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Abstract

A model with phase change for material convection in a saturated
porous medium with a frozen region is formulated as a Darcy-Stefan prob-
lem. We propose a new generalized formulation for this Stefan-type prob-
lem with convection governed by Darcy’s law. This approach, which is
valid for irregular geometries with irregular subregions, has the advantage
of not requiring the smoothness of the temperature, that restricted pre-
vious mathematical works to two-dimensional particular cases. We show
existence of generalized solutions, passing to the limit in suitable approxi-
mated problems, which in principle can be solved numerically by the finite
element method.

1. INTRODUCTION

In many problems in geodynamics and soil engineering the water-ice phase
change plays an important role on natural convection in regions occupied by
saturated porous media. The presence and evolution of the corresponding in-
terface, as shown by experimental observations and theoretical analysis, have
significant influence in the heat transfer and, consequently, also in the fluid mo-
tions. Because of the technical importance of this phenomenon, several models
have been considered for concrete problems like in the construction of pipelines
in permafrost regions, e.g. Goldstein and Reid [12], liquified gas or road con-
struction and maintenance,; e.g. Aguirre-Puente and Frémond [1], and so on.
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More recently the melting of ice with natural convection in a porous medium
has been considered in particular cases, e.g. Beckermann and Viskanta [4],
Kazmierczak and Poulikakos [13] or Zhang et al. [24]. An interesting aspect
of the natural convection with phase change in porous media is the analysis
of patterned ground formation, e.g. George et al. [11]. Applying a linear in-
stability analysis to a model of this geophysical phenomenon forming regular
patterns, McKay [15] has analysed the effect of variable thermal parameters on
fluid motions in the melted region.

Although phase change problems in porous media have specific features, they
can be considered, at least from a theoretical point of view, as belonging to the
large class of Stefan problems, since they are mathematically similar to the so-
lidification of a metal piece or a semiconductor crystal, for which there exists an
extensive literature (see e.g. Rubinstein [21], Meirmanov [16] or Rodrigues [18]
and their bibliographies). When convection in the liquid phase is governed by
Stokes or generalized Navier-Stokes equations, the corresponding mathematical
analysis for evolutionary or steady-state cases has been considered in particular
by DiBenedetto and O’Leary [10] or Rodrigues and Urbano [20], respectively
(see also their bibliographies). Previous numerical computations based in the
finite element modeling of a two-phase Rayleigh-Bénard problem can be found
in Chang and Brown [6].

For a problem in ground freezing, the mathematical analysis of the model
considered in Goldstein and Reid [12] was developed by DiBenedetto and Elliott
[8] and by DiBenedetto and Friedman [9]. Their approach is restricted to the
stationary two dimensional cases only, since it depends in a crucial manner on
a regularity result for the temperature field, which is required to be continuous
in order to give a sense to the flow region. In order to overcome this difficulty,
Rodrigues [19] has proposed a new suitable generalized formulation for the case
when there is no flow across the interface, which yields an interesting well posed
mathematical problem, and proved a general existence theorem and, for small
Péclet numbers, also a uniqueness result for the time-independent problem.

In this work we extend the new mathematical formulation for the evolution-
ary convection-conduction problem arising in freezing and thawing of saturated
porous media. It consists of a two-phase Stefan problem with convection only
in the liquid zone. The velocity field in the unfrozen domain is related to the
hydraulic potential, or to the pressure, by Darcy’s law with a buoyancy force
that may depend on the temperature in a general form. For each instant, this
yields a Neumann problem only in the liquid region, which is extended to the
whole domain for mathematical convenience. Due to the solenoidal property of
the velocity field, this extension is shown to be the natural one for the Neu-
mann boundary condition across the free boundary, as it can be reobtained in
the case of regular solutions from the generalized formulation, as shown in the
next section.

Using a suitable regularization procedure, we give in section 3 quite general
assumptions under which a priori estimates for the so obtained approximated



problem garantee the existence of a generalized solution. Letting the approx-
imating parameter go to zero we construct a subsequence of approximating
solutions of the initial phase change problem with convection. This suggests in
particular a numerical algorithm for computing actual solutions, which can be
done by the finite element method, as for instance in the work of Barret and
Elliott [2].

Although we do not consider here the numerical computation of the solution,
the preliminary analysis of our section 4, in particular the a priori estimates for
the continuum approximated problem, can also be extended to the discrete
problem of the standard Galerkin finite element approximation. It is perhaps
worthwhile noting that our generalized approach is well adapted to the method-
ology of finite element simulations currently used in science and engineering (see
e.g. Carey [5]) and allow the application of contemporary methods of optimal
control of distributed systems (see e.g. Neittaanméaki and Tiba [17] and its
bibliography).

2. THE MATHEMATICAL FORMULATION

We assume the porous medium occupies a bounded regular domain Q C RY,
(N = 2,3), which is separated in two sets § and L, corresponding respectively
to the frozen and melted regions, which are divided by an unknown surface, the
free boundary &.

According to the continuum approach to porous media (see, for instance,
Bear [3]), we consider the equation of the energy

%+V~Ve:r—V~q,

where we assume a normalized constant density p = 1 and denote by q the en-
ergy flux, r the energy source, e the internal energy and v the velocity field. The
classical Fourier law is taken as constitutive relation between the temperature
field and the heat flux and it reads

a=—k(T)VT (1)

where k denotes the thermal conductivity. One of the assumptions in the clas-
sical Stefan problem is that the change of phase occurs through ® at a fixed
temperature Tg and introducing the usual Kirchhoff transformation, we define
the normalized temperature by

0= K(T) :/Tk(r)dr

and relation (1) becomes simply q = —V@. We can then write, respectively, for
the frozen and unfrozen zones,

S={(z,t) €Q:0(x,t) <0} , L={(x,t)€Q:0(x,t)>0}



and @ ={(x,t)€Q:6(x,t) =0},

for the unknown interface. We denote the given space-time domain by ¢ =
Q1 x (0,7, for some T > 0, and its lateral boundary by X = 9Q x (0,7).

The constitutive relation between the internal energy and the temperature
field takes into account the jump that occurs at the interface, and we assume

e(T) = e(K~1(0)) = d(0) +1h(0) ,

where d is a given continuous and strictly increasing function, I = [e]f > 0 is
the latent heat of phase transition, with [.]T denoting the jump across ®, and
h is the Heaviside function (h(s) = 0 if s < 0, h(s) = 1 if s > 0). Without loss
of generality, we may assume that d(0) = 0.

From the energy conservation law and using the two constitutive relations,
with » = 0 for simplicity, we obtain the heat diffusion equation with convection

0d(0) +v-VdB)=A9 in  Q\d={0<0}U{6>0}. (2

On the free boundary @, in addition to the condition #§ = 0, we have the
Stefan condition (see, for instance, Rodrigues [18]), which represents the balance
of heat fluxes

[qf n=[-VIt n=Ilv—-w) n on & ={0=0}. (3)

Here, n 1s the unit normal to @, pointing to the solid region and w is the velocity
of the free boundary.
The boundary and initial conditions are, respectively

—6—191 = f(=,t,0) on 3 (4)
600)=6, in Q, (5)

for a given initial data #y and a given, possibly nonlinear, heat flux f.
Concerning the velocity field v, by the Boussinesq approximation we assume
it satisfies in the melted zone the continuity equation and Darcy’s law, 1.e.,

V-v=0
in {0>0), (6)
V:—Vp-l-b(@)

p being the dimensionless hydraulic potential and b = b(#) a buoyance force
which can be a nonlinear function of the temperature (see, e.g., Straughan [23]
or McKay [15] and their bibliographies). On the frozen zone, we have

v=0 in {0 <0}, (7)



and the interface boundary condition is
v-n=20 on {6 > 0}, (8)

with n denoting the exterior normal vector to {6 > 0}.
We see that the hydraulic potential solves the Neumann problem

Ap=V-b(#) in {#>0} , JIp/On=Db@) n on {6 >0} (9)

in the a priori unknown domain {f# > 0}. This is a delicate problem since it
requires the temperature to be at least a lower semicontinuous function so that
{6 > 0} is open and the Poisson equation (9) makes sense in a variational form.
This 1s exactly the approach of the weak formulation introduced in DiBenedetto
and Elliott [8] in a steady state situation, where the temperature is required to be
a continuous function. The boundary condition dp/dn = b(#) -n on 9{6 > 0} N
0% is not taken into account in the problem formulation and the mathematical
results obtained only hold in the particular two-dimensional setting.

We now derive a generalized formulation for the problem. In what concerns
the Stefan problem we consider the now classical enthalpy formulation (cf. Meir-
manov [16] and the references therein). Let H denote the maximal monotone
graph associated with the Heaviside function,

0 if s<0
H(s)=<¢ [0,1] if s=0 |,
1 if s>0

and define the dimensionless enthalpy by the pointwise inclusion
n€v(0) =d@)+ H().

Integrating formally by parts equation (2), with a smooth test function & such
that £(T) = 0, assuming that ® is smooth and taking into account the jump of
v at 0 and the boundary conditions, in particular, conditions (3) and (8) (see,
for instance, Rodrigues [18]), we get

_/Qnatg_/Qd(a)v~V§+/QV9~V£+/EJ’(9)€:/ﬂno€(0), (10)

where the initial condition on the enthalpy, which carries more information than
the corresponding one on the temperature, is chosen such that ng € y(y). We
observe that the convective term depends only on the temperature and not on
the enthalpy, which is due to the interface condition (8).

As far as the velocity is concerned, the generalized formulation that we
propose consists in solving the Neumann problem (9) in the whole domain €,
instead of only in {# > 0} and defining v a posteriori by the expression

v=[=Vp+bO)] x50 , (11)



where x4 denotes the characteristic function of a set A. This is consistent with
(6) and (7) and based on the simple remark that

d(0) v=d*(0) [— Vp+b(0)] =d(0) [~ Vp+b(0)] x(s>0} ,

with
dg) if >0
d+(9):max(d(9),0):{ (0) F o020

We comment later on how to recover the interface condition (8).
Concerning notation, we use the usual symbols for the function spaces in-
volved, in particular, the usual Sobolev spaces H*({2) and

HYQ) = H'(0,T;L*(Q)) N L*(0,T; H'()) .
The definition of generalized solution is the following

Definition. We say that (0,7,p) is a generalized solution of the Darcy-Stefan
problem, if

0€L?(0,T; H'(Q) NL™(Q) 5 (12)
n€eL>®(Q) and nev(d), ae in Q; (13)
pe L= (0,7 B (Q)/1R) ; (14)

_ O, g - — | dY ()] - b(9)] - 0
/Qn £+/Qv ve /Q )] - Vp+Db(0)] V€+/Ef()€
:/07705(0), Ve e HYQ) : &(T)=0; (15)

/ [—Vp+b(0)] Vy=0, VY € H(Q), ae. t €(0,7]. (16)

Remark 1 We stress that the temperature is not required to be continuous, as
in DiBenedetto and Elliott [8] and DiBenedetto and Friedman [9], at the cost
of obtaining as a solution of the Neumann problem (16) an artificial hydraulic
potential p defined in the whole domain € for a.e. ¢ € (0, T]. The function p(?)
is defined up to a constant, which is traduced by the fact that it belongs to the
quocient space Hl(Q)/IR. We stress that only the contribution of its gradient in
the measurable subset {6 > 0} is relevant to the conduction-convection problem
(15) and that, with definition (11), we recover the velocity field.



Remark 2 In the formulation of DiBenedetto and Elliott [8], the condition
Vv = 0 was to hold globally and p was required to belong only to H({6 > 0}),
since, due to the continuity of 6, the set {# > 0} was open. The variational
equation (16) was then restricted only to the ¥ € H'(Q) such that supp ¢ C
{6 > 0}.

Remark 3 Here, equation (16), with definition (11), contains in a generalized
sense the boundary condition (8), i.e., p solves the Neumann problem (9) in a
generalized sense. Indeed, as was already observed in Rodrigues [19], if, for a.e.
t, the free boundary T' = ®(t) = {0(¢t) = 0} N Q) = d{6(t) > 0} N Q1) is
regular (for instance, of class C'') and V@ and —Vp + b(f) are continuous in a
neighbourhood of T', its normal vector, say nr, is parallel to Vé|pr. Hence, for
4 > 0 sufficiently small, defining

Hs(t)=1 if t >4, Hs(t)=1t/5 it 0<t<4§ and Hs(t)=0 if t<0,

and choosing ¢ = H;(p0) in (16), where ¢ € C1(Q), ¢ > 0 in Q, is arbitrary,
we obtain

/ [—Vp+b(0)] V(e de=0.
{0<p8<5}

Dividing by meas{0 < ¢f < ¢} and letting § — 0, we find

/{_} [~ Vo b(0)] - Ve 0)dr = [ o[~ Vp+b(0)] - VoI =0

first for positive ¢ and then also for any ¢ € C(T'). We conclude that
[ —Vp+ b(ﬁ)] -np =0, everywhere on I' .

Remark 4 Instead of the Neumann condition (4) we may also consider a
Dirichlet or a mixed Dirichlet-Neumann boundary condition, i.e., for a partition
X =YpUXny,

0=0p on ¥p and ——=f(f) on Xy .
on
In particular, we can approach the Dirichlet condition by a family of Neumann
type problems in the form

fle,t,0) = 0'[9 - HD(x,t)] , fora.e. (z,t)€Xp,
by letting the parameter ¢ — +c0.

Remark 5 In most geophysical problems, the thermoconvection takes place
in anisotropic and heterogeneous porous media. From the mathematical point
of view, the corresponding laws (1) and (6) require the introduction of the
additional conductivity and permeability tensor fields, and the generalized for-
mulation (15)-(16) may be easily extended to this case, as well as the theoretical
results of the next sections.



3. EXISTENCE OF GENERALIZED SOLUTIONS

In this section we show that the problem admits at least one generalized so-
lution in the sense of our definition. The proof consists in a regularization of the
maximal monotone graph and some data, giving rise to an approximated prob-
lem, for which solvability is obtained using a fixed point theorem and standard
results from parabolic theory. The a priori estimates, that allow the consequent
passage to the limit, are obtained in the next section. We state the assumptions
and the theorem and then present its proof.

(A1) d € C%(IR) is such that d(0) =0 and 0 < d < d'(s) < d, a.e. s € IR;
(A2) b e C°(IR; RY);
(A3) 1o € ¥(0o), with 0y € L™ (Q);

(A4) f: ¥ xR — IR is a measurable function with f(x,t,-) increasing and
continuous for a.e. (z,{) € X ;

(A5) There exists a constant M > 0 such that
(@) NOollzee(y < M,
(i)  fle,t,7)7>0 for |r| > M, ae. (2,1)€X,

(¢4d) Jf* e L*(Z) : sup |f(a:,t,7')| < f*(x,t), ae inX.
Ir|<M

Theorem 1 Under the previous assumptions, there exists at least one general-
ized solution to the Darcy-Stefan problem in the sense of (12)-(16), such that

10|y < M . (17)

Proof. We shall consider an approximated problem, that is solved in the next
section, and obtain the solution as the limit of the approximated solutions. We
start with a regularization of the maximal monotone graph v. Let 0 < e < 1
and consider the function

Ve(s) = d(s) + LH(s)
where H,. is a C*-approximation of the Heaviside function, such that

Ho(s)=0 if s<0 , H(s)=1 if s>e and H.(s) >0, s€lR (18)



with H, — h uniformly in the compact subsets of IR\ {0}, as ¢ — 0. The
function v, is bilipschitz and satisfies

u

0<d<~(s)<de=d+1L., ae s€RR, (19)

with L, = (%) being the Lipschitz constant of H.. Its inverse 8, = 'yﬁ_l satisfies

0<=<p(s)<=, ae.s€R. (20)

2] —

1
d.
We also regularize the boundary data with respect to the time variable by
considering functions fM (z,t, 1), satisfying (A4) and (A5)-(ii)(iii), such that,
for each € > 0,

sup |3thM| € L*(%) and |s,lup |fEM - fM| —0 in LX), (21)
T T|<M

denoting the truncation of a function ¢ with
oMz, t,7)=¢ (x, ¢, min { M, max(—M, T)}) :

Concerning the initial data, we consider a sequence of functions 6o, € H'(Q)
such that, with 1o = v (foc),

906 — 90 , Noe =7+ No n LZ(Q) and ||606||Loo(ﬂ) S M . (22)
The approximated problem is

(P.): For each € > 0, find a pair (6., pc) such that

e @QNIQ . poer(0TH@Q/R):  (23)
— | 7e(0) O, - VE— [ dT(0:) wr- M (0.
/Qw) £+/Qv ve /Q 0w Ve [ Mo e
:/ﬂnoﬁg(()), VEeHN Q) E(T)=0; (24)

/ [~ Vpe+b(0:)] V=0, Vo € H(Q), ae. t € (0,7].  (25)

Here, w? is a regularization of w. := —Vp, + b(f.) that preserves its
solenoidal nature, for example the convolution w} = p. * w., with a mollifier p.

(pe €C™, fpe =1, PE(S) =0, |5| > 1)



In the next section we show that this problem has a solution for each € > 0
and establish the a priori estimates (31)-(34). From these estimates we conclude
that for subsequences, relabeled with the same index, we have

. — 0 in  L7(Q) weak-x |
in L? (O,T;Hl(Q)) weak |

in  L*(Q) strong ; (26)

Yelle) =n in L7(Q) weak-x ; (27)

Vpe —=Vp in L= (0, T, LZ(Q)) weak-* ; (28)

we—=w and w—=w in L% (O,T; LZ(Q)) weak-* | (29)

for functions ¢ € L2 (O,T;Hl(Q)) N L=(Q) and satisfying (17), n € L™(Q),
pe L™ (O,T; Hl(Q)/IR) and with w = —Vp 4+ b(6). The strong convergence

0. — 0 in L*(Q) follows, for example, from Theorem 1 in Simon [22], using
estimates (32) and (33) and it also implies that w, — w also strongly in L?
since

IVpe = Vo[- = / Vpe - (Vpe — Vp) / Vp- (Vpe — Vp)

=~ [ 00 =] - (Tn = Vi) — 0. (30)

using Lebesgue’s theorem and (28).

With this convergences, passing to the limit in (24) and (25) is straight-
forward since the boundary term converges due to (21) and lemma 4.6. in
Rodrigues [18]. Tt remains to show that n € y(0); observe that =, is increasing
and v, = B!, which gives

/Q[’Ve(ﬁe)—so] [0 — Be(9)] >0, Vo€ L¥(Q),

and passing to the limit and using standard monotonicity techniques (cf. Ro-
drigues [18], for example) we obtain 6§ = 3(n) < n € v(f) and conclude that
(6,1, p) is a solution to the Darcy-Stefan problem in the sense of the definition
above.

u

Remark 6 For the Dirichlet or mixed boundary value problems see Rodrigues
[18, Theorem 4.14] where a continuous dependence result allows one to obtain
the solution for these problems as the limit of solutions of Neumann problems
in the class referred to in Remark 4.
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4. ANALYSIS OF THE APPROXIMATED PROBLEM

We show here that, for each € > 0, the approximated problem has a solution,
making use of a fixed point theorem. We then obtain the a prior: estimates that
enabled us to pass to the limit, obtaining the solution of our problem.

Proposition 1 For each ¢ > 0, the approrximated problem has at least one
solution.

Proof. We fix € > 0 and apply Schauder’s fixed point theorem to a non-linear
operator 7. defined in the Hilbert space L?(Q). For each ¢ € L*(Q) such that
llo||z=(g) < M, and using elementary methods for elliptic equations, we solve
up to constants the linear Neumann problem (25), with 6, = o, obtaining a

unique p? € L™ (O,T; Hl(Q)/IR) Next, we define u? = [— Vp? + b(O’)] and
solve the problem (24), with w! replaced by u* = p. * u?, using results from
parabolic theory. This problem can be written as

O — Ayt () +u -Vt (37 () =0 in Q
Vst m) -+ f (v () =0 on ¥

1n(0) = noe on £

For the existence, we can use the Galerkin method as in Rodrigues [18], ob-
serving that the diferences with respect to the problem considered there are not
significant since u* is a solenoidal L* function and ¢ = d* oy- ! is Lipschitz.
The uniqueness, with the assumption on the monotonicity of the flux fM fol-
lows from a simple generalization of the results of Chipot and Rodrigues [7] to
the Neumann case.

We obtain a function n € HY(Q) N L>(Q) and put v~ 1(n) := Tc(o), that
belongs to the same spaces and satisfies the estimates

”TE(U)HLOO(Q) <M and ”TE(U)”HI(Q) < Cen

respectively by the weak maximum principle (see Rodrigues [18, Prop. 4.7.])
and standard parabolic estimates. Therefore, 7. maps the closed and convex

subset of L%(Q)

Sw = {0 € 12(Q) + llolli=o) < M}

into 1tself and is completely continuous, due to standard continuous dependence
results of elliptic and parabolic theory and the compactness of the injection
HYQ) < L*(Q). So it has a fixed point §, = 7.(f.) and we obtain that
(Hﬁ,pfﬁ) solves the problem (P.).

]

11



Remark 7 Concerning the continuous dependence, we observe that if o5 — o¢
strongly in L? then ws; — wq also strongly in L?, which can be achieved with a
reasoning similar to the one that led to (30).

Proposition 2 Any solution of the approrimated problem satisfy the following
independent of ¢ estimates:

10clliei) < M |56 (0)] ) < M (31)
IVOellL2(q) < C'; (32)
T—h
/ 0+ B) = 0Lt < v, VO<h<T:  (33)
0]
v € 2 < C , 34
S Ve gy < (34)

Proof. Since also v (0.) € H'(0,T; L*(Q)) C C([0,T7]; L*(Q)), we can integrate
(24) by parts, and, after a careful choice for the test functions, conclude that
Y (0)(0) = nge and that, for a.e. t € (0,7),

/3t'ye(9€)s0+/V96~Vso—/d+(9€) wi -V
0 0 0

+ M) =0, Yoe HY(Q) . (35)
a0l

To get the L*°-bound, take ¢ = (0.(r) — M)+ € H'(Q) in (35) and defining

Bnr(s) = /Os(ﬁﬁ(a)—M)-l—da if s> y.(M) |
0 if s <5.(M)

obtain, after integration in time in (0,¢) and denoting with p a function such

that g/ =dt,
/BM%E //|ve_ *?
:/ﬂﬁ(%e //W Vu((6e — M) + M)

[ ] e -yt <o,
0 Joq

12



because w! is solenoidal and (A5)-(ii) holds for fM. Since t > 0 is arbitrary,
we conclude

0. — MY =0, ie 06.<M ae in Q .

Analogously, we would get 8. > — M, by taking ¢ = (95(7') —|—M)_ in (35). Now,
this estimate easily gives

e (O oo gy = N1d(0e) + 1H(00) || oo ) < max |d(s)| +1=M".

To get (32), choose ¢ = 0.(t) in (35) and integrate in time, obtaining

/OT/Qaﬁe(HE)—I—/QWHEF—/QW: 'v“(gﬁ)"‘/EfEM(ge) 0.=0,

where

So we have, using again the fact that w} is solenoidal,

/Q Vo = [ 500 - [ Fem) - [ Moo
/ﬂaﬁ(aﬁ(O))JrM/Ef* < C,

by (A5)-(i), the fact that 4. > 0 is uniformly bounded in [—M, M], the L
bound and (A5)-(iii).

The estimates (34) is standard; it suffices to take ¢ = p.(¢) in (25).

Finally we obtain (33). Let 0 < h < T be fixed and choose 0 < t < T — h.
Take ¢ = h=1[0.(t + h) — 0.(¢)] in (35) and integrate in 7 € (t,t + h), to get

IA

o [ AT
< [ [0t + 1) =3 00)] [octe+ ) - 0.0
1 (/+ V() dr ) (6.t + 1)~ 0.(0)
4L / ( /* (4 (0.7 () dT) V[0t + h) — 0. (1)]
_%/m (/;M ( EM(QE))(T) dr) [0c(t + h) = 6e(1)]

13



where the inequality is a consequence of (19). We now estimate the second term
on the right hand side:

%/ﬂ (/;M (d"‘(aﬁ)w:)(T) dr) V[0t + h) —0.(t))]

1 + t+h i 9 % 2\ 3
<y mex |4 (h/Q/t Wi (7)] dT) (/Q\V[&(Hh)—@e(t)]\)
l _|_ 2 * 2 % —
<3 ele ol (2 IOl ¥+ n 0], ,

= |H|1<a])\(4 |d+ )| ||W:||L°°(0,T;L2(Q))(”vgﬁ(t + h)||L2(ﬂ) + ”vgﬁ(t)HLQ(ﬂ)) ’

using the inequality of Holder, first in time and then in space, and the L°°
estimate. Concerning the third term we have, using a similar reasoning,

([T ) o) om0
o et ([ypaso-con)

1
- (hz sup fEM(HE)(T)‘
h t<r<t+h

M)

S5

IA

2 3
o) 10408 =0.00

IA

< (”9 t+h) ||L2 oy T [0t ||L2(an))

Lo (0,T;L2(5Q))

S [l R ( CACERD] et AT PRy

using (AB)-(iii).
To conclude, integrate the initial inequality in ¢ € (0,7 — k), obtaining

T—h 9
/0 h=H[0e( 4 h) = 0c ()| 2

(19012210 + 2T ma 0% )] 192 10 I 1200

IA
|| =

+2ﬁ Hf*HLoo(z:) ||96||L2(2)} =K,

because of the previous estimates and since

[ L[ ) st

14
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5[ {(f o oe) = ([ o )}

1 T
7 (h/ |V96|2—|—h/ |v96|2) <|IVOlI72(q)
Q T—h 0

5. CONCLUSION

IA

We have considered the analysis of a new generalized formulation for a phase
change problem with convection arising in freezing and thawing of saturated
porous media. By using the variational approach for this Darcy-Stefan problem,
we were able to establish the existence of a generalized solution by introducing a
suitable family of approximating problems that can, in principle, be numerically
simulated by the finite element method. The solid/liquid interface is obtained
a posterior: from the temperature field, without any requirement of regularity.
This approach, based directly on the natural laws of conservation of mass and
energy, is well adapted to rather general constitutive laws and has the advantage
of being valid for general irregular geometries.
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