work.

1.2. Vehicle-to-Grid Technology

Decarbonizing the transportation sector plays a vital role in mitigating the effects of
climate change [10], and internal combustion engine vehicles (ICEV) are being gradually
replaced by technologies with lower emissions, such as natural gas, liquefied petroleum
gas (LPG) [11], and even biofuels, as is the case of ethanol and biodiesel [12,13]. However,
the contribution of these technologies to reducing GHG emissions is small, and only
electrification, taking advantage of the increasing share of RES in the electrical grid, can
have a major impact. The powertrain options that comprise this shift are PHEV (plug-in
hybrid electric vehicles) and BEV (battery electric vehicles) [14], since HEV (hybrid electric
vehicles) and FCV (fuel cell vehicles) are not charged using the electrical grid.

Beyond contributing to lower emissions and a better quality of life in urban envi-
ronments, EVs can be used as a flexible resource regarding (dis)charging management
or even as a storage system [15,16] when integrated with the electrical grid, ensuring
better resilience and safety for the entire system or at a microgrid (MG) level [17]. This
technology is referred to as vehicle-to-grid (V2G) technology, and it will play a vital role
in the context of smart cities. The main differential of V2G technology is the capacity of
the EV to reinject electricity into the grid, which can greatly contribute to improving the
match between local renewable generation and energy demand, and, consequently, can
reduce energy costs. As disadvantages, V2G leads to additional cycles that will accelerate
the degradation of the battery and requires the use of bi-directional chargers to allow the
vehicle to trade energy with the grid, which is still too expensive to be implemented on a
commercial scale, as well as the use of equipment capable of managing the energy flow
between the entities. Ref. [18] compared the use of V2G and other charging strategies for an
office building in Austria. Additionally, other benefits achieved when using V2G include
grid load stabilization, improvements in renewable energy consumption, improvements in
users’ economic efficiency, and energy loss reduction [19]. Ref. [20] presented a review of
V2G in terms of the advances already achieved and the challenges for the future. As an
example of the previously mentioned capabilities, Ref. [21] discusses how EVs can be a
flexible load resource for a car-sharing fleet. Additionally, the impacts at the economic and
energy levels, as well as the challenges and prospects of the increased presence of EVs and
their technological development, have been widely studied in recent years [22–27].

Ref. [28] studied the impact of the shift from ICEV to EVs on the electrical grid for a
business campus in Portugal and discussed the current level of maturity and the future
prospects of electric mobility at a national level. Another important level to consider is
user behavior, where primary focus is given to the reasons that lead to EV adoption and
how users typically use or want to use the EV and, consequently, the charging infrastruc-
ture. These factors together comprise the stochastic parameters of EV drivers and have
an important role in the development of new methods for efficient energy management.
In [29], a comparison between conventional vehicle users and BEV users was performed in
Denmark and Sweden applying the “theory of planned behavior”. The development of
smart strategies such as one-slot look ahead (OSLA) [30] and the self-adaptive modified
clonal selection algorithm (SAMCSA) [31,32] for the energy management and decentraliza-
tion of energy generation through the interaction of EVs with parking lots and houses, and
with increasing attention, public buildings (PBs) [33], will contribute to a stable, smart, and
efficient electricity network and enhance the potential of vehicles as paramount tools of
decarbonization.

The first interactions of EVs with the grid start in small environments such as charging
stations (CSs), where PHEVs are connected to a charging station integrated with the main
power grid and a local PV generation site [34]. The objective of the previously cited study
was to charge the PHEVs with the maximum PV energy possible and alleviate the stress
on the grid. The proposed control system was based on DC link voltage changes, which
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vary as a function of solar irradiation. With the proposed intelligent charging system,
such operations did not impact the grid during peak hours. A different approach was
proposed by [35] through the integration of 200 EVs with a smart parking lot and its
EMS with the objective of reducing RES intermittence, improving the security of charging
operations, and generating financial benefits for both the parking lot and the EV owners.
In addition to successfully achieving the established goals, it was the first time that the
energy reserve capability of these vehicles was demonstrated. On a larger scale, EMS
was also applied by [36], where an integration system for PHEVs and a building was
developed, focusing on maximum comfort for the users with minimal energy consumption.
To address this challenge, particle swarm optimization (PSO) was used, and the comfort
levels were maintained.

Ref. [37] developed the first CS with solar/wind generation integrated with the main
power grid and V2G technology aiming to charge PHEVs and increase the matching
between generation and demand. In [38], the CS system was further developed, with the
inclusion of a fuel cell and electrolyzer system that generated electricity and hydrogen,
respectively, to store the generation surplus using hydrogen. In addition, the system was a
stand-alone system, meaning it was a completely independent operation from the main
power grid. The interactions between EVs and buildings, with a focus on PBs, will be
further detailed in Section 1.3.

1.3. Interactions between EVs and Buildings

The integration between EVs and buildings (residential and large PBs) occurs when the
vehicle is connected to the building, regardless of the electricity generated in the building
or provided by the grid. To increase the provided flexibility, a charger with bi-directional
capabilities should be installed, meaning that the vehicles can be charged normally and
can also work as a support system for local energy generation and decentralization of
electricity generation. With this in mind, the need for smarter charging methods arises.
Ref. [39] developed a smart method to charge EVs at home or in buildings using PV
panels. Additionally, batteries can be integrated into the system, as seen in [40], where
the authors integrated batteries with EVs in an MG using an artificial neural network
(ANN) and a reverse Monte Carlo (RMC) method to optimally determine the most cost-
effective configuration for PV–EV charging stations. The proposed framework had a 95%
optimality rate, and the authors intended to consider EV bi-directional flow as their future
work. The main advantage of such interactions can be an increased match between energy
generation and demand using demand–response strategies [41,42], therefore minimizing
the electricity imported from the grid. Additionally, a path to allow buildings to purchase
energy from the EV owners and vice versa can be opened, enabling the creation of entire
communities that generate and share their own electricity with each other, which are called
energy communities.

In Figure 2, four different scenarios for a new building-to-vehicle-to-building (V2B2)
concept are presented. In this novel system developed by [43], houses and office buildings
interact with each other and the grid at the MG level with the participation of PVs, EVs,
and storage systems, evaluating the potential of the vehicles as energy vectors in the
system. In all cases, the grid is always connected either to the house or the office building.
For the first scenario, the conventional energy flow is represented, where both buildings
receive energy from the grid in the traditional way, and the energy flow between the EV
and the house is unidirectional, that is, it only flows to charge the vehicle. In Scenario 2,
the house is equipped with PV panels and a battery (called a house stationary battery
(HSB)), and the EV battery (EVB) can be charged either by the grid or by the HSB when a
PV surplus is available. The novelty is that the EVB can transfer the potential electricity
generated by the HSB to the office building, where the installed chargers can recharge the
vehicle, if necessary. The operational logic of Scenario 3 is identical to Scenario 2, with the
difference being that the house has a battery identical to the EVB. In this case, the batteries
can be swapped, avoiding energy transfer from the HSB to the EVB (when recharging is
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demanded). Moreover, the EV can be recharged at the office (only for commuting purposes)
and at home. Finally, in Scenario 4, the operational logic is identical to Scenario 3, but with
the panels now installed at the building, and the house can be fed by the EVB (and also
charge the vehicle for moving purposes, if necessary). Additionally, there are no stationary
batteries at the office building, and the PV generation surplus is sold to the grid. Further, the
authors used the computer simulation code DETECt 2.3 as the method to assess the energy
demand of the building. The results show that financial savings were achieved (between
45% and 77% depending on the scenario), and the most important finding is that EVs are
capable of working as an energy-transferring resource between houses and office buildings.

Figure 2. Different scenarios of the V2B2 concept.

Although important advances have already been achieved, there are still challenges
that must be addressed, and together, optimization strategies must be found to increase
the efficiency, reliability, and smartness of such novel systems. An MG management study
involving EVs was performed by [44], where the authors developed a control strategy to
reduce power factor issues caused by the inclusion of EVs and distributed generation (DG)
resources for the referred MG. To achieve the objectives, dynamic programming was used.
Through the results, it was noticed that the power factor remained above the reference
value of 0.95 and that future work should consider voltage and frequency regulation. Some
challenges to enhance the referred integration are pointed out by Refs. [45,46], such as
incorporating the stochastic parameters of the vehicles and the occupants of the buildings,
uncertainty in RES production, capacity expansion, etc.

1.4. Motivation and Contributions

This work intends to explore the missing gaps, constraints, and trends in integrating
EVs and PBs, with a main focus on the optimization techniques applied to these cases.
The main motivation for this study is that, until the present moment, there have been no
studies that performed a review of the integration between EVs and buildings. Neither
are there any studies if the focus is residential buildings or PBs. Additionally, some of the
further-discussed multiple aspects involved in the optimization strategies (e.g., the use
of V2G technology, battery degradation, policies oriented for RES and buildings, etc.) are
presented from an individual point of view, exploiting the need to develop studies that
comprise these characteristics in one single framework. In this sense, the contributions of
the present research are denoted as follows:

• We provide a review and discussion of the integration of EVs and PBs using multiple
strategies (e.g., V2G, V2B2, DG, etc.);
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• We deliver an integrated presentation of the technical and economic constraints that
influence the strategies applied to the main subject (e.g., time horizons, competitive
tariff development, uncertainties related to local energy production and charging
demand, etc.);

• We aid in the identification of trends and future perspectives of integrating EVs with
PBs (e.g., energy communities, policies for new PBs, and policies for ICEV phase-outs),
which can also be tools for creating new policies and regulations and future planning,
aiming at the dissemination of sustainable buildings and EV adoption.

The remainder of this paper is structured as follows. Section 2 presents the strategy
adopted for the literature review, while Section 3 presents the results of the literature
review regarding the limitations of integrating EVs and PBs, as well as a collection of
studies applying mathematical optimization (MO) and machine learning (ML) techniques.
Section 4 discusses the contributions previously presented and identifies unsolved research
questions. Finally, Section 5 presents the conclusions and next steps of the research.

2. Materials and Methods

The integration of EVs and buildings presented in the literature comprises mostly
residential buildings, and when approaching the PB side, the number of references is
still much smaller. However, an increase in awareness of integrating EVs and PBs was
seen in the last few years, but with challenges to be addressed (which will be later dis-
cussed in Section 4). This work intends to present a systematic literature review of the
above-mentioned subject and contribute to fulfilling the missing scientific gaps through
presenting an integrated perspective of the constraints and trends related to the study. For
a better understanding of the methodology, this section is divided into two parts. First,
Section 2.1 presents the database and research software used for this review, as well as
the strings/keywords and search stages. Second, Section 2.2 presents the results of the
bibliometric analysis carried out.

2.1. Database and Research Software

In order to perform a systematic review of the integration between EVs and PBs, a
database (which will also work as research software) is necessary to search the publications
related to the subject. For this purpose, the Lens website search engine was used. Lens [47]
is an open-access web platform that allows the user to search scientific publications on a
specific topic and comprises all of the major scientific publishers known today (e.g., MDPI,
Elsevier, IEEE, Springer, etc.). Moreover, beyond the normal features seen in other open-
access search engines (such as Scopus, Web of Science, B-on, etc.), Lens presents statistics
referring to the results, such as the number of publications for each year considered in the
search, (which will be presented in the next subsection), the most cited works, and the
universities with the most publications, the most active authors, and other parameters. The
keywords used to perform the literature search and the document count are presented in
Table 1 below.

Table 1. Query strings used in the LENS search.

Query Document Count

(title: Electric AND Vehicles AND Public Buildings) OR
(abstract: Electric AND Vehicles AND Public Buildings) OR
(keyword: Electric AND Vehicles AND Public Buildings)

1418

(title: Electric AND Vehicles AND Public Buildings AND Review) OR
(abstract: Electric AND Vehicles AND Public Buildings AND Review) OR
(keywords: Electric AND Vehicles AND Public Buildings AND Review)

845

The selection of words was carried out in order to provide results aligned with the
topic of this work and a good quality systematic review. The next subsection will present
the steps taken with the applied methodology and the corresponding statistical results.
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2.2. Systematic Review

This subsection presents in more detail the steps taken during the systematic review
and the statistical results obtained. For both stages, only one filter was applied in order to
provide a larger collection of contributions. More specifically, the results were restricted to
the years 2012 to 2022 for a more recent perspective of the literature. The first research stage
uses the string “Electric AND Vehicles AND Public Buildings” in the format presented
in Table 1. As a result, a general perspective of the interactions between EVs and the grid is
presented, where the scale of the environment evolves from small parking lots with solar
panels to residential structures and buildings, and even some cases of larger buildings, with
a focus on PBs. The initial obtained results on 10 May 2023 were a total of 1418 publications.
After applying the timeline filter, the total of publications to be analyzed was 487, with its
distribution over time being presented in Figure 3.

Figure 3. Number of publications over time for string “EVs” AND “Public Buildings”. Data from: [47].

Figure 3 presents the evolution in the number of articles published from 2012 to 2022
for the string “Electric AND Vehicles AND Public Buildings”. It can be noticed that there
is a constant growing rhythm until the end of 2019 despite a small deceleration in 2016.
However, between the years 2020 and 2021, there was a noticeable reduction in the number
of publications. This was probably an impact of the pandemic outbreak with the lockdowns,
since multiple field works were suspended, which reduced the number of published articles.
In 2022, with the alleviation of measures and the re-initiation of scientific activities, the
numbers returned to the same basis as before the outbreak. It is also possible to identify the
top fields of study for the applied restrictions as they relate to the current literature search.
This representation can be seen in Figure 4.

Beyond the presentation of the top fields of study related to the search, the number
of publications for each field of study is also available in the figure, together with the
corresponding bars. However, multiple scientific areas are shown in the Lens results,
and most do not have a relationship with the subject hereby studied (e.g., biology, waste
management, marketing, aerospace engineering, etc.). In this sense, a selection of the areas
most aligned with this research was made, and the results are presented in Figure 4. For
the second stage of the research, a comparison with other literature reviews regarding
the integration of EVs and PBs was carried out, aiming to present their findings and
identify where this work can contribute to the field. For this purpose, the “Electric Vehicles”
AND “Public Buildings” AND “Review” strings were used to find articles focused on PBs.
Accordingly, 845 items were identified, and after applying the same time period restriction
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(2012 to 2022), the number decreased to 256. After the first classification of the findings
using strings and filters, the contributions found were analyzed in such a way as to propose
new questions and new strategies for integrating EVs and PBs. With the aim of better
presenting the papers that were most aligned with the topic of this work, we classified
them by their title, abstract, and relevance to this work. The final selection is presented in
Section 3.

Figure 4. Scientific areas most aligned with the string “EVs” AND “Public Buildings”. Data from: [47].

3. Results

The results of the literature review comprise a collection of contributions regarding
the optimization challenges of integrating EVs and buildings, with a focus on PBs, the core
of this work. Review articles about the topic are also presented to understand to which
point this field of study has already evolved and what the challenges are that still need to
be addressed. In this sense, this section is divided into two parts. Section 3.1 presents a
collection of mathematical optimization (MO) contributions for the referred context, and
Section 3.2 approaches the use of machine learning (ML) for the integration of EVs in PB.

3.1. Optimizing the Integration between EVs and PBs

Many techniques to integrate EVs and PBs can be utilized, from simple control systems
to advanced approaches such as prediction using ML and MO [48–50]. Although this last
technique has been increasingly chosen as the method for the aforementioned integration
in recent years, there are still unfilled gaps in the literature regarding this. This section
intends to present what is already known about this study’s subject and identify the gaps
that have not yet been addressed. A comprehensive review of different optimization
strategies was presented by Refs. [51,52], where the creation of an EV fleet operator was
proposed in order to reduce the adverse impacts of the larger number of EVs connected
to the grid and the methods are classified by performance and applicability. For better
organization, this subsection was divided into three subsubsections, according to the
complexity of the environment. In this way, Section 3.1.1 presents simpler optimization
cases, while Section 3.1.2 deals with MO techniques for buildings at an individual level.
Finally, Section 3.1.3 brings to light the contributions of optimization in buildings at a
community level.
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3.1.1. Optimization with V2G in Charging Stations and Parking Lots

Ref. [17] developed a novel controlling system for a building-integrated MG (BIM) to
maximize the use of local PV generation, minimize imported energy, and minimize the
divergence of the desired departure SoC of the EVs. The authors used a finite horizon
schedule scheme to develop the control algorithm. The model ensured that 85% of the
energy needs were provided by PV generation. The forecasting accuracy will be improved
in future investigations. Ref. [53] proposed an electric vehicle charging station (EVCS)
using MPC and optimal control with minimum cost and maximum flexibility (OCCF) to
maximize the flexibility capacity of the EVCS while minimizing operational costs through
scheduled charging power. In addition, OCCF allows the EVCS to provide ancillary services
to the grid. As limitations, power was not provided by the RES, and real EV usage data
were not considered.

The authors of Ref. [54] aimed to minimize energy costs and the voltage deviation
index (VDI) on a grid-connected unbalanced MG using an epsilon constraint and a fuzzy
satisfying approach as methods to solve the multi-objective optimization problem. The
results demonstrated that the model successfully achieved its objectives while handling
stochastic uncertainties, and future work could include studying this method in an islanded
mode. On a larger scale, the authors of [55] aimed to minimize the cost of a smart car park
using V2G technology and a genetic algorithm (GA). These authors’ results expressed the
benefits of using V2G, and they concluded that such technology is influenced by factors
such as battery degradation costs, feed-in tariffs (FIT), and the initial SoC. V2G technology
was also studied by [56], where an optimization method to maximize self-sufficiency and
charge EVs simultaneously using linear programming was developed, as well as [57], who
presented a comprehensive review of V2G technology.

3.1.2. Optimization in Buildings at an Individual Level

The next contributions focus on vehicle-to-building (V2B) technology, where, as previ-
ously mentioned, the vehicles can act as energy storage systems for buildings and can also
be aggregators of the MG. Ref. [58] proposed a single power contract for a smart residential
building, aiming to determine the optimal contracted power value and the optimal sched-
ule of charging/discharging the EV/battery storage. The model was formulated as a mixed
binary linear problem (MBLP) and solved using GA. The proposed objectives were success-
fully achieved, and a 47% cost reduction was obtained compared to the absence of flexible
contracted power and smart management systems. As limitations, the authors identified
the need to incorporate demand response programs (DRPs) in further investigations.

V2B was also studied by [59], where a building-integrated photovoltaic (BIPV) system
with bi-directional power flow between the grid and EVs was presented. Using multiple
control methods (incremental resistance, INR; insulated gate bipolar transistor, IGBT;
adaptive-filter-based control algorithm, and sinusoidal tracking algorithm), the authors
managed to feed the building and the grid in both day and night periods while maintaining
the load balance. Ref. [60] presented a novel system for energy management in buildings
at an MG level called the optimal model for energy management strategy (OMEMS),
involving PV, energy storage and EVs. Using MILP as the main method, the proposed
model successfully maximized the use of RES and minimized the energy imported from
the grid in a faster and simpler way compared with other methodologies. Ref. [61] used
MILP to evaluate the cooperative capacity of an EMS that integrated RES, EVs, and ESSs in
one single MG for an office building on a university campus. Six scenarios were analyzed
with the objective of minimizing the total daily cost of electricity consumption, and the
developed model was able to inject more power into the grid and allocate power to
the components with greater flexibility in the scenario with the highest PV generation.
Additionally, the model can be expanded and modified to add multiple building types
and more loads, allowing it to be used at larger grid levels, such as for neighborhoods,
for example.
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A robust optimization model was presented by [19] to improve the security of an
MG system composed of conventional generators, wind turbines, and EVs considering
the uncertainty regarding the power provided by the EVs and wind turbines. The model
accomplished its objectives and allowed the decisionmaker to adjust it for robustness
or economy according to their needs. An optimization challenge on a larger scale was
presented by [62], where the EV charging opportunities for private and public structures in
Sacramento and San Diego (California, USA) were evaluated, considering infrastructure
costs, dynamic electricity pricing, and the travel and dwelling behavior of BEV drivers. To
address this case, the authors used MILP to determine the optimal location and the number
of chargers with the lowest total system cost possible. The results showed that San Diego
presents the lowest cost and the lowest emissions in comparison with Sacramento, even
with a 48.9% higher number of drivers. However, factors that can affect the behavior of
users, such as charging demand–price elasticity and price signals, were not considered.
Additionally, the number of non-home chargers (30% of the required chargers for both
regions in all scenarios) may have been underestimated, as the authors assumed that all
drivers would be completely responsive to charging prices and that turnovers occur with
perfect efficiency.

Ref. [63] addressed a larger challenge regarding demand side management (DSM) for a
building integrating EVs, thermal energy, and storage units. With the objective of handling
different pricing and solar availability, the authors developed a distributed approximate
dynamic programming (D-ADP) algorithm that used feedback-based control. The model
successfully achieved economic gains without affecting the comfort levels of the users. A
similar work was developed by [64], where a discrete optimization strategy combined with
DRP was proposed for the integration of residential EV customers in a distribution system
through smart charging in a parking lot. The selected algorithm was MILP, and the desired
SoC and next trips of the EV owners, obtained via an information sheet, were considered
as well for four scenarios (normal or fast charging with and without the presence of DRP).
The results showed that DRP effectively reduces battery charging costs and the peak load
of the system without requiring any improvements be made on the existing electric grid
system; additionally, it was found that normal charging presented better results than the
faster mode.

3.1.3. Optimization in Buildings at a Community Level

A novel concept called a “boundary expansion scenario” (BES) was featured in [65].
The approach intended to expand the interactions of EVs with a solar-wind-powered
office building from the parking lot to a remote parking space, allowing the vehicles to
continue participating in the system regardless of their location. The green thinner arrows
indicated the location of the EVs in relation to the office building, while the green thicker
arrows referred to the energy flow between the EVs and the building. Regarding the
black vertical lines, they represented the grid, and the horizontal black arrows indicated
the electricity flow. Finally, the green thinner dots around the buildings and the vehicles
encompassed the whole proposed system. The control strategy was based on the TRNSYS
simulation software, which is used for evaluating building energy systems and services,
on-site renewable energy and storage systems, and various control systems, as well. Two
scenarios were assessed (non-activated BES and activated BES), with 10 and 20 EVs in use,
respectively. It was concluded that, with the BES activation, the matching of generation
and demand reached 62%, and the coverage rate of the EV storage was 96.9%. Figure 5
shows the potential interactions between EVs and office and residential buildings.

A community-level optimization novelty was investigated in [66], where EVs were
considered as a “new-type” load in a distributed energy system (DES) combining solar
power and hybrid energy storage systems (heat, batteries, etc.). The authors chose the
non-dominated sorting genetic algorithm II (NSGA-II) to perform the optimization of the
system due to its unique abilities in solving non-linear optimization problems, reducing
computational complexity, improving calculation accuracy, and quickly sorting solutions.
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The model was applied for 12 community scenarios with different levels, and the scenario
with public buildings representing 50% of the community was found to have the best
results, achieving 56.4% less GHG emissions and an energy saving rate of 53.1%. The
authors of [67] modeled an energy sharing system called an electric vehicle–power grid–
manufacturing facility (EPM) using mixed integer nonlinear programming (MINLP) as
an optimization method to reduce energy costs and GHG emissions based on time-of-use
(TOU) tariffs. This work is among the first to investigate the integration of EVs with
manufacturing facilities. The model successfully proved its viability by reducing emissions
and energy costs by 22% and 23% on average, respectively.

Figure 5. Interactions between EVs and office and residential buildings.

In Ref. [68], a day-ahead optimization model was developed for the Los Angeles
Air Force Base Electric Vehicle Demonstration (LAAFB EVD) project, which incorporates
30 EVs and participates as a market resource in the wholesale frequency regulation market
run by a California independent system operator (CAISO). The objective was to reduce the
operation costs of the fleet while considering uncertainties such as the travel requirements
of the EV owners, operational reserve capacity, building load, etc. The overall charging
targets were met, and as future work, a stochastic optimization was suggested, as was
considering battery degradation costs. In [69], optimization was applied to determine the
number of allocated residential and PB parking lots for PHEVs in a distribution system (DS)
that incorporated RES as distributed generation units and to minimize the overall energy
cost of the system. For these purposes, the author chose the artificial bee colony (ABC)
algorithm to assess the problem. Beyond reducing the overall expenses, the algorithm
also improved the efficiency and security of the system. In [5], the authors proposed a
strategy to maximize a green energy index (GEI) used for coordinating EV smart charging
in a case study involving 510 EVs and 17 public BIPVs. The GEI allowed both EV owners
and building users to be informed about the source that served their energy demand
and the charging state of the vehicles, from time to time. To assess this challenge, the
algebraic modeling language (AMPL) was used. The model successfully reduced the use
of energy from the grid and simultaneously satisfied the requirements of the EV drivers,
and future work will consider the stochastic behavior of the drivers, renewable energy, and
building load.

3.2. Optimally Integrating EVs and PBs through Machine Learning Techniques

Although ML is mostly used for prediction purposes (e.g., [70–72]), this technique can
also be used for optimization. Machine learning algorithms can be trained to predict the
stochastic parameters (e.g., the desired SoC at the departure time, PV generation, the arrival
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time of the EV, etc.) related to EVs and PBs, and based on such results, the model can
also optimize the problem such that one or more objectives can be simultaneously achieved
(e.g., maximizing the use of local PV generation, minimizing the electricity bill, maximizing
demand/generation matching, minimizing imported energy, etc.). Furthermore, in some
cases, the model can be adjusted according to the user’s preferences [19,56]. In this section, a
set of contributions regarding the use of ML for optimization will be presented and analyzed.

The first example is Ref. [73], where a review was presented on the use of reinforcement
learning (RL) in multiple applications with a focus on energy management, exploring the
different RL algorithms and their performance when employed on EMSs. In [70], ML and
MO were applied together to predict the availability of an EV to provide vehicle-to-home
(V2H) services for a house. To predict the availability for five different vehicle usage levels,
light gradient boosted machine (LightGBM) was chosen as the ML method. In the sequence,
MO was employed using the Pyomo framework to minimize the electricity bill for each
profile. The proposed model successfully reduced the household’s electricity bills by 46%
with a prediction accuracy of 85% and a coefficient of determination (referred to as R2) of
0.78 for the journey length prediction.

Ref. [71] also used both ML and MO in one single framework, aiming to minimize
the costs of purchasing electricity from the grid for a residential building in Belgium
that comprised photovoltaic–thermal panels, batteries, and EVs. A supervised learning
algorithm, gradient tree boosting ensemble (GTBE), was applied to predict the stochastic
data (PV generation, load of the building and EVs, etc.), and in sequence, the obtained
data were optimized through linear and mixed integer programming as a deterministic
optimal control problem. Three scenarios were studied, and the results showed that a
scenario with 20 kWp of panels combined with a 16.1 kWh battery capacity achieved the
best performance (31% reduction in electricity costs, 68% of on-site energy fraction, and
a 97% generation-to-demand ratio). A field test was implemented in [74] by deploying
ML to maximize the self-consumption of multiple residential locations in The Netherlands
including PV panels and buffered heat pump systems. In [72], the authors applied ML
to predict the energy consumption of 2370 PBs in Chongqing (China) using six different
regression algorithms (linear regression (LR), ridge regression, support-vector regression
(SVR)—linear kernel, decision tree (DT), random forest (RF), and XBoost) together with a
constant optimization process.

As already discussed, the charging demand is a vital parameter for the integration of
EVs and PBs, and therefore, there is a need to predict such information. Ref. [75] applied
ML to predict the EV charging demand of California for long-term planning based on
real drivers’ patterns. To identify such patterns, the authors used a hierarchical graphical-
based approach in a probability tree format and a Gaussian mixture model as the chosen
ML technique. The real data of drivers were also used by [76] to evaluate the energy
consumption of EVs in China under uncertain and small data conditions. For this purpose,
a machine learning control variable (MLCV) model was created with LightGBM as the base
learner and later compared to other ML techniques (LR, DT, nearest neighbor Regression,
SVR, and RF). The results showed that the MLCV model had a better accuracy of estimation
than the other models, and the authors suggested the use of deep learning for future works
in this area. The authors of [77] applied ML techniques to investigate energy consumption
based on the occupancy of different spaces in the same institutional building. Aiming
to model the interrelation between energy load and occupancy, a deep neural network
(DNN) was applied and compared with five other ML methods (SVR, RF, gradient boosting
(GB), artificial neural network feed-forward (ANN-FF), and a DNN-based artificial neural
network (ANN-DN)). As a result, DNN and GB had the best prediction accuracy and
comparison velocity, and they were integrated into one single model.

A different approach was presented in [78], where the authors evaluated how to
combine big data and ML in an intelligent system for the energy management of public
buildings in Croatia. Three ML methods were used (deep ANN, classification and re-
gression tree (CART), and RF) for the prediction modeling, in which the RF had the best
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accuracy. The three models were integrated with big data in a system named MERIDA,
which can improve the energy efficiency of the public sector and could become a powerful
tool for decisionmakers to implement actions that will bring benefits both at the micro level
(building) and the macro level (public sector).

The literature presented various contributions regarding the integration of EVs and
buildings (integration of batteries in MGs comprising EVs and buildings [40], V2B technol-
ogy [43], combined use of ML and MO techniques [70], etc.), as well as some limitations
(absence of V2G, the need to consider stochastic parameters as future work, etc.). To better
understand the pros and cons of the literature, a discussion will be promoted in Section 4.

4. Discussion

After gathering a collection of references related to the integration of EVs and PBs, this
section intends to assess the progress already achieved by the previous research, identify
the current limitations of optimization models, and assess which questions still need to
be answered. In this sense, the findings are presented in the following format. Section 4.1
discusses the overall observations from the literature regarding MO, while Section 4.2
approaches the technical and economic constraints. Finally, Section 4.3 presents the policies
and trends that will impact the integration of EVs and buildings.

4.1. General Observations of Mathematical Optimization

The first observation obtained from the literature is that there are no review papers
focused on the integration of EVs and PBs in one single framework. However, multiple
publications approach the aspects related to the subject from a more individual perspective
(these aspects will be further described). In this sense, the need for a paper discussing
the evolution of the integration between EVs and PBs in only one place reinforces the
importance of this work as a novelty for the scientific community and allows to explore the
referred subject in a deeper way.

Aiming to provide a larger panorama of the works previously mentioned, an overview
is presented in Table 2. Focusing on MO, each of the 28 items shows the correspondent
reference number, perspective, methodology, objectives, findings and constraints.

Observing Table 2, it can be noticed that most works focused on residential buildings,
parking lots, and even power plants. Additionally, some papers studied EVs and PBs
separately. This observation leads to the need to develop more research integrating PBs and
to combine both the buildings and the vehicles in one single framework. Moreover, on the
one hand, some contributions did not use a bi-directional power flow between the building
or the grid and the EV (V2G and V2B), meaning that the vehicles were only charged, and
the discharge of the vehicles to supply the building or the local grid was considered as
future work. On the other hand, in the studies including V2G technology, the authors
highlighted that the vehicles can successfully support local generation and work as mobile
battery storage systems or provide ancillary services to the grid, which may have some
limitations, such as variations in the range of SoC, battery degradation, FIT, and other
aspects that will be further discussed.

Regarding the perspectives of the references hereby presented, it can be noticed that
the most studied is the perspective of the grid, being present in almost all the articles, with
the consumer and economic perspectives following right after. At first glance, this is a good
impression, as half of the 28 works are oriented to deal with grid and consumer require-
ments, which is not the same when the optimization objectives are analyzed (which will be
shortly discussed); most are oriented to minimize electricity bills or operational/overall
costs (electricity, equipment acquisition and maintenance, degradation, etc.). In addition,
almost half of the presented research handles two perspectives at the same time, and only
one considers three simultaneously. In this sense, there is space in the literature to develop
more works emphasizing the maximization of the generation/demand balance, as the
integration of EVs and PBs will have a major impact on these stakeholders, as well as
studies that comprise all the referred perspectives in one single framework.
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Table 2. Overview of the references in the scope of MO.

Ref. Perspective Methodology Objective (s) Observations

[43] Grid DETECt 2.3 Max. generation/demand match Energy savings between 45 and 77%
More suitable energy policies are needed

[44] Grid Dynamic Programming Max. PV generation usage
Max. power factor

Power factor above the reference
Addition of voltage and frequency
regulation in future works

[53] Grid MPC
OCCF

Max. EVCS flexibility capacity
Min. EVCS operational costs

Cost reduction and ancillary services provision
Absence of RES, real EV data,
and battery degradation consideration

[54] Grid Epsilon constraint
Fuzzy satisfying approach

Min. operational costs
Min. VDI

Handling of uncertainties,
islanded mode operation, and EV inclusion
are suggested as future work

[55] Grid GA Min. car park electricity cost

V2G benefits are seen but influenced
by battery degradation cost, FIT, rebate, and SoC
Absence of considering SoC requirements,
driving patterns, V2G schemes, and RES

[67] Grid MINLP
PSO Min. total electricity costs

Electricity and emissions reductions are achieved
Absence of EV driving and electricity
price uncertainties
Consideration of other RES as future work

[69] Grid ABC
Optimally determ. number and
size of parking lots
Min. total energy costs

Energy cost reductions were achieved
Operational conditions were improved

[61] Grid MILP Min. overall energy cost Viability seen in scenario with most PV
Possible expansion to neighborhood/district levels

[71] Grid GTBE
MILP Min. imported electricity cost Best results with a 20 kWp PV and 16.1 kWh battery

Applicability in other central European climatic areas
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Table 2. Cont.

Ref. Perspective Methodology Objective (s) Observations

[40] Grid ANN
RMC

Min. PV and battery
configuration cost

95% optimality rate
Consideration of bi-directional EV
power flow is suggested as future work

[56] Grid
Consumer Linear Programming

Max. local PV self-consumption
Optimally charge EVs
Min. grid energy import

The objectives were achieved
User can set the desired parameters

[58] Grid
Consumer

MBLP
GA

Max. demand fulfillment
Min. electricity bill

47% electricity bill reduction
Optimal contract power value determined
DRP and economic viability as future work

[60] Grid
Consumer MILP Max. RES usage

Min. imported energy
The objectives were achieved
Better performance than other techniques

[5] Consumer
Grid AMPL Max. PV usage

through GEI

PV energy satisfies EV and building needs
Need to consider stochastic parameters of
EV, building, and renewable generation
No bi-directional flow between EVs and building

[32] Consumer
Grid SAMCSA Min. total operation cost

Cost reduction
EVs enhanced to mobile storage systems
Overall MG reliability improved

[33] Consumer
Grid MILP Max. consumer profits

Min. electricity cost
15–20% electricity bill reduction
Capacity to address overload situations

[17] Consumer Finite horizon
Schedule

Max. local PV production
Min. imported energy
Min. departure SoC divergence

PV energy ensured 85% of loads
Need to improve the forecasting accuracy
No bi-directional flow between EVs and building

[30] Consumer OSLA
Min. operational costs
Max. local generation
usage

20.53% overall cost reduction
88.15% accuracy of customer load execution
Include more buildings
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Table 2. Cont.

Ref. Perspective Methodology Objective (s) Observations

[36] Consumer PSO Max. customer comfort
Min. energy consumption

Comfort levels maintained
Use of market information and economic analysis
for future work

[39] Consumer MILP Min. electricity costs while
satisfying SoC of EV users

Charging costs reduced
Need to consider forecast errors and V2G
in future work

[70] Consumer LightGBM
Pyomo

Min. electricity bill
Min. energy consumption

Electricity costs reduced by 46%
House electricity demand, EVs’ daily trip number,
trip duration, and trip starting time were not considered

[74] Consumer
Economic RL Max. generation/demand match

Min. electricity bill

50–75% increase in local PV coverage
algorithm performance influenced by end-user
behavior, PV forecast accuracy, and seasonality

[68] Economic MILP Max. profits
Min. operation costs

All SoC targets were met
Absence of stochastic optimization
and V2G costs (e.g., battery degradation)

[19] Economic SIP Min. operation costs Cost reduction and system improvement
Adjustability to robustness or economy

[64] Economic MILP Min. total energy costs
Charging costs minimized under
technical and economic limitations
Peak loads decreased without system upgrades

[66] Economic NSGA-II
Max. energy saving
Min. GHG emissions
Min. user annual cost

Objectives are accomplished
Scenario of 50% of PBs with best results
Building scenario design suggestions are provided

[62] Economic
Grid MILP

Estimate EV charging
infrastructure placement
Min. operational costs

San Diego area presents the best results
Introduction of factors such as price elasticity
and price signals is suggested for future work

[63] Economic
Consumer D-ADP Min. operational costs

maintaining comfort level

Energy and comfort cost benefits proved
Absence of equipment degradation and
maintenance costs (batteries, PVs, etc.)
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Concerning the optimization techniques, it can be noticed that beyond the proper
MO algorithms, ML techniques can also be employed for optimization, and there is an
increasing variety of tools that can be used for integrating EVs and PBs, as some works
even compare different algorithms to identify the best option(s) to achieve the proposed
objectives. However, only a few contributions use both approaches at the same time, and
the ones that do use only one technique of each type. In this sense, there is space to develop
more works that employ both ML and MO together, as well as the possibility of adopting
more than one option for MO and ML algorithms. Moreover, as previously mentioned, it is
possible to notice that most of the optimization objectives are focused on the minimization
of electricity bills or the overall/operational costs, and only a few of them aim to maximize
the matching between local generation and demand. In some cases, the energy that feeds
the system comes from the grid, and an absence of RES is noticed. In this sense, more future
works should include RES with special attention to PV and the integration of EVs and PBs
in the same framework.

4.2. Limitations and Constraints of Integrating EVs and PBs

This subsection describes the main constraints in the context of integrating EVs and
buildings, which are generally classified as technical, economic, and political constraints.
Moreover, for each perspective, they can be related to the EVs or the building, depending
on the scenario.

4.2.1. Technical Limitations

Taking first a technical point of view, the constraints identified in Table 2 are related to
the desired SoC at the departure of the vehicles, the usage of real EV data such as driving
behaviors, duration of trips, charging/discharging power of the battery, and uncertainties
related to these factors, and PV generation, which plays a vital role in the integration of
EVs and PBs. Additionally, the load limit of the system is also an important constraint that
restricts the amount of power provided by the grid and, in consequence, the number of
loads connected to the grid, such as EV chargers. On the building side, energy consumption
is also considered in many of the aforementioned studies, as it directly impacts the amount
of energy that must be generated to meet the demand of the users (both the building and the
vehicle) and the availability of stored energy or ancillary services. Another important aspect
that was identified is battery degradation. This is one of the most important constraints
as it can have an impact both on the technical and economic side of the integration. From
the technical perspective, the battery degrades more quickly depending on the number
of charging/discharging cycles and the depth of discharge, consequently decreasing its
storage capacity over time. This is mainly critical when bi-directional charging is considered,
since the number of cycles is increased. A review of different charging methodologies
considering battery degradation is presented by [79].

An important figure that must be considered as a technical constraint is the time
horizon chosen to be used in the optimization of the problem. The time horizon interval is
key for the user to define the frequency and intensity of the actions taken by the optimization
model in a certain interval ahead of the currently available information, meaning that the
further ahead the model is calibrated to forecast, the more uncertainty will exist, as well as
a smaller accuracy, resulting in different impacts depending on the selected time horizon.
The time horizon can variate from a “rolling horizon” (based on real-time operations and
data inputs) to day-ahead predictions and even horizons considering months or years of
the foreseeable future, which are more suitable for medium- and long-term planning. In
general, for optimization problems focused on operational and tactical solutions, the rolling
horizon is more suitable [80].

As examples of optimization using different horizons, Ref. [81] developed an ordinal
optimization (OO) model using real-time data and eight horizons of 15 min each to reduce
the operational costs of a CS and deliver a probabilistic performance guarantee. In [82], a
receding horizon approach was adopted to employ charging policies intending to minimize
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the daily peak power of a parking lot equipped with CSs while guaranteeing customer
satisfaction considering arrival time, departure time, and demanded charging energy as
uncertainties. For this model, the authors adopted a horizon of one day, and two algorithms
were developed based on the above-mentioned approach, namely, the receding horizon
policy (RHP) and receding horizon policy with prior information (RHPP). Additionally, only
the CSs and plugged EVs relative to the current time step will be part of the RHP actions,
as for this situation, the car park owner does not have any information on the uncertainties.

Finally, what is probably the most important constraint of all to be considered is the
type of charger to be used. The chargers currently available in the market can charge electric
vehicles either using an AC current at home or at standard public stations or using a DC
current at fast charging stations. According to the EVEXPERT website [83], AC chargers
have a power capacity of 11 kW or 22 kW (maximum), while DC chargers have a 50 kW
standard output at fast charging points and, in some cases, can reach an impressive output
power of 150 kW in ultra-fast charging stations, or even 250 kW, as is the case of Teslas’s
ultra-fast chargers. However, it is extremely important to understand the impacts that the
different charger levels can have in the context of integrating EVs and PBs. In Europe, an
AC charger level of 2 is standard for houses and slow public stations or workplaces [84].
DC fast charging is mostly available at motorway service stations and, with increasing
presence, in PBs as well.

These charging levels will generate different impacts in terms of power delivery,
infrastructure requirements, and charging time, especially if the chosen level is DC fast
charging. Ref. [85] studied the impact of the peak demand of DC fast charging from
plug-in electric vehicles in a PB in the USA and investigated the combined use of PV
panels and demand management (DM) to mitigate the impacts caused by their penetration
considering four different load scenarios (only the vehicles, vehicles and PV, vehicles and
DM, and the three combined) and two charging profiles. The results showed that only
the combination of PV and DM could keep the peak demand of the building with the
vehicle’s penetration lower than the original peak demand without any of these, and the
consideration of stringent DM strategies as well as appropriately sized PV panels were
stated as recommendations.

A different study was performed by [86], where the authors analyzed the feasibility
of installing an EV charging station powered by PV panels in a university building in
Poland considering the real driving conditions of an EV user (e.g., energy consumption
and driving distance) using an 11 kW capacity charging station for the simulation, as well
as testing driving conditions in summer and winter. The preliminary outcomes indicated
that, with a 310 kWh daily PV surplus, the station could charge between 3 and 12 vehicles
simultaneously, depending on their power, in an 8-hour working period. Moreover, at the
current level of development, the participation of the power grid was still necessary, and
consideration of varying daily sunlight conditions was pointed out for further investigation.
In this sense, it was seen that different levels of charging have different impacts on the
grid and users. Hence, it is extremely important to evaluate the local energy production
capacity, building consumption, and infrastructure requirements to choose the right type of
charger. Additionally, to achieve better generation–demand matching, it is recommended
that research regarding the combination of PV and DM strategies should be carried out,
seeking to avoid grid overloads in peak hours (end of the day) and a larger response
capability to attend to the needs of both parties. Finally, it is also recommended that
political and economic measures to disseminate EV public and fast charging should be
carried out, such as the creation of incentives for EV charger acquisition, regulations to
standardize charging levels, and even the development of new chargers that support both
AC level 2 and DC fast charging in one single unit, allowing wider compatibility between
the equipment and the vehicles, especially those with lower charging capacity limits.
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4.2.2. Financial Limitations

The second constraint perspective is focused on the financial point of view of the
subject, where there are costs associated to maintain the system operational (equipment
acquisition, operations, maintenance, depreciation, etc.), and electricity tariffs between the
building, grid and EVs. As previously mentioned, battery degradation can also play an
economic role in the integration of EVs and PBs. In the case of battery discharge with the
energy injected into the building or the grid, it is natural that the drivers receive financial
compensation for having the flexibility provided by their batteries and the cost associated
with the degradation must be compensated. Some of the previous constraints are identified
by [87], where a combined assessment of technical and economic aspects is performed for a
university campus using Battery Energy Storage Systems (BESSs) and V2G. The conclusions
show that the main technical constraints are related to the efficiency of the charging and
storage systems, and for the economic side, the availability of the EVs and the tariffs are
the greatest challenges.

Highlighting the tariffs, the ones that can most limit the integration of EVs and PBs
are the Dynamic tariffs and FIT. Dynamic tariffs, as the name indicates, are electricity prices
that change according to the energy demand and availability at a given time. The more
energy available and the smaller the demand, the lower the price will be. In the main
context of this work, dynamic tariffs are probably the biggest challenge to address, as the
predictability uncertainties turn harder for aggregators and energy operators to decide for
which prices they will sell their energy, and influences the right time for buildings and EV
users to decide when to buy energy.

With the decentralization and opening of the energy markets in many countries, there
is a need to develop tariffs that allow the producers of renewable generation and EV owners
to inject their energy into the grid for competitive prices in relation to the normal ones
paid for electricity, known in general terms as “injection tariff”. In the past, there was a
type of tariff designed to increase RES electricity share through long-term power contracts
called Feed-in Tariff (FIT) [88,89]. However, this tariff was much higher than the normal
electricity price and was abandoned by most countries [90]. Nowadays, the most common
tariff scheme for PV prosumers is net billing, where the injected surplus is rewarded with
credits that are applied for offset consumption or a payment (generally lower than the
normal electricity price) [91]. However, as the open energy market is still in the early stages
of development, there is a need to develop policies that regulate the prices in a way to
allow a fair and accessible market for everyone.

4.3. Future Policies and Trends

After an extensive analysis of the literature related to the integration of EVs and PBs,
this subsection presents the future policies and trends associated with the literature and
future perspectives for further development related to EVs and energy management in
buildings. With the wider adoption of RES and EVs, and the increasing number of buildings
with intelligent EMSs, new trends will rise and drive society towards a greener and smarter
future. To turn these trends into reality, policies must be created for a faster shift toward
sustainable energy generation and integration and allow fair access to these technologies
for everyone.

4.3.1. Future Policies

The first political measure that will have a major impact on the integration of EVs
and PBs is the regulation of PV panel installations in houses and buildings. Already
being applied as law in some countries, this policy makes it mandatory for houses and
buildings to have solar panels installed on their rooftops as a way to disseminate the use of
renewable energies and to reduce GHG emissions. As an example, Ref. [92] recommends
that PV panels must be installed in all new buildings and any buildings undergoing roof
renovation inside the European Union (EU). In the USA, more specifically, in California, this
policy already is law, obligating every new house or building to have PV panels installed.
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Although this policy is still being studied and discussed in many places worldwide, it
will be a standard in the future and will also be a great contributor to decarbonization.
Moreover, there is also a need to develop policies that promote EV charging flexibility
through tariffs and incentives (e.g., V2G-specific tariffs) [93].

At the end of 2020, according to the Energy Performance of Buildings Directive of the
European Union (EU) Comission [94], EU countries needed to ensure that all new buildings
were nearly-zero energy (NZE), and all new PBs were meant to be NZE after 31 December
2018. According to a proposed revision of the directive in December 2021, the document
proposes that all new buildings must be zero-emission buildings (ZEB) beginning on
1 January 2030, while new PBs must meet this criterion beginning on 1 January 2027. As
some studies have already shown, it is already possible to use PV generation to fulfill the
energy needs of buildings and use the surplus to charge EVs, inject energy into the grid as
an ancillary service, or even become self-sufficient in electricity generation. It is therefore
essential to develop policies that allow the widespread adoption of such technology in a
fair and accessible way for everyone. The great benefit will be the stability offered by the
system, allowing it to generate local, clean, and accessible electricity, reducing dependence
on the main power grid or even fully disconnecting from it. This possibility leads to an
increasing trend already mentioned earlier, that of energy communities, which will be
discussed shortly.

The last two political factors that will become great allies in the future are the incentives
for purchasing EVs and the ICEV phase-out policies. The end of the production and
commercialization of vehicles with combustion engines will be a reality over the next couple
decades, and measures to accelerate the transition to a fully electric era are already being
taken. It is already known that the EU will forbid the production and commercialization
of new ICEVs beginning in 2035 [95], and many other countries will take the same path,
although at different moments. Moreover, forbidding the production and sales of ICEVs
alone will not be enough to accelerate the transition to electric mobility. It is extremely
important to create financial conditions for society to have access to EVs and PHEVs
(e.g., incentives to purchase EVs) and also create incentives for the installation of public
chargers, with special attention for PBs. Additionally, financial support for the installation
of bi-directional chargers must be developed, as this technology still has high costs. Hence,
financial incentives must also be part of the policies for a greener future. Many countries
already offer financial benefits and incentives for purchasing an EV or a PHEV, especially
in the USA, Europe, and Asia, where the conditions for having these vehicles are more
favorable, although not yet ideal.

4.3.2. Trends and Future Work Perspectives

The last aspects to be analyzed in the literature are the trends and future work per-
spectives. Many innovative technologies and techniques have emerged in the last years
regarding EVs and buildings and are being increasingly studied by researchers in the
field. This section presents some of the trends identified in the literature collection hereby
approached. The first trend and the most mentioned in this work is V2G, which, as already
mentioned, allows the EV to work as a mobile storage system and a full-time energy support
system for houses and buildings. However, it is important to consider that, as mentioned
above, more chargers are needed to make full use of the V2G capabilities, with attention
to bi-directional chargers. Moreover, EVs also must have bi-directional capabilities, and
currently, the variety of models with such technology is extremely limited. In this sense,
there is no doubt that this will be one of the most promising trends of the future.

Allied with such disruptive features, transactive energy (TE) markets between EVs
and buildings are also a trend [96,97]. Thanks to V2G technology, it is already possible for
these entities to commercialize electricity between one another (as seen in some references
mentioned earlier). As this reality is still in an early phase of development, it is expected
that more research will be conducted in this sector in the future. A practical example is
Ref. [98], where the authors reviewed how smart buildings can provide services to the grid
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through a TE framework, as well as the related opportunities and challenges. Additionally,
it is expected that specific policies will be created to stimulate its adoption on a large scale
and to promote fair competition with other market models. It is important to understand
that the generated electricity can be traded via TE either at an individual level (e.g., between
the building and the individuals who use it, such as students, employers, or customers)
or at a community level (in a determined area and, mainly, between the members of the
community), or even both, being a complementary technology for the energy communities
concept that will be shortly explained.

Inside the TE market trend, two new technologies are gaining attention as transaction
methods. The first one is known as blockchain, which, by the use of PV surplus, allows
charging transactions to be carried out with better security of information provided by
the parties and with a more competitive price than the price offered in the retail market.
Additionally, blockchain alleviates the grid load and improves the reliability of the system.
The authors of [99] proposed a business model using blockchain where payments were
made via a mobile app. The second emerging technology is peer-to-peer (P2P), an energy
trading method that allows prosumers of a community or cluster to trade surplus energy
with each other, increasing their benefits and consumer benefits [100]. As with blockchain,
P2P also reduced the load of the grid while improving the reliability of the system and
reducing operational and maintenance costs. A practical business model using P2P was
presented by [101].

The last identified trend and probably the most promising of all is the energy commu-
nities concept. This idea considers that multiple stakeholders of a community or a cluster
(such as houses, buildings, EVs, etc.) can interact with each other in a way that makes it
possible to trade electricity without the need for a grid operator, achieving self-sufficiency
in energy generation and commercializing the surplus generation to the community. As a
payment method, TE can be used to ensure safe and competitive transactions. Recently,
the European Council and Parliament published the Regulation (EU) 2019/944 [102], in
which the development of energy communities is promoted; this regulation also proposes
rules for an improved market design in the EU. This trend was already mentioned by [43]
and is also indirectly referred to in Refs. [61,66] through the suggestion of expanding the
proposed model to neighborhood/district levels and scenarios with multiple PBs, respec-
tively. Regarding the EVs, they will act as a mobile storage energy system (as already seen
in [15,16]) and a service provider when the surplus is insufficient to meet the loads. This
concept will have a major impact all over the world, with particular attention on islands
and remote regions, where access to electricity is much more limited or even nonexistent.

5. Conclusions

EVs and buildings with smart energy management tools are trends that are already
part of our daily lives, and their widespread integration towards a more stable and resilient
electrical grid has already begun. It was seen that EVs can contribute towards a more
stable grid, a higher degree of matching between local electricity generation and demand,
and improvements in energy consumption efficiency beyond reductions in operational
costs and GHG emissions, for example. Many different tools and strategies can be used to
optimize such innovation, and multiple factors must be considered for its successful integra-
tion. However, no studies regarding the full integration of EVs and buildings thoroughly
explored the strategies, limitations and future trends regarding the subject presented at
an individual level, demanding contributions that approach these aspects in one single
framework. In this sense, this work presented a systematic review of the optimization
techniques applied for the integration of EVs and PBs, and a review emphasizing PBs
was developed. Furthermore, an integrated picture of the constraints, as well as future
trends and perspectives, regarding the integration of EVs and PBs was presented. The
study also contributes an understanding of the incentives to create new policies that will
allow the wider dissemination of this integration. First, the methodology used to produce
this research was the Lens [47] open-access platform, which, due to its large availability of
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sources and statistical parameters available, allowed us to assess the evolution of scientific
contributions in terms of the number of publications in recent years (with a time frame from
2012 to 2022) and the most studied areas in the same time frame. In total, 743 publications
were found using two strings (“Electric AND Vehicles AND Public Buildings” and “Electric
AND Vehicles AND Public Buildings AND Review”) and were later selected for analysis
according to the title, abstract, and relevance to the study. As limitations, the conducted
analysis did not make use of other approaches such as bibliometric analysis [103] or even a
combination of systematic and bibliometric reviews [104], nor did it use other filters such as
country of publication, citation count, etc. It was noticed that, although there was a decrease
in the amount of produced content between 2020 and 2022, the tendency is that the number
of articles published on this topic grows every year. Next, a collection of findings was
presented, analyzing in more detail the publications that were more aligned with this work,
organized by applied technique (MO, ML, and both in some cases). Later, a global perspec-
tive of the literature was presented, where the findings were organized by reference number,
perspective, applied methodology, optimization objectives, and findings/constraints.

Then, a discussion of the literature was performed, identifying the contributions of
the global picture and the constraints pointed out by the authors (classified as technical
and economic). Regarding their contributions, EVs are major contributors to a more
resilient and efficient power grid, being capable of working as mobile storage systems
and flexible resources to support local PV generation. Although important advances have
already been achieved (V2B2 technology, BES, the combined application of MO and ML
techniques, and the integration of EVs and PBs with DG resources), more research must
be carried out to explore their full capacities. The constraints that were most identified
in the literature are technical and economic, with special attention to battery degradation,
uncertainties regarding the driving schedules of the drivers of the vehicles, electricity tariffs,
and charging infrastructure. In addition, the trends and future perspectives and policies
were also presented, with the most promising being V2G, TEs, and energy communities.

Finally, in future work, further research could be carried out using bibliometric analysis
or other approaches, or even a combination of two different techniques. Additionally,
studies involving the development of new strategies and policies/regulations focused on
the dissemination of PBs with mounted solar panels with integrated charging stations
for EVs will be major contributors. With these conclusions, this work provided a global
perspective of what already has been achieved in the field of integration between EVs and
PBs and the areas that will play a major role towards achieving a decarbonized society.
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