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Abstract: This paper addresses the existence and regularity of weak solutions for
a fully parabolic model of chemotaxis, with prevention of overcrowding, that de-
generates in a two-sided fashion, including an extra nonlinearity represented by a p-
Laplacian diffusion term. To prove the existence of weak solutions, a Schauder fixed-
point argument is applied to a regularized problem and the compactness method is
used to pass to the limit. The local Hölder regularity of weak solutions is established
using the method of intrinsic scaling. The results are a contribution to showing,
qualitatively, to what extent the properties of the classical Keller-Segel chemotaxis
models are preserved in a more general setting. Some numerical examples illustrate
the model.
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1. Introduction
1.1. Scope. It is the purpose of this paper to study the existence and regu-
larity of weak solutions of the following parabolic system, which is a gener-
alization of the well-known Keller-Segel model [1, 2, 3] of chemotaxis:

∂tu− div
(
|∇A(u)|p−2∇A(u)

)
+ div

(
χuf(u)∇v

)
= 0 in QT , (1.1a)

∂tv − d∆v = g(u, v) in QT , (1.1b)

|∇A(u)|p−2a(u)
∂u

∂η
= 0,

∂v

∂η
= 0 on ΣT := ∂Ω× (0, T ), (1.1c)

u(x, 0) = u0(x), v(x, 0) = v0(x) on Ω, (1.1d)

where Ω ⊂ RN is a bounded domain, with a sufficiently smooth bound-
ary ∂Ω and outer unit normal η, and QT := Ω × (0, T ), for some T > 0.
Equation (1.1a) is doubly nonlinear, since we apply the p-Laplacian diffusion
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operator, where we assume 2 ≤ p < ∞, to the integrated diffusion func-
tion A(u) :=

∫ u

0 a(s) ds, where a(·) is a non-negative integrable function with
support on the interval [0, 1].

In the biological phenomenon described by (1.1), the quantity u = u(x, t)
is the density of organisms, such as bacteria or cells. The conservation
PDE (1.1a) incorporates two competing mechanisms, namely the density-
dependent diffusive motion of the cells, described by the doubly nonlinear
diffusion term, and a motion in response to and towards the gradient ∇v
of the concentration v = v(x, t) of a substance called chemoattractant. The
movement in response to ∇v also involves the density-dependent probability
f(u(x, t)) for a cell located at (x, t) to find space in a neighboring location,
and a constant χ describing chemotactic sensitivity. On the other hand, the
PDE (1.1b) describes the diffusion of the chemoattractant, where d > 0 is a
diffusion constant and the function g(u, v) describes the rates of production
and degradation of the chemoattractant; we here adopt the common choice

g(u, v) = αu− βv, α, β ≥ 0. (1.2)

We assume that there exists a maximal population density of cells um such
that f(um) = 0. This corresponds to a switch to repulsion at high densities,
known as prevention of overcrowding, volume-filling effect or density control
(see [4]). It means that cells stop to accumulate at a given point of Ω after
their density attains a certain threshold value, and the chemotactic cross-
diffusion term χuf(u) vanishes identically when u ≥ um. We also assume that
the diffusion coefficient a(u) vanishes at 0 and um, so that (1.1a) degenerates
for u = 0 and u = um, while a(u) > 0 for 0 < u < um. A typical example
is a(u) = εu(1 − um), ε > 0. Normalizing variables by ũ = u/um, ṽ = v
and f̃(ũ) = f(ũum), we have ũm = 1; in the sequel we will omit tildes in the
notation.

The main intention of the present work is to address the question of the
regularity of weak solutions, which is a delicate analytical issue since the
structure of equation (1.1a) combines a degeneracy of p-Laplacian type with
a two-sided point degeneracy in the diffusive term. We prove the local Hölder
continuity of the weak solutions of (1.1) using the method of intrinsic scaling
(see [5, 6]). The novelty lies in tackling the two types of degeneracy simul-
taneously and finding the right geometric setting for the concrete structure
of the PDE. The resulting analysis combines the technique used by Urbano



DOUBLY NONLINEAR CHEMOTAXIS MODEL 3

[7] to study the case of a diffusion coefficient a(u) that decays like a power
at both degeneracy points (with p = 2) with the technique by Porzio and
Vespri [8] to study the p-Laplacian, with a(u) degenerating at only one side.
We recover both results as particular cases of the one studied here. To our
knowledge, the p-Laplacian is a new ingredient in chemotaxis models, so we
also include a few numerical examples that illustrate the behavior of solutions
of (1.1) for p > 2, compared with solutions to the standard case p = 2, but
including nonlinear diffusion.

1.2. Related work. To put this paper in the proper perspective, we recall
that the Keller-Segel model is a widely studied topic, see e.g. Murray [3] for
a general background and Horstmann [1] for a fairly complete survey on the
Keller-Segel model and the variants that have been proposed. Nonlinear dif-
fusion equations for biological populations that degenerate at least for u = 0
were proposed in the 1970s by Gurney and Nisbet [9] and Gurtin and McCamy
[10]; more recent works include those by Witelski [11], Dkhil [12], Burger et
al. [13] and Bendahmane et al. [4]. Furthermore, well-posedness results for
these kinds of models include, for example, the existence of radial solutions
exhibiting chemotactic collapse [14], the local-in-time existence, uniqueness
and positivity of classical solutions, and results on their blow-up behavior
[15], and existence and uniqueness using the abstract theory developed in
[16], see [17]. Burger et al. [13] prove the global existence and uniqueness
of the Cauchy problem in RN for linear and nonlinear diffusion with preven-
tion of overcrowding. The model proposed herein exhibits an even higher
degree of nonlinearity, and offers further possibilities to describe chemotac-
tic movement; for example, one could imagine that the cells or bacteria are
actually placed in a medium with a non-Newtonian rheology. In fact, the
evolution p-Laplacian equation ut = div (|∇u|p−2∇u), p > 1, is also called
non-Newtonian filtration equation, see [18] and [19, Chapter 2] for surveys.
Coming back to the Keller-Segel model, we also mention that another effort
to endow this model with a more general diffusion mechanism has recently
been made by Biler and Wu [20], who consider fractional diffusion.

Various results on the Hölder regularity of weak solutions to quasilinear
parabolic systems are based on the work of DiBenedetto [5]; the present ar-
ticle also contributes to this direction. Specifically for a chemotaxis model,
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Bendahmane, Karlsen, and Urbano [4] proved the existence and Hölder reg-
ularity of weak solutions for a version of (1.1) for p = 2. For a detailed
description of the intrinsic scaling method and some applications we refer to
the books [5, 6].

Concerning uniqueness of solution, the presence of a nonlinear degenerate
diffusion term and a nonlinear transport term represents a disadvantage and
we could not obtain the uniqueness of a weak solution. This contrasts with the
results by Burger et al. [13], where the authors prove uniqueness of solutions
for a degenerate parabolic-elliptic system set in an unbounded domain, using
a method which relies on a continuous dependence estimate from [21], that
does not apply to our problem because it is difficult to bound ∆v in L∞(QT )
due to the parabolic nature of (1.1b).

1.3. Weak solutions and statement of main results. Before stating our
main results, we give the definition of a weak solution to (1.1), and recall the
notion of certain functional spaces. We denote by p′ the conjugate exponent
of p (we will restrict ourselves to the degenerate case p ≥ 2): 1

p + 1
p′ = 1.

Moreover, Cw(0, T, L2(Ω)) denotes the space of continuous functions with
values in (a closed ball of) L2(Ω) endowed with the weak topology, and 〈·, ·〉
is the duality pairing between W 1,p(Ω) and its dual (W 1,p(Ω))′.

Definition 1.1. A weak solution of (1.1) is a pair (u, v) of functions satis-
fying the following conditions:

0 ≤ u(x, t) ≤ 1 and v(x, t) ≥ 0 for a.e. (x, t) ∈ QT ,

u ∈ Cw

(
0, T, L2(Ω)

)
, ∂tu ∈ Lp′

(
0, T ; (W 1,p(Ω))′

)
, u(0) = u0,

A(u) =

∫ u

0
a(s) ds ∈ Lp

(
0, T ;W 1,p(Ω)

)
,

v ∈ L∞(QT ) ∩ Lr
(
0, T ;W 1,r(Ω)

)
∩ C

(
0, T, Lr(Ω)

)
for all r > 1,

∂tv ∈ L2(0, T ; (H1(Ω))′
)
, v(0) = v0,

and, for all ϕ ∈ Lp(0, T ;W 1,p(Ω)) and ψ ∈ L2(0, T ;H1(Ω)),∫ T

0
〈∂tu, ϕ〉 dt+

∫∫
QT

{
|∇A(u)|p−2∇A(u)− χuf(u)∇v

}
· ∇ϕdx dt = 0,∫ T

0
〈∂tv, ψ〉 dt+ d

∫∫
QT

∇v · ∇ψ dx dt =

∫∫
QT

g(u, v)ψ dx dt.
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To ensure, in particular, that all terms and coefficients are sufficiently
smooth for this definition to make sense, we require that f ∈ C1[0, 1] and
f(1) = 0, and assume that the diffusion coefficient a(·) has the following
properties: a ∈ C1[0, 1], a(0) = a(1) = 0, and a(s) > 0 for 0 < s < 1.
Moreover, we assume that there exist constants δ ∈ (0, 1/2) and γ2 ≥ γ1 > 1
such that

γ1φ(s) ≤ a(s) ≤ γ2φ(s) for s ∈ [0, δ]

γ1ψ(1− s) ≤ a(s) ≤ γ2ψ(1− s) for s ∈ [1− δ, 1],
(1.3)

where we define the functions φ(s) := sβ1/(p−1) and ψ(s) := sβ2/(p−1) for β2 >
β1 > 0.

Our first main result is the following existence theorem for weak solutions.

Theorem 1.1. If u0, v0 ∈ L∞(Ω) with 0 ≤ u0 ≤ 1 and v0 ≥ 0 a.e. in Ω,
then there exists a weak solution to the degenerate system (1.1) in the sense
of Definition 1.1.

In Section 2, we first prove the existence of solutions to a regularized version
of (1.1) by applying the Schauder fixed-point theorem. The regularization
basically consists in replacing the degenerate diffusion coefficient a(u) by the
regularized, strictly positive diffusion coefficient aε(u) := a(u)+ε, where ε > 0
is the regularization parameter. Once the regularized problem is solved, we
send the regularization parameter ε to zero to produce a weak solution of
the original system (1.1) as the limit of a sequence of such approximate solu-
tions. Convergence is proved by means of a priori estimates and compactness
arguments.

We denote by ∂tQT the parabolic boundary of QT , define M̃ := ‖u‖∞,QT
,

and recall the definition of the intrinsic parabolic p-distance from a compact
set K ⊂ QT to ∂tQT as

p-dist(K; ∂tQT ) := inf
(x,t)∈K, (y,s)∈∂tQT

(
|x− y|+ M̃ (p−2)/p|t− s|1/p

)
.

Our second main result is the interior local Hölder regularity of weak solu-
tions.

Theorem 1.2. Let u be a bounded local weak solution of (1.1) in the sense
of Definition 1.1, and M̃ = ‖u‖∞,QT

. Then u is locally Hölder continuous in
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QT , i.e., there exist constants γ > 1 and α ∈ (0, 1), depending only on the
data, such that, for every compact K ⊂ QT ,

∣∣u(x1, t1)− u(x2, t2)
∣∣ ≤ γM̃

{
|x1 − x2|+ M̃ (p−2)/p|t2 − t1|1/p

p-dist(K; ∂tQT )

}α

,

∀(x1, t1), (x2, t2) ∈ K.

In Section 3, we prove Theorem 1.2 using the method of intrinsic scaling.
This technique is based on analyzing the underlying PDE in a geometry
dictated by its own degenerate structure, that amounts, roughly speaking,
to accommodate its degeneracies. This is achieved by rescaling the standard
parabolic cylinders by a factor that depends on the particular form of the
degeneracies and on the oscillation of the solution, and which allows for a
recovery of homogeneity. The crucial point is the proper choice of the intrinsic
geometry which, in the case studied here, needs to take into account the p-
Laplacian structure of the diffusion term, as well as the fact that the diffusion
coefficient a(u) vanishes at u = 0 and u = 1. At the core of the proof is the
study of an alternative, now a standard type of argument [5]. In either case
the conclusion is that when going from a rescaled cylinder into a smaller one,
the oscillation of the solution decreases in a way that can be quantified.

In the statement of Theorem 1.2 and its proof, we focus on the interior
regularity of u; that of v follows from classical theory of parabolic PDEs [22].
Moreover, standard adaptations of the method are sufficient to extend the
results to the parabolic boundary, see [5, 23].

1.4. Outline. The remainder of the paper is organized as follows: Section 2
deals with the general proof of our first main result (Theorem 1.1). Section 2.1
is devoted to the detailed proof of existence of solutions to a non-degenerate
problem; in Section 2.2 we state and prove a fixed-point-type lemma, and the
conclusion of the proof of Theorem 1.1 is contained in Section 2.3. In Section 3
we use the method of intrinsic scaling to prove Theorem 1.2, establishing the
Hölder continuity of weak solutions to (1.1). Finally, in Section 4 we present
two numerical examples showing the effects of prevention of overcrowding
and of including the p-Laplacian term, and in the Appendix we give further
details about the numerical method used to treat the examples.
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2. Existence of solutions
We first prove the existence of solutions to a non-degenerate, regularized

version of problem (1.1), using the Schauder fixed-point theorem, and our
approach closely follows that of [4]. We define the following closed subset of
the Banach space Lp(QT ):

K :=
{
u ∈ Lp(QT ) : 0 ≤ u(x, t) ≤ 1 for a.e. (x, t) ∈ QT

}
.

2.1. Weak solution to a non-degenerate problem. We define the new
diffusion term Aε(s) := A(s) + εs, with aε(s) = a(s) + ε, and consider, for
each fixed ε > 0, the non-degenerate problem

∂tuε − div
(
|∇Aε(uε)|p−2∇Aε(uε)

)
+ div

(
χf(uε)∇vε

)
= 0 in QT , (2.1a)

∂tvε − d∆vε = g(uε, vε) in QT , (2.1b)

|∇Aε(uε)|p−2aε(uε)
∂uε

∂η
= 0,

∂vε

∂η
= 0 on ΣT , (2.1c)

uε(x, 0) = u0(x), vε(x, 0) = v0(x) for x ∈ Ω. (2.1d)

With ū ∈ K fixed, let vε be the unique solution of the problem

∂tvε − d∆vε = g(ū, vε) in QT , (2.2a)

∂vε

∂η
= 0 on ΣT , vε(x, 0) = v0(x) for x ∈ Ω. (2.2b)

Given the function vε, let uε be the unique solution of the following quasilinear
parabolic problem:

∂tuε − div
(
|∇Aε(uε)|p−2∇Aε(uε)

)
+ div

(
χuεf(uε)∇vε

)
= 0 in QT , (2.3a)

|∇Aε(uε)|p−2aε(uε)
∂uε

∂η
= 0 on ΣT , uε(x, 0) = u0(x) for x ∈ Ω. (2.3b)

Here v0 and u0 are functions satisfying the assumptions of Theorem 1.1.
Since for any fixed ū ∈ K, (2.2a) is uniformly parabolic, standard theory

for parabolic equations [22] immediately leads to the following lemma.

Lemma 2.1. If v0 ∈ L∞(Ω), then problem (2.2) has a unique weak solution
vε ∈ L∞(QT )∩Lr(0, T ;W 2,r(Ω))∩C(0, T ;Lr(Ω)), for all r > 1, satisfying in
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particular

‖vε‖L∞(QT ) + ‖vε‖L∞(0,T ;L2(Ω)) ≤ C, ‖vε‖L2(0,T ;H1(Ω)) ≤ C,

‖∂tvε‖L2(QT ) ≤ C,
(2.4)

where C > 0 is a constant depending only on ‖v0‖L∞(Ω), α, β, and meas(QT ).

The following lemma (see [22]) holds for the quasilinear problem (2.3).

Lemma 2.2. If u0 ∈ L∞(Ω), then, for any ε > 0, there exists a unique weak
solution uε ∈ L∞(QT ) ∩ Lp(0, T ;W 1,p(Ω)) to problem (2.3).

2.2. The fixed-point method. We define a map Θ : K → K such that
Θ(ū) = uε, where uε solves (2.3), i.e., Θ is the solution operator of (2.3)
associated with the coefficient ū and the solution vε coming from (2.2). By
using the Schauder fixed-point theorem, we now prove that Θ has a fixed
point. First, we need to show that Θ is continuous. Let {ūn}n∈N be a sequence
in K and ū ∈ K be such that ūn → ū in Lp(QT ) as n → ∞. Define uεn :=
Θ(ūn), i.e., uεn is the solution of (2.3) associated with ūn and the solution
vεn of (2.2). To show that uεn → Θ(ū) in Lp(QT ), we start with the following
lemma.

Lemma 2.3. The solutions uεn to problem (2.3) satisfy

(i) 0 ≤ uεn(x, t) ≤ 1 for a.e. (x, t) ∈ QT .
(ii) The sequence {uεn}n is bounded in Lp(0, T ;W 1,p(Ω))∩L∞(0, T ;L2(Ω)).
(iii) The sequence {uεn}n is relatively compact in Lp(QT ).

Proof : The proof follows from that of Lemma 2.3 in [4] if we take into account
that {∂tuεn}n∈N is uniformly bounded in Lp′(0, T ; (W 1,p(Ω))′).

The following lemma contains a classical result (see [22]).

Lemma 2.4. There exists a function vε ∈ L2(0, T ;H1(Ω)) such that the
sequence {vεn}n∈N converges strongly to v in L2(0, T ;H1(Ω)).

Lemmas 2.2–2.4 imply that there exist uε ∈ Lp(0, T ;W 1,p(Ω)) and vε ∈
L2(0, T ;H1(Ω)) such that, up to extracting subsequences if necessary, uεn →
uε strongly in Lp(QT ) and vεn → vε strongly in L2(0, T ;H1(Ω)) as n→∞, so
Θ is indeed continuous on K. Moreover, due to Lemma 2.3, Θ(K) is bounded
in the set

W :=
{
u ∈ Lp

(
0, T ;W 1,p(Ω)

)
: ∂tu ∈ Lp′

(
0, T ; (W 1,p(Ω))′

)}
.
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Similarly to the results of [24], it can be shown that W ↪→ Lp(QT ) is compact,
and thus Θ is compact. Now, by the Schauder fixed point theorem, the
operator Θ has a fixed point uε such that Θ(uε) = uε. This implies that
there exists a solution (uε, vε) of∫ T

0
〈∂tuε, ϕ〉 dt+

∫∫
QT

{
|∇Aε(uε)|p−2∇Aε(uε)−χuεf(uε)∇vε

}
·∇ϕdx dt = 0,

∫ T

0
〈∂tvε, ψ〉 dt+ d

∫∫
QT

∇vε · ∇ψ dx dt =

∫∫
QT

g(uε, vε)ψ dx dt, (2.5)

∀ϕ ∈ Lp(0, T ;W 1,p(Ω)) and ∀ψ ∈ L2(0, T ;H1(Ω)).

2.3. Existence of weak solutions. We now pass to the limit ε → 0 in
solutions (uε, vε) to obtain weak solutions of the original system (1.1). From
the previous lemmas and considering (2.1b), we obtain the following result.

Lemma 2.5. For each fixed ε > 0, the weak solution (uε, vε) to (2.1) satisfies
the maximum principle

0 ≤ uε(x, t) ≤ 1 and vε(x, t) ≥ 0 for a.e. (x, t) ∈ QT . (2.6)

Moreover, the first two estimates of (2.4) in Lemma 2.1 are independent of
ε.

Lemma 2.5 implies that there exists a constant C > 0, which does not
depend on ε, such that

‖vε‖L∞(QT ) + ‖vε‖L∞(0,T ;L2(Ω)) ≤ C, ‖vε‖L2(0,T ;H1(Ω)) ≤ C. (2.7)

Notice that, from (2.6) and (2.7), the term g(uε, vε) is bounded. Thus, in
light of classical results on Lr regularity, there exists another constant C > 0,
which is independent of ε, such that

‖∂tvε‖Lr(QT ) + ‖vε‖Lr(0,T ;W 1,r(Ω)) ≤ C for all r > 1.

Taking ϕ = Aε(uε) as a test function in (2.5) yields∫ T

0
〈∂tuε, A(uε)〉 dt+ ε

∫ T

0
〈∂tuε, uε〉 dt+

∫∫
QT

|∇Aε(uε)|p dx dt

−
∫∫

QT

χf(uε)∇vε · ∇Aε(uε) dx dt = 0;
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then, using (2.7), the uniform L∞ bound on uε, an application of Young’s
inequality to treat the term ∇vε ·∇Aε(uε), and defining Aε(s) :=

∫ s

0 Aε(r) dr,
we obtain

sup
0≤t≤T

∫
Ω
Aε(uε)(x, t) dx+ε sup

0≤t≤T

∫
Ω

|uε(x, t)|2

2
dx+

∫∫
QT

|∇Aε(uε)|p dx dt ≤ C

(2.8)
for some constant C > 0 independent of ε.

Let ϕ ∈ Lp(0, T ;W 1,p(Ω)). Using the weak formulation (2.5), (2.7) and
(2.8), we may follow the reasoning in [4] to deduce the bound

‖∂tuε‖Lp′(0,T ;(W 1,p(Ω))′) ≤ C. (2.9)

Therefore, from (2.7)–(2.9) and standard compactness results (see [24]), we
can extract subsequences, which we do not relabel, such that, as ε→ 0,

Aε(uε) → A(u) strongly in Lp(QT ) and a.e.,

uε → u strongly in Lq(QT ) for all q ≥ 1,

vε → v strongly in L2(QT ),

∇vε → ∇v weakly in L2(QT ),

∇Aε(uε) → ∇A(u) weakly in Lp(QT ),

|∇Aε(uε)|p−2∇Aε(uε) → Γ1 weakly in Lp′(QT ),

vε → v weakly in L2(0, T ;H1(Ω)),

∂tuε → ∂tu weakly in Lp′(0, T ; (W 1,p(Ω))′),

∂tvε → ∂tv weakly in L2(0, T ; (H1(Ω))′).

(2.10)

To establish the second convergence in (2.10), we have applied the dominated
convergence theorem to uε = A−1

ε (Aε(uε)) (recall that A is monotone) and the
weak-? convergence of uε to u in L∞(QT ). We also have the following lemma,
see [4] for its proof.

Lemma 2.6. The functions vε converge strongly to v in L2(0, T ;H1(Ω)) as
ε→ 0.

Next, we identify Γ1 as |∇A(u)|p−2∇A(u) when passing to the limit ε→ 0 in
(2.5). Due to this particular nonlinearity, we cannot employ the monotonicity
argument used in [4]; rather, we will utilize a Minty-type argument [25] and
make repeated use of the following “weak chain rule” (see e.g. [26] for a
proof).
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Lemma 2.7. Let b : R → R be Lipschitz continuous and nondecreasing.
Assume u ∈ L∞(QT ) is such that

∂tu ∈ Lp′(0, T ; (W 1,p(Ω))′), b(u) ∈ Lp(0, T ;W 1,p(Ω))

and u(x, 0) = u0(x) a.e. on Ω, with u0 ∈ L∞(Ω). If we define

B(u) =

∫ u

0
b(ξ)dξ,

then

−
∫ s

0
〈∂tu, b(u)φ〉 dt =

∫ s

0

∫
Ω
B(u)∂tφ dx dt+

∫
Ω
B(u0)φ(x, 0) dx

−
∫

Ω
B(u(x, s))φ(x, s) dx

holds for all φ ∈ D([0, T ]× Ω) and for any s ∈ (0, T ).

Lemma 2.8. There hold Γ1 = |∇A(u)|p−2∇A(u) and ∇Aε(uε) → ∇A(u)
strongly in Lp(QT ).

Proof : We define QT := {(t, s, x) : (x, s) ∈ Qt, t ∈ [0, T ]}. The first step
will be to show that, for all σ ∈ Lp(0, T ;W 1,p(Ω)),∫∫∫

QT

(
Γ1 − |∇σ|p−2∇σ

)
·
(
∇A(u)−∇σ

)
dx ds dt ≥ 0. (2.11)

For all fixed ε > 0, we have the decomposition∫∫∫
QT

(
|∇Aε(uε)|p−2∇Aε(uε)− |∇σ|p−2∇σ

)
·
(
∇A(u)−∇σ

)
dx ds dt

= I1 + I2 + I3,

I1 :=

∫∫∫
QT

|∇Aε(uε)|p−2∇Aε(uε) ·
(
∇A(u)−∇Aε(uε)

)
dx ds dt,

I2 :=

∫∫∫
QT

(
|∇Aε(uε)|p−2∇Aε(uε)− |∇σ|p−2∇σ

)
·
(
∇Aε(uε)−∇σ

)
dx ds dt,

I3 :=

∫∫∫
QT

|∇σ|p−2∇σ ·
(
∇Aε(uε)−∇A(u)

)
dx ds dt.
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Clearly, I2 ≥ 0 and from (2.10) we deduce that I3 → 0 as ε→ 0. For I1, if we
multiply (2.1a) by φ ∈ Lp(0, T ;W 1,p(Ω)) and integrate over QT , we obtain∫ T

0

∫ t

0
〈∂tuε, φ〉 ds dt−

∫∫∫
QT

χuεf(uε)∇vε · ∇φ dx ds dt

+

∫∫∫
QT

|∇Aε(uε)|p−2∇Aε(uε) · ∇φ dx ds dt = 0.

Now, if we take φ = A(u)− Aε(uε) ∈ Lp(0, T ;W 1,p(Ω)) and use Lemma 2.7,
we obtain

I1 =−
∫ T

0

∫ t

0
〈∂tuε, A(u)〉 ds dt+

∫ T

0

∫ t

0
〈∂tuε, Aε(uε)〉 ds dt

+

∫∫∫
QT

χuεf(uε)∇vε ·
(
∇A(u)−∇Aε(uε)

)
dx ds dt

=−
∫ T

0

∫ t

0
〈∂tuε, A(u)〉 ds dt+

∫∫
QT

Aε(uε) dx dt− T

∫
Ω
Aε(u0) dx

+

∫∫∫
QT

χuεf(uε)∇vε ·
(
∇A(u)−∇Aε(uε)

)
dx ds dt.

Therefore, using (2.10) and Lemma 2.6 and defining A(u) :=
∫ u

0 A(s) ds, we
conclude that

lim
ε→0

I1 = −
∫ T

0

∫ t

0
〈∂tu,A(u)〉 ds dt+

∫ T

0

∫
Ω
A(u(x, t)) dx dt−T

∫
Ω
A(u0(x)) dx,

and from Lemma 2.7, this yields I1 → 0 as ε → 0. Consequently, we have
shown that

lim
ε→0

∫∫∫
QT

(
|∇Aε(uε)|p−2∇Aε(uε)− |∇σ|p−2∇σ

)
·
(
∇A(u)−∇σ

)
dx ds dt ≥ 0,

which proves (2.11).
Choosing σ = A(u) − λξ with λ ∈ R and ξ ∈ Lp(0, T ;W 1,p(Ω)) and com-

bining the two inequalities arising from λ > 0 and λ < 0, we obtain the first
assertion of the lemma. The second assertion directly follows from (2.11).

With the above convergences we are now able to pass to the limit ε → 0,
and we can identify the limit (u, v) as a (weak) solution of (1.1). In fact,
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if ϕ ∈ Lp(0, T ;W 1,p(Ω)) is a test function for (2.5), then by (2.10) it is now
clear that, as ε→ 0, ∫ T

0
〈∂tuε, ϕ〉 dt→

∫ T

0
〈∂tu, ϕ〉 dt,∫∫

QT

|∇Aε(uε)|p−2∇Aε(uε) · ∇ϕdx dt→
∫∫

QT

|∇A(u)|p−2∇A(u) · ∇ϕdx dt.

Since h(uε) = uεf(uε) is bounded in L∞(QT ) and by Lemma 2.6, vε → v in
L2(0, T ;H1(Ω)), it follows that∫∫

QT

χuεf(uε)∇vε · ∇ϕdx dt→
∫∫

QT

χuf(u)∇v · ∇ϕdx dt as ε→ 0.

We have thus identified u as the first component of a solution of (1.1). Using
a similar argument, we can identify v as the second component of a solution.

3. Hölder continuity of weak solutions
3.1. Preliminaries. We start by recasting Definition 1.1 in a form that
involves the Steklov average, defined for a function w ∈ L1(QT ) and 0 < h <
T by

wh :=


1

h

∫ t+h

t

w(·, τ) dτ if t ∈ (0, T − h],

0 if t ∈ (T − h, T ].

Definition 3.1. A local weak solution for (1.1) is a measurable function u
such that, for every compact K ⊂ Ω and for all 0 < t < T − h,∫

K×{t}

{
∂t(uh)ϕ+

(
|∇A(u)|p−2∇A(u)

)
h
· ∇ϕ−

(
χuf(u)∇v

)
h
· ∇ϕ

}
dx = 0,

∀ϕ ∈ W 1,p
0 (K). (3.1)

The following technical lemma on the geometric convergence of sequences
(see e.g., [27, Lemma 4.2, Ch. I]) will be used later.

Lemma 3.1. Let {Xn} and {Zn}, n ∈ N0, be sequences of positive real
numbers satisfying

Xn+1 ≤ Cbn
(
X1+α

n +Xα
nZ

1+κ
n

)
, Zn+1 ≤ Cbn

(
Xn + Z1+κ

n

)
,
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where C > 1, b > 1, α > 0 and κ > 0 are given constants. Then Xn, Zn → 0
as n→∞ provided that

X0 + Z1+κ
0 ≤ (2C)−(1+κ)/σb−(1+κ)/σ2

, with σ = min{α, κ}.

3.2. The rescaled cylinders. Let Bρ(x0) denote the ball of radius ρ cen-
tered at x0. Then, for a point (x0, t0) ∈ Rn+1, we denote the cylinder of
radius ρ and height τ by

(x0, t0) +Q(τ, ρ) := Bρ(x0)× (t0 − τ, t0).

Intrinsic scaling is based on measuring the oscillation of a solution in a
family of nested and shrinking cylinders whose dimensions are related to the
degeneracy of the underlying PDE. To implement this, we fix (x0, t0) ∈ QT ;
after a translation, we may assume that (x0, t0) = (0, 0). Then let ε > 0 and
let R > 0 be small enough so that Q(Rp−ε, 2R) ⊂ QT , and define

µ+ := ess sup
Q(Rp−ε,2R)

u, µ− := ess inf
Q(Rp−ε,2R)

u, ω := ess osc
Q(Rp−ε,2R)

u ≡ µ+ − µ−.

Now construct the cylinder Q(a0R
p, R), where

a0 =
(ω

2

)2−p 1

φ(ω/2m)p−1 ,

with m to be chosen later. To ensure that Q(a0R
p, R) ⊂ Q(Rp−ε, 2R), we

assume that
1

a0
=

(ω
2

)p−2
φ

( ω

2m

)p−1
> Rε, (3.2)

and therefore the relation

ess osc
Q(a0Rp,R)

u ≤ ω (3.3)

holds. Otherwise, the result is trivial as the oscillation is comparable to the
radius. We mention that for ω small and form > 1, the cylinderQ(a0R

p, R) is
long enough in the t−direction, so that we can accommodate the degeneracies
of the problem. Without loss of generality, we will assume ω < δ < 1/2.

Consider now, inside Q(a0R
p, R), smaller subcylinders of the form

Qt∗

R ≡ (0, t∗) +Q(dRp, R), d =
(ω

2

)2−p 1

[ψ(ω/4)]p−1 , t∗ < 0.
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These are contained in Q(a0R
p, R) if a0R

p ≥ −t∗+dRp, which holds whenever
φ(ω/2m) ≤ ψ(ω/4) and

t∗ ∈
(

(ω/2)2−pRp

ψ(ω/4)p−1 − (ω/2)p−2Rp

φ(ω/2m)p−1 , 0

)
.

These particular definitions of a0 and of d turn out to be the natural ex-
tensions to the case p > 2 of their counterparts in [7]. Notice that for p = 2
and a(u) ≡ 1, we recover the standard parabolic cylinders.

The structure of the proof will be based on the analysis of the following
alternative: either there is a cylinder Qt∗

R where u is essentially away from
its infimum, or such a cylinder can not be found and thus u is essentially
away from its supremum in all cylinders of that type. Both cases lead to
the conclusion that the essential oscillation of u within a smaller cylinder
decreases by a factor that can be quantified, and which does not depend on
ω.

Remark 3.1. (See [8, Remark 4.2]) Let us introduce quantities of the type
BiR

θω−bi, where Bi and bi > 0 are constants that can be determined a priori
from the data, independently of ω and R, and θ depending only on N and p.
We assume without loss of generality, that

BiR
θω−bi ≤ 1.

If this was not valid, then we would have ω ≤ CRε for the choices C =

maxiB
1/b
i and ε = θ/mini bi, and the result would be trivial.

3.3. The first alternative.

Lemma 3.2. There exists ν0 ∈ (0, 1), independent of ω and R, such that if∣∣{(x, t) ∈ Qt∗

R : u(x, t) > 1− ω/2
}∣∣ ≤ ν0

∣∣Qt∗

R

∣∣ (3.4)

for some cylinder of the type Qt∗

R, then u(x, t) < 1− ω/4 a.e. in Qt∗

R/2.

Proof : Let uω := min{u, 1 − ω/4}, take the cylinder for which (3.4) holds,
define

Rn =
R

2
+

R

2n+1 , n ∈ N0,

and construct the family

Qt∗

Rn
:= (0, t∗) +Q(dRp

n, Rn) = BRn
× (τn, t

∗), τn := t∗ − dRp
n, n ∈ N0;
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note that Qt∗

Rn
→ Qt∗

R/2 as n → ∞. Let {ξn}n∈N be a sequence of piecewise
smooth cutoff functions satisfying

ξn = 1 in Qt∗

Rn+1
, ξn = 0 on the parabolic boundary of Qt∗

Rn
,

|∇ξn| ≤
2n+1

R
, 0 ≤ ∂tξn ≤

2p(n+1)

dRp
, |∆ξn| ≤

2p(n+1)

Rp
,

(3.5)

and define

kn := 1− ω

4
− ω

2n+2 , n ∈ N0.

Now take ϕ = [(uω)h − kn]
+ξp

n, K = BRn
in (3.1) and integrate in time over

(τn, t) for t ∈ (τn, t
∗). Applying integration by parts to the first term gives

F1 :=

∫ t

τn

∫
BRn

∂suh[(uω)h − kn]
+ξp

n dx ds

=
1

2

∫ t

τn

∫
BRn

∂s

((
[(uω)h − kn]

+)2
)
ξp
n dx ds

+
(
1− ω

4
− kn

) ∫ t

τn

∫
BRn

∂s

(([
u−

(
1− ω

4

)]+
)

h

)
ξp
n dx ds

=
1

2

∫
BRn×{t}

(
[uω − kn]

+
h

)2
ξp
n dx ds−

1

2

∫
BRn×{τn}

(
[uω − kn]

+
h

)2
ξp
n dx ds

− p

2

∫ t

τn

∫
BRn

(
[uω − kn]

+
h

)2
ξp−1
n ∂sξn dx ds

+
(
1− ω

4
− kn

) ∫ t

τn

∫
BRn

∂s

(([
u−

(
1− ω

4

)]+
)

h

)
ξp
n dx ds.

In light of standard convergence properties of the Steklov average, we obtain

F1 → F ∗
1 :=

1

2

∫
BRn×{t}

(
[uω − kn]

+)2
ξp
n dx ds

− p

2

∫ t

τn

∫
BRn

(
[uω − kn]

+)2
ξp−1
n ∂sξn dx ds

+
(
1− ω

4
− kn

) (∫
BRn×{t}

[
u−

(
1− ω

4

)]+
ξp
n dx ds
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− p

∫
BRn×{τn}

[
u−

(
1− ω

4

)]+
ξp−1
n ∂sξn dx ds

)
as h→ 0.

Using (3.5) and the nonnegativity of the third term, we arrive at

F ∗
1 ≥

1

2

∫
BRn×{t}

(
[uω − kn]

+)2
ξp
n dx−

p

2d

(ω
4

)2 2p(n+1)

Rp

∫ t

τn

∫
BRn

χ{uω≥kn} dx ds

− p

d

(ω
4

)2 2p(n+1)

Rp

∫ t

τn

∫
BRn

χ{u≥1−ω/4} dx ds

≥ 1

2

∫
BRn×{t}

(
[uω − kn]

+)2
ξp
n dx−

3

2

p

d

(ω
4

)2 2p(n+1)

Rp

∫ t

τn

∫
BRn

χ{uω≥kn} dx ds,

the last inequality coming from u ≥ 1− ω/4 ⇒ uω ≥ kn. Since

[uω − kn]
+ ≤ ω/4,

we know that (
[uω − kn]

+)2
=

(
[uω − kn]

+)2−p(
[uω − kn]

+)p

≥
(ω

4

)2−p (
[uω − kn]

+)p

≥
(ω

2

)2−p (
[uω − kn]

+)p
;

therefore, the definition of d implies that

F ∗
1 ≥

1

2

(ω
2

)2−p
∫

BRn×{t}

(
[uω − kn]

+)p
ξp
n dx

− 3

2
p2p−2

(ω
4

)p 2p(n+1)

Rp
ψ(ω/4)p−1

∫ t

τn

∫
BRn

χ{uω≥kn} dx ds. (3.6)

We now deal with the diffusive term. The term

F2 :=

∫ t

τn

∫
BRn

(
a(u)p−1|∇u|p−2∇u

)
h
· ∇

{
[(uω)h − kn]

+ξp
n

}
dx ds

converges, for h→ 0, to

F ∗
2 :=

∫ t

τn

∫
BRn

a(u)p−1|∇u|p−2∇u ·
(
∇(uω − kn)

+ξp
n

+ p(uω − kn)
+ξp−1

n ∇ξn
)
dx ds
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=

∫ t

τn

∫
BRn

a(u)p−1
∣∣ξn∇(uω − kn)

+
∣∣p dx ds+ F̃ ∗

2 ,

where we define

F̃ ∗
2 := p

∫ t

τn

∫
BRn

a(u)p−1|∇u|p−2∇u · ∇ξn(uω − kn)
+ξp−1

n dx ds.

Since ∇(uω − kn)
+ is nonzero only within the set {kn < u < 1− ω/4} and

a(u) ≥ γ1ψ(ω/4) on {kn < u < 1− ω/4},

we may estimate the first term of F ∗
2 from below by∫ t

τn

∫
BRn

a(u)p−1
∣∣ξn∇(uω − kn)

+
∣∣p dx ds

≥ [γ1ψ(ω/4)]p−1
∫ t

τn

∫
BRn

∣∣ξn∇(uω − kn)
+
∣∣p dx ds. (3.7)

Let us now focus on F̃ ∗
2 . Using that ∇(uω − kn)

+ is nonzero only within the
set {kn < u < 1 − ω/4}, integrating by parts, and using (1.3) and (3.5), we
obtain∣∣F̃ ∗

2

∣∣ ≤ p

∫ t

τn

∫
BRn

|a(u)|p−1
∣∣∇(uω − kn)

+
∣∣p−1|∇ξn|(uω − kn)

+ξp−1
n dx ds

+

∣∣∣∣p(1− ω

4
− kn

) ∫ t

τn

∫
BRn

ξp−1
n ∇ξn · ∇

{
1

p− 1

(∫ u

1−ω/4
a(s) ds

)p−1

+

}
dx ds

∣∣∣∣
≤ p [γ2ψ (ω/2)]p−1

∫ t

τn

∫
BRn

|∇ξn|(uω − kn)
+
∣∣ξn∇(uω − kn)

+
∣∣p−1

dx ds

+ p
(ω

4

) ∣∣∣∣−∫ t

τn

∫
BRn

(∫ u

1−ω/4
a(s) ds

)p−1

+

(
(p− 1)ξp−2

n |∇ξn|2

+ ξp−1
n ∆ξn

)
dx ds

∣∣∣∣.
Next, we take into account that(∫ u

1−ω/4
a(s) ds

)+

≤ ω

4
ψ (ω/4) ,
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and apply Young’s inequality

ab ≤ εr

r
ar +

br
′

r′εr′
if a, b ≥ 0,

1

r
+

1

r′
= 1, ε > 0, (3.8)

for the choices

r = p, a = |∇ξn|(uω − kn)
+, b =

∣∣∇(uω − kn)
+
∣∣p−1

and ε−p′

1 =
p′

p

(γp−1
1 − 1)ψ(ω/4)p−1

γp−1
2 ψ(ω/2)p−1

> 0.

This leads to∣∣F̃ ∗
2

∣∣ ≤ 1

εp1
[γ2ψ (ω/2)]p−1

(ω
4

)p 2p(n+1)

Rp

∫ t

τn

∫
BRn

χ{uω≥kn} dx ds

+ (p− 1)εp
′

1 [γ2ψ(ω/2)]p−1
∫ t

τn

∫
BRn

∣∣ξn∇(uω − kn)
+
∣∣p dx ds

+ p2
(ω

4

)p

ψ (ω/4)p−1 2p(n+1)

Rp

∫ t

τn

∫
BRn

χ{uω≥kn} dx ds

≤
{

(p− 1)γp−1
2 ψ (ω/2)p−1

(γp−1
1 − 1)ψ (ω/4)p−1

}p−1

[γ2ψ(ω/2)]p−1×

×
(ω

4

)p 2p(n+1)

Rp

∫ t

τn

∫
BRn

χ{uω≥kn} dx ds

+
(
γp−1

1 − 1
)
ψ (ω/4)p−1

∫ t

τn

∫
BRn

∣∣ξn∇(uω − kn)
+
∣∣p dx ds

+ p2
(ω

4

)p

ψ (ω/4)p−1 2p(n+1)

Rp

∫ t

τn

∫
BRn

χ{uω≥kn} dx ds.

(3.9)

Hence, from (3.7) and (3.9), and observing that[
ψ (ω/2)

ψ (ω/4)

]p(p−1)

=

(
4

2

)pβ2

= 2pβ2,
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we obtain

F ∗
2 ≥ ψ (ω/4)p−1

∫ t

τn

∫
BRn

∣∣ξn∇(uω − kn)
+
∣∣p dx ds

−
{
p2 + 2pβ2

[
p′γp

2

p(γp−1
1 − 1)

]p−1} (ω
4

)p 2p(n+1)

Rp
×

× ψ (ω/4)p−1
∫ t

τn

∫
BRn

χ{uω≥kn} dx ds.

(3.10)

Finally, for the lower order term

F3 :=

∫ t

τn

∫
BRn

(
χuf(u)∇v

)
h
· ∇

{
[(uω)h − kn]

+ξp
n

}
dx ds

we have

F3 → F ∗
3 :=

∫ t

τn

∫
BRn

χuf(u)∇v ·
(
∇(uω − kn)

+ξp
n + p(uω − kn)

+ξp−1
n ∇ξn

)
dx ds

=

∫ t

τn

∫
BRn

χuf(u)∇v · ∇(uω − kn)
+ξp

n dx ds

+ p

∫ t

τn

∫
BRn

χuf(u)∇v · ∇ξn(uω − kn)
+ξp−1

n dx ds as h→ 0.

Applying Young’s inequality (3.8), with

r = p, a = ∇(uω − kn)
+ξn, b = χuf(u)ξp−1

n ∇v

and εp2 =
p

2
ψ(ω/4)p−1 > 0,

using the fact that (uω − kn)
+ ≤ ω/4 and defining M := ‖χuf(u)‖L∞(QT ), we

may estimate F ∗
3 as follows:

F ∗
3 ≤

εp2
p

∫ t

τn

∫
BRn

∣∣∇(uω − kn)
+ξn

∣∣p dx ds+
Mp′

p′εp
′

2

∫ t

τn

∫
BRn

|∇v|p′χ{uω≥kn} dx ds

+ pM

∫ t

τn

∫
BRn

|∇v|
(ω

4

)
|∇ξn|χ{uω≥kn} dx ds

≤ 1

2
ψ (ω/4)p−1

∫ t

τn

∫
BRn

∣∣∇(uω − kn)
+ξn

∣∣p dx ds
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+
(p/2)−p′/p

p′
Mp′

ψ(ω/4)

∫ t

τn

∫
BRn

|∇v|p′χ{uω≥kn} dx ds

+ εp3

(ω
4

)p
∫ t

τn

∫
BRn

|∇ξn|pχ{uω≥kn} dx ds

+
pM p′

p′εp
′

3

∫ t

τn

∫
BRn

|∇v|p′χ{uω≥kn} dx ds,

applying again Young’s inequality (3.8) to the last term in the right-hand
side, this time with

r = p, a = |∇ξn|ω/4, b = M |∇v|, εp
′

3 = ψ (ω/4) > 0.

Using (3.5), we obtain

F ∗
3 ≤ F ∗∗

3 :=
1

2
ψ (ω/4)p−1

∫ t

τn

∫
BRn

∣∣∇(uω − kn)
+ξn

∣∣p dx ds
+

Mp′

p′ψ(ω/4)

[(p
2

)−p′/p

+ p

] ∫ t

τn

∫
BRn

|∇v|p′χ{uω≥kn} dx ds

+
(ω

4

)p 2p(n+1)

Rp
ψ (ω/4)p−1

∫ t

τn

∫
BRn

χ{uω≥kn} dx ds.

Additionally, using Hölder’s inequality, we may write

∫ t

τn

∫
BRn

|∇v|p′χ{uω≥kn} dx ds ≤ ‖∇v‖p′

Lp′p(QT )

(∫ t

τn

∣∣A+
kn,Rn

(σ)
∣∣ dσ)1−1/p

,

where |A+
kn,Rn

(σ)| denotes the measure of the set

A+
kn,Rn

(σ) :=
{
x ∈ BRn

: u(x, σ) > kn

}
.
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Thus we obtain

F ∗∗
3 ≤ 1

2
ψ(ω/4)p−1

∫ t

τn

∫
BRn

∣∣ξn∇(uω − kn)
+
∣∣p dx ds

+
(ω

4

)p 2p(n+1)

Rp
ψ (ω/4)p−1

∫ t

τn

∫
BRn

χ{uω≥kn} dx ds

+
Mp′

p′ψ (ω/4)

[(p
2

)−p′/p

+ p

]
‖∇v‖p′

Lp′p(QT )

(∫ t

τn

∣∣A+
kn,Rn

(σ)
∣∣ dσ)1−1/p

.

(3.11)

Combining the resulting estimates (3.6), (3.10), (3.11) and multiplying by
2(ω/2)p−2 yields

ess sup
τn≤t≤t∗

∫
BRn×{t}

(
[uω − kn]

+)p
ξp
n dx ds+

2

d

∫ t∗

τn

∫
BRn

∣∣ξn∇(uω − kn)
+
∣∣p dx ds

≤
{

3

2
p2p−2 + p2 + 2pβ2

[
p′γp

2

p(γp−1
1 − 1)

]p−1} (ω
4

)p 2p(n+1)

Rp

2

d

∫ t∗

τn

∫
BRn

χ{uω≥kn} dx ds

+ 2
(ω/2)p−2Mp′

p′ψ (ω/4)

[(p
2

)−p′/p

+ p

]
‖∇v‖p′

Lp′p(QT )

(∫ t∗

τn

|A+
kn,Rn

(σ)| dσ
)1−1/p

.

(3.12)

Next we perform a change in the time variable putting t̄ := 1
d(t− t∗), which

transforms Q(dRp
n, Rn) into Qt∗

Rn
. Furthermore, if we define ūω(·, t̄) := uω(·, t)

and ξ̄n(·, t̄) = ξn(·, t), then defining for each n,

An :=

∫ 0

−Rp
n

∫
BRn

χ{ūω≥kn} dx dt̄ =
1

d

∫ t

τn

∫
BRn

χ{uω≥kn} dx ds

we may rewrite (3.12) more concisely as∥∥(ūω − kn)
+ξ̄n

∥∥p

V p(Qt∗
Rn

)

≤ 2

{
3

2
p2p−2 + p2 + 2pβ2

[
p′γp

2

p(γp−1
1 − 1)

]p−1} (ω
4

)p 2p(n+1)

Rp
An

+ 2

[(p
2

)−p′/p

+ p

]
Mp′

p′

(ω
2

)(p−2)/p

ψ (ω/4)1−p−1/p ‖∇v‖p′

Lp′p(QT )
A1−1/p

n ,

(3.13)
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where V p(ΩT ) = L∞(0, T ;Lp(Ω)) ∩ Lp(0, T ;W 1,p(Ω)) endowed with the ob-
vious norm. Next, observe that by application of a well-known embedding
theorem (cf. [5, §I.3]), we get

1

2p(n+1)

(ω
4

)p

An+1 = |kn − kn+1|pAn+1

≤
∥∥(ūω − kn)

+
∥∥p

p,Q(Rp
n+1,Rn+1)

≤
∥∥(ūω − kn)

+ξ̄n
∥∥p

p,Q(Rp
n,Rn)

≤ C
∥∥(ūω − kn)

+ξ̄n
∥∥p

V p(Qt∗
Rn

)A
p/(N+p)
n . (3.14)

Now, applying (3.13), we get

1

2p(n+1)

(ω
4

)p

An+1

≤ 2C

{
3

2
p2p−2 + p2 + 2pβ2

[
p′γp

2

p(γp−1
1 − 1)

]p−1} (ω
4

)p 2p(n+1)

Rp
A1+p/(N+p)

n

+2C

[(p
2

)−q/p

+ p

]
Mp′

p′

(ω
2

)(p−2)/p

ψ(ω/4)1−p−1/p‖∇v‖p′

Lp′p(QT )
A1−1/p+p/(N+p)

n .

(3.15)
Now let us define

Xn :=
An

|Q(Rp
n, Rn)|

, Zn :=
A

1/p
n

|BRn
|
, n ∈ N0.

Dividing (3.15) by 1
2p(n+1)

(
ω
4

)p |Q(Rp
n+1, Rn+1)| yields

Xn+1 ≤ 2pn

(
2C

{
3

2
p2p−2 + p2 + 2pβ2

[
p′γp

2

p(γp−1
1 − 1)

]p−1}
X1+p/(N+p)

n

+ 23−2/p+pC

[(p
2

)−p′/p

+ p

]
Mp′

p′

(ω
2

)p−2
ψ (ω/4)1−p−1/p×

×RNκ‖∇v‖q

Lp′p(QT )
Xp/(N+p)

n Zp−1
n

)
≤ γ2pn

(
X1+α

n +Xα
nZ

1+κ
n

)
, n ∈ N0,
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with α = p/(N + p) > 0, κ = p− 2 > 0 and

γ := 2Cmax

{
3

2
p2p−2 + p2 + 2pβ2

[
p′γp

2

p(γp−1
1 − 1)

]p−1

,

23−2/p+p

[(p
2

)−p′/p

+ p

]
Mp′

p′

(ω
2

)p−2
[ψ (ω/4)]1−p−1/pRNκ

}
> 0.

(In the choice of κ we need the assumption that p is strictly larger than 2.)
In the spirit of Remark 3.1, let us assume that(ω

2

)p−2
[ψ (ω/4)]1−p−1/pRNκ ≤ 1.

Therefore, with this assumption we conclude that γ is independent of ω and
R.

Reasoning analogously, we obtain

Zn+1 ≤ γ2pn
(
Xn + Z1+κ

n

)
.

Now, let σ = min{α, κ} and notice that, if we set ν0 := 2γ−(1+κ)/σ(2p)−(1+κ)/σ2

,
it follows from (3.4) that

X0 + Z1+κ
0 ≤ 2γ−(1+κ)/σ(2p)−(1+κ)/σ2

. (3.16)

Then, using Lemma 3.1, we are able to conclude that Xn, Zn → 0 as n→∞.
Finally, notice that Rn → R/2 and kn → 1− ω/4, and this implies that∣∣{(x, t) ∈ Q

(
(R/2)p, R/2

)
: ūω(x, t̄) ≥ 1− ω/4

}∣∣
=

∣∣{(x, t) ∈ Qt∗

R/2 : u(x, t) > 1− ω/4
}∣∣ = 0.

This completes the proof.

Now we show that the conclusion of Lemma 3.2 is valid in a full cylinder
of the type Q(τ, ρ). To this end, we exploit the fact that at the time level
−t̂ := t∗ − d(R/2)p, the function x 7→ u(x, t) is strictly below 1 − ω/4 in
the ball BR/2. We use this time level as an initial condition to make the
conclusion of the lemma hold up to t = 0, eventually shrinking the ball. This
requires the use of logarithmic estimates.

Given constants a, b, c with 0 < c < a, we define the nonnegative function

%±a,b,c(s) :=

(
ln

a

a+ c− (s− b)|±

)+
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=

ln
a

a+ c± (b− s)
if b± c ≶ s ≶ b± (a+ c),

0 if s Q b± c,
(3.17)

whose first derivative is given by

(
%±a,b,c

)′
(s) =


1

(b− s)± (a+ c)
if b± c ≶ s ≶ b± (a+ c)

0 if s ≶ b± c
T 0,

and its second derivative, away from s = b± c, is(
%±a,b,c

)′′
=

{(
%±a,b,c

)′}2 ≥ 0.

Given u bounded in (x0, t0) +Q(τ, ρ) and a number k, define

H±
u,k := ess sup

(x0,t0)+Q(τ,ρ)

∣∣(u− k)±
∣∣,

and the function

Ψ±(
H±

u,k, (u− k)±, c
)

:= %±
H±

u,k,k,c
(u), 0 < c < H±

u,k. (3.18)

Lemma 3.3. For every number ν1 ∈ (0, 1), there exists s1 ∈ N, independent
of ω and R, such that∣∣{x ∈ BR/4 : u(x, t) ≥ 1− ω/2s1

}∣∣ ≤ ν1|BR/2| for all t ∈ (−t̂, 0).

Proof : Let k = 1− ω/4 and

c = ω/22+n, (3.19)

with n ∈ N to be chosen. Let 0 < ζ(x) ≤ 1 be a piecewise smooth cutoff
function defined on BR/2 such that ζ = 1 in BR/4 and |∇ζ| ≤ C/R. Now
consider the weak formulation (3.1) with ϕ = 2%+(uh)(%

+)′(uh)ζ
p for K =

BR/2, where %+ is the function defined in (3.17). After an integration in time

over (−t̂, t), with t ∈ (−t̂, 0), we obtain G1 +G2 −G3 = 0, where we define

G1 := 2

∫ t

−t̂

∫
BR/2

∂s{uh}%+(uh)(%
+)′(uh)ζ

p dx ds,

G2 := 2

∫ t

−t̂

∫
BR/2

(
|∇A(u)|p−2a(u)∇u

)
h
· ∇

{
%+(uh)(%

+)′(uh)ζ
p
}
dx ds,
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G3 := 2

∫ t

−t̂

∫
BR/2

(
χuf(u)∇v

)
h
· ∇

{
%+(uh)(%

+)′(uh)ζ
p
}
dx ds.

Using the properties of the function ζ, we arrive at

G1 =

∫ t

−t̂

∫
BR/2

∂s

{
%+(uh)

}2
ζp dx ds

=

∫
BR/2×{t}

{
%+(uh)

}2
ζp dx−

∫
BR/2×{−t̂}

{
%+(uh)

}2
ζp dx.

Due to Lemma 3.2, at time −t̂, the function x 7→ u(x, t) is strictly below
1− ω/4 in the ball BR/2, and therefore %+(u(x,−t̂)) = 0 for x ∈ BR/2. Con-
sequently,

G1 →
∫

BR/2×{t}

{
%+(u)

}2
ζp dx−

∫
BR/2×{−t̂}

{
%+(u)

}2
ζp dx

=

∫
BR/2×{t}

{
%+(u)

}2
ζp dx as h→ 0. (3.20)

The definition of H±
u,k implies that

u− k ≤ H+
u,k = ess sup

Q(t̂,R/2)

∣∣∣(u− 1 +
ω

4

)+∣∣∣ ≤ ω

4
. (3.21)

If H+
u,k = 0, the result is trivial; so we assume H+

u,k > 0 and choose n large
enough so that

0 <
ω

22+n
< H+

u,k.

Therefore, since H+
u,k + k − u+ c > 0, the function %+(u) is defined in the

whole cylinder Q(t̂, R/2) by

%±
H+

u,k,k,c
(u) =

ln
H+

u,k

H+
u,k + c+ k − u

if u > k + c,

0 otherwise.

Relation (3.21) implies that

H+
u,k

H+
u,k + c+ k − u

≤
ω
4

2c− ω
4

= 2n, and therefore %+(u) ≤ n ln 2; (3.22)
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in the nontrivial case u > k + c, we also have an estimate for the derivative
of the logarithmic function:∣∣(%+)′(u)

∣∣2−p
=

∣∣∣∣ −1

H+
u,k + c+ k − u

∣∣∣∣2−p

≤
∣∣∣∣1c

∣∣∣∣2−p

=
( ω

22+n

)p−2
. (3.23)

With these estimates at hand, we have for the diffusive term:

G2 → G∗
2 := 2

∫ t

−t̂

∫
BR/2

a(u)p−1|∇u|p−2∇u · ∇
{
%+(u)(%+)′(u)ζp

}
dx ds

=

∫ t

−t̂

∫
BR/2

a(u)p−1|∇u|p
{
2
(
1 + %+(u)

) [
(%+)′(u)

]2
ζp

}
dx ds

+ G̃∗
2 as h→ 0,

where we define

G̃∗
2 := 2p

∫ t

−t̂

∫
BR/2

a(u)p−1|∇u|p−2∇u · ∇ζ
{
%+(u)(%+)′(u)ζp−1} dx dt.

Applying Young’s inequality (3.8) with the choices

r = p, a = |∇u|p−1ζp−1
∣∣(%+)′(u)

∣∣2/p′
, b =

∣∣(%+)′(u)
∣∣1−2/p′|∇ζ|

and ε4 = 1, we obtain∣∣G̃∗
2

∣∣ ≤ 2p

∫ t

−t̂

∫
BR/2

a(u)p−1|∇u|p−1|∇ζ|%+(u)
∣∣(%+)′(u)

∣∣ζp−1 dx ds

= 2p

∫ t

−t̂

∫
BR/2

a(u)p−1%+(u)|∇u|p−1ζp−1
∣∣(%+)′(u)

∣∣2/p′×

×
∣∣(%+)′(u)

∣∣1−2/p′|∇ζ| dx ds

≤ 2εp4

∫ t

−t̂

∫
BR/2

a(u)p−1%+(u)|∇u|p
[
(%+)′(u)

]2
ζp dx ds

+
2p

p′εq4

∫ t

−t̂

∫
BR/2

a(u)p−1%+(u)|∇ζ|p
∣∣(%+)′(u)

∣∣2−p
dx ds

= 2

∫ t

−t̂

∫
BR/2

a(u)p−1%+(u)|∇u|p
[
(%+)′(u)

]2
ζp dx ds
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+ 2(p− 1)

∫ t

−t̂

∫
BR/2

a(u)p−1%+(u)|∇ζ|p
∣∣(%+)′(u)

∣∣2−p
dx ds.

In face of this estimate, we obtain

G∗
2 = 2

∫ t

−t̂

∫
BR/2

a(u)p−1|∇u|p
[
(%+)′(u)

]2
ζp dx ds

− 2(p− 1)

∫ t

−t̂

∫
BR/2

a(u)p−1%+(u)|∇ζ|p
∣∣(%+)′(u)

∣∣2−p
dx ds

≥ 2 [γ1ψ (ω/4)]p−1
∫ t

−t̂

∫
BR/2

|∇u|p
[
(%+)′(u)

]2
ζp dx ds

− 2(p− 1)

∫ t

−t̂

∫
BR/2

a(u)p−1%+(u)|∇ζ|p
∣∣(%+)′(u)

∣∣2−p
dx ds

≥ 2 [γ1ψ (ω/4)]p−1
∫ t

−t̂

∫
BR/2

|∇u|p
[
(%+)′(u)

]2
ζp dx ds

− 2(p− 1)n ln 2

(
C

R

)p ( ω

22+n

)p−2
∫ t

−t̂

∫
BR/2

a(u)p−1χ{u>1−ω/4} dx ds,

and, finally,

G∗
2 ≥ 2 [γ1ψ (ω/4)]p−1

∫ t

−t̂

∫
BR/2

|∇u|p
[
(%+)′(u)

]2
ζp dx ds

− 2(p− 1)n ln 2

(
C

R

)p ( ω

22+n

)p−2
t̂|BR/2| [γ2ψ (ω/4)]p−1 ,

(3.24)

where we have used estimates (3.22), (3.23), the properties of ζ, and the fact
that

γ1ψ (ω/4) ≤ a(u) ≤ γ2ψ (ω/4) on the set {u > 1− ω/4}.

Moreover, from the definition of t̂ and our choice of t∗ (recall that t∗ ≥
dRp − a0R

p), there holds

t̂ ≤ a0R
p =

(ω
2

)2−p Rp

φ (ω/2m)p−1 . (3.25)
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Taking into account (3.25), we obtain from (3.24) that

G∗
2 ≥ 2 [γ1ψ (ω/4)]p−1

∫ t

−t̂

∫
BR/2

|∇u|p
[
(%+)′(u)

]2
ζp dx ds

− 2(p− 1)n ln 2Cp2(1+n)(2−p)|BR/2|
[
γ2
ψ (ω/4)

φ (ω/2m)

]p−1

.

(3.26)

On the other hand, for the lower order term, by passing to the limit h→ 0,
we have

G3 → G∗
3 := 2

∫ t

−t̂

∫
BR/2

χuf(u)∇v · ∇u
{(

1 + %+(u)
)[

(%+)′(u)
]2
ζp

}
dx ds

+ 2p

∫ t

−t̂

∫
BR/2

χuf(u)∇v · ∇ζ
{
%+(u)(%+)′(u)ζp−1} dx ds

≤ 2M

∫ t

−t̂

∫
BR/2

(
1 + %+(u)

)[
(%+)′(u)

]2
ζp|∇u||∇v| dx ds

+ 2pM

∫ t

−t̂

∫
BR/2

%+(u)
∣∣(%+)′(u)

∣∣1−2/p′|∇v||∇ζ|×

×
∣∣(%+)′(u)

∣∣2/p′
ζp−1 dx ds.

Applying Young’s inequality (3.8) to the first term on the right-hand side
with

r = p, a = |∇u|, b = |∇v| and ε5 =

(
pψ (ω/4)p−1

M(1 + n ln 2)

)1/p

,

and to the second term with

r = p, a =
∣∣(%+)′(u)

∣∣1−2/p′
, b = |∇v|

∣∣(%+)′(u)
∣∣2/p′

ζp−1 and ε6 = 1,

we obtain

G∗
3 ≤ 2ψ (ω/4)p−1

∫ t

−t̂

∫
BR/2

|∇u|p
[
(%+)′(u)

]2
ζp dx ds

+ 2M

∫ t

−t̂

∫
BR/2

%+(u)|∇ζ|
[
(%+)′(u)

]2−p
dx ds

+ 2M
p− 1

p

(
pψ (ω/4)p−1

M(1 + n ln 2)

)1/(1−p)

×
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×
∫ t

−t̂

∫
BR/2

(
1 + %+(u)

)[
(%+)′(u)

]2
ζp|∇v|p′ dx ds

+ 2M(p− 1)

∫ t

−t̂

∫
BR/2

%+(u)|∇ζ||∇v|p′
[
(%+)′(u)

]2
ζp dx ds.

Using the estimates (3.22) and (3.23) and the properties of ζ, we then get

G∗
3 ≤ 2ψ(ω/4)p−1

∫ t

−t̂

∫
BR/2

|∇u|p
[
(%+)′(u)

]2
ζp dx ds

+ 2Mn ln 2
C

R

( ω

22+n

)p−2
t̂|BR/2|

+ 2M
p− 1

p

(
pψ(ω/4)p−1

M(1 + n ln 2)

)1/(1−p)

(1 + n ln 2)
( ω

22+n

)−2
×

×
∫ t

−t̂

∫
BR/2

|∇v|p′χ{u>1−ω/4} dx ds

+ 2M(p− 1)n ln 2
C

R

( ω

22+n

)−2
∫ t

−t̂

∫
BR/2

|∇v|p′χ{u>1−ω/4} dx ds.

Then, applying Hölder’s inequality and recalling the definition of t̂, we get

G∗
3 ≤ 2ψ(ω/4)p−1

∫ t

−t̂

∫
BR/2

|∇u|p
[
(%+)′(u)

]2
ζp dx ds

+ 2MCn ln 2 2(1+n)(2−p)φ(ω/2m)1−p|BR/2|Rp−1

+ 2M(p− 1)

{(
pψ (ω/4)p−1

M(1 + n ln 2)

)1/(1−p)
1 + n ln 2

p
+
C

R
n ln 2

}
×

×
( ω

22+n

)−2
‖∇v‖p′

Lp′p(QT )

(
a0R

p|BR/2|
)1−1/p

.

In addition, thanks to Remark 3.1, we may estimate( ω

22+n

)−2
(
p−p′ψ (ω/4)p−1

M(1 + n ln 2)

)1/(1−p)

a
1−1/p
0 Rp−1 ≤ 1,

C
( ω

22+n

)−2
a

1−1/p
0 Rp−2 ≤ 1, φ

( ω

2m

)1−p

Rp−1 ≤ 1,
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and this finally gives

G∗
3 ≤ 2ψ (ω/4)p−1

∫ t

−t̂

∫
BR/2

|∇u|p
[
(%+)′(u)

]2
ζp dx ds

+ 2MCn ln 2 2(1+n)(2−p)|BR/2|

+ 2M(p− 1)Cn ln 2‖∇v‖p′

Lp′p(QT )
|BR/2|1−1/p.

(3.27)

Combining estimates (3.20), (3.26) and (3.27) yields∫
BR/2×{t}

{
%+(u)

}2
ζp dx ds

≤ 2M(p− 1)Cn ln 2‖∇v‖p′

Lp′p(QT )
|BR/2|1−1/p

+ (1− γp−1
1 )2 [ψ (ω/4)]p−1

∫ t

−t̂

∫
BR/2

|∇u|p
[
(%+)′(u)

]2
ζp dx ds

+ 2n ln 2 2(1+n)(2−p)|BR/2|
{
MC + (p− 1)Cpγp−1

2

[
ψ (ω/4)

φ (ω/2m)

]p−1}
,

and since γ1 > 1 and n > 0, this implies

sup
−t̂≤t≤0

∫
BR/2×{t}

{
%+(u)

}2
ζp dx

≤ 2M(p− 1)Cn ln 2‖∇v‖p′

Lp′p(QT )
|BR/2|1−

1
p

+ 2n ln 2 22−p|BR/2|
{
MC + (p− 1)Cpγp−1

2

[
ψ (ω/4)

φ (ω/2m)

]p−1}
.

(3.28)

Since the integrand in the left-hand side of (3.28) is nonnegative, the integral
can be estimated from below by integrating over the smaller set S = {x ∈
BR/2 : u(x, t) ≥ 1− ω/22+n} ⊂ BR/2. Thus, noticing that

ζ = 1 and
{
%+(u)

}2 ≥
(
ln(2n−1)

)2
= (n− 1)2(ln 2)2 on S,

we obtain that (3.28) reads∣∣{x ∈ BR/2 : u(x, t) ≥ 1− ω/22+n
}∣∣

≤
2Cn|BR/4|

(n− 1)2 ln 2

{
22−p

[
MC + (p− 1)Cpγp−1

2

[
ψ (ω/4)

φ (ω/2m)

]p−1]
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+M(p− 1)‖∇v‖p′

Lp′p(QT )

}
for all t ∈ (−t̂, 0). To prove the lemma we just need to choose s1 depending
on ν1 such that s1 = 2 + n with

n > 1 +
2C

ν1 ln 2

{
22−p

[
MC + (p− 1)Cpγp−1

2

[
ψ (ω/4)

φ (ω/2m)

]p−1]

+M(p− 1)‖∇v‖p′

Lp′p(QT )

}
,

since if n ≥ 1 + 2/α then n/(n − 1)2 ≤ α, α > 0. Furthermore, s1 is
independent of ω because[

ψ (ω/4)

φ (ω/2m)

]p−1

=

[
(ω/4)β2/(p−1)

(ω/2m)β1/(p−1)

](p−1)

= ωβ2−β12mβ1−2β2 ≤ 2mβ1−2β2.

The last inequality holds since β2 > β1.

Now, the first alternative is established by the following proposition.

Proposition 3.1. The numbers ν1 ∈ (0, 1) and s1 � 1 can be chosen a priori
independently of ω and R, such that if (3.4) holds, then

u(x, t) <
ω

2s1+1 a.e. in Q(t̂, R/8).

We omit the proof of Proposition 3.1 because it is based on the argument of
[5, Lemma 3.3] and [7], and we may use for the extension the same technique
applied in the proof of Lemma 3.2.

Corollary 3.1. There exist numbers ν0, σ0 ∈ (0, 1) independent of ω and R
such that if (3.4) holds, then

ess osc
Q(t̂,R/8)

u ≤ σ0ω.

Proof : In light of Proposition 3.1, we know that there exists a number s1
such that

ess sup
Q(t̂,R/8)

u ≤ 1− ω

2s1+1 ,
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and this yields

ess osc
Q(t̂,R/8)

u = ess sup
Q(t̂,R/8)

u− ess inf
Q(t̂,R/8)

u ≤
(

1− 1

2s1+1

)
ω.

In this way, choosing σ0 = 1−1/2s1+1, which is independent of ω, we complete
the proof.

3.4. The second alternative. Let us suppose now that (3.4) does not hold.
Then the complementary case is valid and for every cylinder Qt∗

R we have∣∣{(x, t) ∈ Qt∗

R : u(x, t) < ω/2
}∣∣ ≤ (1− ν0)

∣∣Qt∗

R

∣∣. (3.29)

Following an analogous analysis to the performed in the case in which the
solution is near its degeneracy at one, a similar conclusion is obtained for
the second alternative (cf. [4] and [7]). Specifically, we first use logarithmic
estimates to extend the result to a full cylinder and then we conclude that
the solution is essentially away from 0 in a cylinder Q(τ, ρ). In this way we
prove the following corollary.

Corollary 3.2. Let t̃ denote the second-alternative-counterpart of t̂. Then
there exists σ1 ∈ (0, 1), depending only on the data, such that

ess osc
Q(t̃,R/8)

u ≤ σ1ω.

Since (3.4) or (3.29) must be valid, the conclusion of Corollary 3.1 or 3.2
must hold. Thus, choosing σ = max{σ0, σ1} and t� = min{t̂, t̃}, we obtain
the following proposition.

Proposition 3.2. There exists a constant σ ∈ (0, 1), depending only on the
data, such that

ess osc
Q(t�,R/8)

u ≤ σω.

The local Hölder continuity of u in QT now follows (see, e.g., [5], [6], or the
proof of [23, Th. 2]).

4. Numerical examples
In this section, we provide two numerical examples to illustrate how the

approximate solutions of the chemotaxis model (1.1) vary when changing the
parameter p from standard nonlinear diffusion (p = 2) to doubly nonlinear
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Figure 1. Example 1: Numerical solution for species u, at t =
1.0 for p = 2 (left), and p = 6 (right).

diffusion (p > 2). For the discretization of both examples, a standard first
order finite volume method (see the Appendix for details on the numerical
scheme) on a regular mesh of 262144 control volumes is used. We choose a
simple square domain Ω = [−1, 1]2 and use the functions a(u) = εu(1 − u),
f(u) = (1 − u)2 and g(u, v) = αu − βv, along with parameters that are
indicated separately for each case.

4.1. Example 1. For the first example, we choose ε = 0.01, α = 40, β = 160,
χ = 0.2 and d = 0.05. The initial condition for the species density is given
by

u0(x) =

{
1 for ‖x‖ ≤ 0.2,

0 otherwise,
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Figure 2. Example 2: Numerical solution for species u, at t =
0.1 for p = 2 (left), and p = 6 (right).

and the chemoattractant is assumed to have the uniform concentration v0(x) =
4.5. In a first simulation, we consider the simple case of p = 2 and we com-
pare the result with an analogous experiment with p = 6. We evolve the
system until t = 1.0, and show in Figure 1 a snapshot of the cell density at
this instant for both cases.

4.2. Example 2. We now choose the parameters ε = 0.5, α = 5, β = 0.5,
χ = 1 and d = 0.25. The initial condition for the species density is given by

u0(x) =

{
1 for ‖x− (−0.25, 0.25)‖ ≤ 0.2 or ‖x− (0.25,−0.25)‖ ≤ 0.2

0 otherwise,
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Figure 3. Example 2: Numerical solution for species u, at t =
0.5 for p = 2 (left), and p = 6 (right).

and for the chemoattractant

v0(x) =

{
4.5 for ‖x− (0.25, 0.25)‖ ≤ 0.2 or ‖x+ (0.25, 0.25)‖ ≤ 0.2

0 otherwise.

The behavior of the system for the cases p = 2 and p = 6 at different times
is presented in Figures 2, 3 and 4.

4.3. Concluding remarks. W first mention that, from the previous exam-
ples, one observes that even though the numerical solutions obtained with
p = 2 differ from those obtained with p > 2, the qualitative structure of the
solutions remains unchanged. We also stress that the numerical examples
illustrate the effectiveness of the mechanism of prevention of overcrowding,
or volume filling effect, since all solutions assume values between zero and
one only. In particular, all examples exhibit plateau-like structures where
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Figure 4. Example 2: Numerical solution for species u, at t =
2.5 for p = 2 (left), and p = 6 (right).

u = um = 1, at least for small times, which diffuse very slowly, illustrating
that the diffusion coefficient vanishes at u = 1 (recall the special form of the
functions a(u) and f(u): they include the factor (1 − u), and therefore the
species diffusion and chemotactical cross diffusion terms vanish at u = 0 and
u = um = 1).

In Example 2, the solution for p = 2 has a smoother shape than the one
for p = 6, which exhibits sharp edges. These sharp edges do not only appear
for u = 0 and u = um, where one expects them, due to the degeneracy of
the diffusion term and the choice of initial data, but also for intermediate
solution values, as is illustrated by the plots for p = 6 of Figures 2 and 3.



38 M. BENDAHMANE, R. BÜRGER, R.R. BAIER AND J.M. URBANO

Acknowledgment
M. Bendahmane is supported by Fondecyt Project 1070682, and R. Bürger

is supported by Fondecyt Project 1050728 and Fondap in Applied Mathe-
matics (project 15000001). MB and RB also acknowledge support by CONI-
CYT/INRIA project Bendahmane-Perthame. R. Ruiz acknowledges support
by MECESUP project UCO0406 and CMUC. The research of J. Urbano was
supported by CMUC/FCT and Project POCI/MAT/57546/2004. This work
was developed during a visit of R. Ruiz to the Center for Mathematics at the
University of Coimbra, Portugal.

Appendix
The definition of the finite volume method is based on the framework of

[28]. An admissible mesh for Ω is given by a family T of control volumes of
maximum diameter h, a family of edges E and a family of points (xK)K∈T .
For K ∈ T , xK is the center of K, Eint(K) is the set of edges σ of K in the
interior of T , and Eext(K) the set of edges of K on the boundary ∂Ω. For all
σ ∈ E , the transmissibility coefficient is

τσ =


|σ|

d(xK , xL)
for σ ∈ Eint(K), σ = K|L,

|σ|
d(xK , σ)

for σ ∈ Eext(K),

where K|L denotes the common edge of neighboring finite volumes K and L.
For K ∈ T and σ = K|L ∈ E(K) with common vertexes (a`,K,L)1≤`≤I with
I ∈ N\{0}, let Tσ (T ext

K,σ for σ ∈ Eext(K), respectively) be the open and convex
polygon built by the convex envelope with vertices (xK , xL) (xK , respectively)
and (a`,K,L)1≤`≤I . The domain Ω can be decomposed into

Ω = ∪K∈T
(
(∪L∈N(K)TK,L) ∪ (∪σ∈Eext(K)T

ext
K,σ)

)
.

For all K ∈ T , the approximation ∇huK,σ of ∇u is defined by

∇hu
n
K,σ :=

{
un

L − un
K if σ = K|L ∈ Eint(K),

0 if σ ∈ Eext(K).

To discretize (1.1), we choose an admissible mesh of Ω and a time step size
∆t > 0. If MT > 0 is the smallest integer such that MT∆t ≥ T , then
tn := n∆t for n ∈ {0, . . . ,MT}.



DOUBLY NONLINEAR CHEMOTAXIS MODEL 39

We define cell averages of the unknowns A(u), f(u) and g(u, v) over K ∈ T :

An+1
K :=

1

∆t|K|

∫ tn+1

tn

∫
K

A
(
u(x, t)

)
dx dt,

gn+1
K :=

1

∆t|K|

∫ tn+1

tn

∫
K

g
(
u(x, t), v(x, t)

)
dx dt,

fn+1
K :=

1

∆t|K|

∫ tn+1

tn

∫
K

f
(
u(x, t)

)
dx dt,

and the initial conditions are discretized by

u0
K =

1

|K|

∫
K

u0(x) dx, v0
K =

1

|K|

∫
K

v0(x) dx.

We now give the finite volume scheme employed to advance the numerical
solution from tn to tn+1, which is based on a simple explicit Euler time dis-
cretization. Assuming that at t = tn, the pairs (un

K , v
n
K) are known for all

K ∈ T , we compute (un+1
K , vn+1

K ) from

|K|u
n+1
K − un

K

∆t
=

∑
σ∈E(K)

τσ
∣∣∇hA

n
K,σ

∣∣p−2
h

∇hA
n
K,σ

+ χ
∑

σ∈E(K)

τσ

[(
∇hv

n
K,σ

)+
un

Kf
n
K −

(
∇hv

n
K,σ

)−
un

Lf
n
L

]
,

|K|v
n+1
K − vn

K

∆t
=

∑
σ∈E(K)

τσ∇hv
n
K,σ + |K|gn

K .

Here | · |h denotes the discrete Euclidean norm. The Neumann boundary
conditions are taken into account by imposing zero fluxes on the external
edges.
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