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Abstract

We present a Hamiltonian formulation of a second order variational problem
on a differentiable manifold @), endowed with a Riemannian metric < -,- > and
explore the possibility of writing down the extremal solutions of that problem
as a flow in the space TQ & T*Q) & T*(). For that we utilize the connection V
on (), corresponding to the metric < -,- >. In general the results depend upon
a choice of frame for T'(), but for the special situation when ) is a Lie group
G with Lie algebra G, our results are global and the flow reduces to a flow on

GXGxXG*xg*.

Keywords: Riemannian manifolds, Lie groups, Hamiltonian equations, optimal
control, variational problems.

Introduction

Modelling complex mechanical systems is often accomplished using the notational

convenience of differential geometry and in particular Riemannian geometry and sym-

plectic geometry. For systems without dissipation one can choose a Lagrangian ap-
proach or a Hamiltonian approach. The basic phase space is usually taken as T'Q)
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in the Lagrangian approach, and T*() in the Hamiltonian approach, where () is the
configuration space. Indeed, in the Hamiltonian approach, the flow is specified by a
Hamiltonian vector field on 7*(), with Hamiltonian H, and using the canonical sym-
plectic form € on T*(Q). In the Lagrangian case, the flow is Hamiltonian on T'Q), but
in this case, one must use a suitable symplectic structure on T'(), which is obtained by
pulling back € to T'Q) via a suitable bundle mapping ¥ : T'Q) — T*(@). For a Lagrangian
defined by kinetic plus potential energies and specified by a Riemannian metric, < -, - >
on (), the map X is just the linear mapping associated to the metric and defined by

EX)(Y)=< XY > X Yel(TQ),

where I'(T'Q)) denotes the set of smooth vector fields on Q.

However, there is another formulation available to us in the Lagrangian case above
in which one uses the Levi-Civita connection V on (), which is compatible with the
Riemannian metric < -,- >, to write the system in terms of a higher order differential
equation on (). Indeed, if L = % < 4, > +V(q), ¢ € T,Q, is such a Lagrangian
function and ¥ is defined as above we write ¥¢ = p € T(Q) for the momentum of the
system and A,V € TrQ for the gradient of the potential function V" at the point ¢ € Q.

Then
oL

5=
We also write %, to denote the covariant derivative corresponding to V. It follows

that the Fuler Lagrange equation corresponding to L is just

Dp
N 1
or
D%q _

The corresponding Hamiltonian is of course
H(g,p) = pld) = L(q. q) lp=x

= <q4,q¢>—01(qq) |l=x;

1 ..
= 5<¢4> —V(q) lp=x4

or

H(q,p) = %p(E_lp) - V(q). (3)

Now the Hamiltonian equations for H, corresponding to the Euler-Lagrange equa-
tions (1) or (2), are of course given by a vector field on T*Q, that is a system of
equations in T'T*(). Writing down these equations depends upon fixing a system of co-
ordinates in which to express €2, etc. whereas the same effect has been accomplished in



the Lagrangian case, reducing a system of equations in TT'Q) to a system of equations,
either in T'Q) or T*(@), through the connection V.

In studying the control problems for such mechanical systems, and in particular
optimal control problems, one encounters even higher order bundles. For example, the
following optimal control problem is a tipical situation.

71
min/ — < wu,u>dt (4)
v Jo 2
subject to
i DV
and
2(0) = w0, #(0)=Vo, (T)=wr, (T)=Vr, (6)

where xg and x1 are given points in ), Vo and V; are tangent vectors to @,
at xo and x1 respectively.

As observed above, the system of equations (5) may already be viewed as the re-
duction to T'Q, of a system which is viewed in the Hamiltonian setting as one in T'7T™*(Q).
To solve the optimal control problem, however, the maximum principle instructs us
that extremal solutions are projections of a Hamiltonian flow in T1™T'(). This situ-
ation 1is clearly very cumbersome, utilizing the canonical symplectic form on T*T'Q).
In this paper we explore the possibility of writing down the extremal solutions of the
problem (4) - (5) - (6) as a flow in the space £ = TQ &T*Q &T*Q. It is clear that the
dimension count of the two spaces F and TT*T() are the same. The idea is to utilize
the connection V as before, but unlike the case of flow (1) our result is dependent upon
a choice of frame for T'(). Thus we obtain global results, only in the case that @ is
parallelizable. For the particular case when () = &, a Lie group, our results are global
and the flow reduces to a flow on G X G X G* x G* where G is the Lie algebra of G. We
note that if () is a Riemannian manifold then T'Q) has many Riemannian structures,
but one, the Sasaki metric < -, - >g, is particularly useful. Indeed, as discussed in Silva
Leite, Camarinha and Crouch [14], the extremals of the problem (4) - (5) - (6) may be
viewed as a sub-Riemannian geodesic flow in T'Q), endowed with such a metric, but not
the actual geodesic flow. Corresponding to < -,- >g, there is a Riemannian connection
Vs on TQ). We conjecture that we may use Vg to reduce the extremal Hamiltonian
flow of (4) - (5) - (6) in TT*TQ, to a flow in TT(Q, without the need for a choice of
frame for T'Q), and retain a reasonably workable form for the equations.

Our solution to the above problem will be sought by treating it as a constrained
variational problem, and utilizing the Lagrange multipliers as co-states, in a typical
fashion. Indeed, extremals for the problem (4) - (5) - (6), are characterized as projec-
tions of the flow resulting from the following equation.

D' i (D @ &)&
dtt dt 7 dt 7 dt
(See Crouch and Silva Leite [4], [5] and Noakes, Heinzinger and Paden [10]).

— 0. (7)



This result is obtained by treating the problem as the unconstrained variational
problem of minimizing the following functional subject to (6)

T D%z D?
/ Y (8)
0

< = =
dt? ~ di?

Our approach follows this one with some minor modifications.

2 Preliminaries

We present here a brief review to the study of tensors on a Riemannian manifold
(@, < -,- >). An important point being that, analogously to vector fiels, tensors can
be differentiated covariantly. For more details see, for instance, Manfredo do Carmo
[8] and Spivak [15]. Recall that I'(T'Q)) denotes the set of smooth vector fields on @)
and C*°(Q) is the ring of real-valued smooth functions defined on Q.

A tensor of order k on the Riemannian manifold ) is a multilinear mapping

0 D(TQ) x - x I(TQ) — C(Q).

& factors

A k-formon @) is an alternating multilinear mapping which assigns to each g € () an
element of (T,Q x --- x T,Q)*. Alternating k-tensors may be identified with k-forms

‘ k factors
in a natural way through

77(X17 T 7Xk)(Q) = U(Q)(Xl(Q)7 T 7Xk(q))7 qEQ, X; € F(TQ)'

In particular, tensors of order 1 are identified with one-forms (or covector fields).

A tensor of order k& can be differentiated to obtain a new tensor of order & + 1.

In what follows, 7 be a tensor of order 1. The covariant differential of n, Vn, is a
tensor of order 2 defined by

(V) (X, Y) =Y(n(X)) =n(VyX), VX,V e(TQ). (9)

For each smooth vector field Z on @), the covariant derivative of n with respect to 7,
denoted by Vzn, is a tensor of order 1 given by:

(Vzn)(X) = (Vn)(X,Z), VX el(TQ) (10)
The exterior derivative of n, dn, is a tensor of order 2 defined by
dn(X,Y) = X(n(V)) = Y(n(X)) =n([X,Y]), VX, ¥ e (TQ). (11)

If 1 is a function (i.e. a tensor of order 0), dn is just the usual differential defined by



It turns out that if the connection V on () is symmetric, that is VxV — Vy X =
(X, Y], VXY € ['(TQ). So, the exterior derivative of a tensor of order 1 is given by:

dn(X,Y) = (Vxn)(Y) = (Vyn)(X), VX, Y e I(TQ). (12)

Since we have equipped () with the Levi-Civita connection which is symmetric,
the formula (12) is always true and will be used systematically throughout the whole
paper. Due to the identification of tensors and forms, all the definitions above have a
natural counterpart for forms.

Now, let { X1, -, X,,} be a frame of vector fields on @ and {wy,---,w,} a co-frame
of covector fiels such that wi(X;) = k. This selection must be local, unless @ is
parallelizable. In terms of these frames we may write any vector field Y and covector
field n along a curve ¢t — x(t) in the following way

n(x(t) =n(t) = D m(thwix(t)) € T3,HQ.

=1

Thus, although the X;’s and the w;’s are defined on some open set in @, Y(¢) and n(?)
are only defined along the curve x(t). Setting

= S (X2 () = V(1) € T,

=1

it follows that the covariant derivatives of Y and n, along the curve ¢ — x(¢) with
velocity vector field V', are given by:

- - Z )+ 2 w07 X,)alt)

D n
d—;/ = Z U —I' Z 772 vvwz (t))
=1

We denote these expressions by the contracted forms

DYy . D
— =Y 4+ VyY; — =0+ Vyn. 13

It should be noted that Y, n, VyY and Vyn are all dependent on the choice of
frame and co-frame, and are not invariantly defined.

3 A Variational Problem

We consider solving the optimal control problem (4) - (5) - (6) through the following
variational problem:



Minimize
DV 1

T
(2, V,p1,pa,u) = /0 (pr(z =V) +p2(ﬁ —u) + 2 < wu,u >)dt, (14)

subject to the boundary conditions (6) and the dynamics (5).
Here pi(t), p2(t) belong to T7y@ and u(t), V(1) belong to T,;Q.

We need the notion of variations of a curve and fields along curves. Let (¢,¢) —
x(t,e), t€[0,T] and € € (—p,p),p > 0, be a parametrized family of curves satisfying

z(0,€) = xg, x(T,€) =,

(15)

j;((),c) = W, j;(Tv 6) =Vr

and W (t) = dx(t) = %(t,@) € Ton@, t€[0,T]. Thus,
W(0)=W(T)=0. (16)

We similarly define variations in w, V,p; and py as curves (¢,¢) — u(t,e), V(i,¢),
pi(t,e), and po(t,€) respectively. We may write

ut,e) = Y uilt, o) Xi(z(t€)) € Turo@

K3

Vitie) = Zvi(t,c)Xi(x(t,e)) € TouoQ

K3

pi(t,e) = Zpi(taﬁ)wi(l'(taﬁ)) € 1700

pQ(t76) = Zp?(t,é)wi(l'(t,é)) € T;(t,e)Q'

According to the notation introduced in (13) we may write

éu(tv )|ezo = du(t) + (Vwu)(xz(1)) € Tl’(t)Q’

where

Sult) = 3 SE(1,0)Xi(a(0),

(Viru)(z(t)) = D wilt)(VwXi)(x(t))
Dp,

D
and similarly for ——(t, €).=o, a—(t, €)e=o and %(t, €)e=o. Thus, taking variations
€ €

€
of the functional .J in (14) we obtain

T Dz DV DDV Du Du
o= [ (e =50+ iy = bt < e 2) e (0T

6



Now

Dz DW DV
— =0 = —/—— e=0 — (S
5 |e=o0 5 | 0 V+VyV,

D DV DV DV Du

g o= =0tV 5l

At this point we need the following result.

—o = ou + Vyu.

Lemma 3.1

/()sz(5%%$ = /OT ( 7t (5‘/) +p2(V5VV)) dt.
Proof

T DV T :
/ pZ((S )d = / p2(5V—|— (SVVV)dt
0 dt 0

T

= (dté\/ VvoV + VsV + VV(SV)d
0
_ 5V|0+/"( 5v>+pﬂvﬂwq)w.
But by (15) we have §V(0) = §V(T') = 0 and so, the result is proved.
O
Using lemma 3.1 we may rewrite (17) as
5J|e:0
. DW DV
= / (Pi(—— =V V) + p2(Vw—— — Vwu)+ < u, Viyu >)dt
0 dt dt
(18)

+ [ V) = 2RV + (Vs i

T
—I—/O (—p2(du)+ < u, du >)dt.

In order for §.J|.—o to vanish for all du,dV and W, the last term gives us Yu = p,,
while the second term gives us

D
%(X) =—p(X)+p(VxV), Xel(TM).
Noting the boundary condition (16) we may write fg(m(%)dt - oT Ddzzl (W)dt and,

according to the definition of ¥, < u, Viyu >= (Xu)(Vwu) = p2(Vwu). So, the first
term in (18) yields

D DV
%(X) — i (VxV) & pa(Vy e

di )
This gives our main result.

X € I(TM).



Theorem 3.2 The extremals of the optimal control problem (4) - (5) - (6) may be
expressed as solutions of the following system of equations, relative to the local choice

of frame and co-frame for T'Q) and T*Q):

T =V
DV
- — y-
dt P2
(19)
D
% = —pi(VV) + pa(V(E7"p2))
Dpy
- Th + p2(VV).

Here n(VY'), where n is a tensor and Y € I'(T'Q), is the function that assigns to
each X € I'(T'Q) the real number n(VxY).

For future applications to Lie groups it is instructive to write out the equations in
the explicit form given in the next lemma.

Lemma 3.3 The extremal equations (19) have the following form, without the assump-
tion 1,

zx =V

Vo= Yl -V

. (20)
pro= —dpi(V,.)+ pa(VETpa) — d(pi (V)
P2 = —pi+dpa(V,.) = 2Vyps + d(p2(V))
Proof - From the equation (19) we have
x =V
V = Z_1p2 — VVV
(21)
P o= —pl(vv) — Vyp + pz(VZ_lpz)
pr = —p1+paA(VV) = Vyps.

Now, for X,V € T(TQ) and 1 € T(T*Q), it follows from (12), (10) and (9) That
dp(V,X) = (Vvn)(X) = (Vxn)(V)
= (Vvn)(X) = X(n(V)) +n(VxV)
= (Vvn)(X) = d(n(V)(X) +n(VxV)

8



dn(V,.) = (Vvn) +9(VV) = d(n(V)).

Setting n = p; and replacing in the expression for p; in (21) we obtain the equation
for py in (20).

Also from (9), (12) and the definition of exterior derivative of a function we may
write

p2(VxV) = (Vvp)(X) = d(p2(V))(X) = (Vap)(V) = (Vvp2)(X)
= d(p2(V))(X) = 2(Vyp2)(X), +dp2(V, X),

that is, p2(VV) — Vypy = d(p2(V)) — 2Vypa + dp2(V, ), from which the equation for
p2 follows.
O

The optimal control u* is given by u* = X7!'p,. We notice that since V €
Tx(t)Qv P, p2 € T;(t)Qv (V7p17p2) S TGL’Q b T;Q b T;Q

4 The Hamiltonian formalism

Our next objective is to exhibit the system of equations in Hamiltonian form, for
the Hamiltonian

1
H(l’, V7p17p2) = 5 < Z_1p27 2_1}72 > —I_pl(v) - pQ(VVV) (22)

Up till now we have placed no assumption on the frame or coframe. However, to
ensure that the system (19) is Hamiltonian, with Hamiltonian function (22), we make
the following assumption.

Assumption 1 - The co-frame {w,...,w,} consists of closed one-forms.

From this assumption it follows that

dpr = Ipi(t)dw(x(1))

0,

dpy = Yp?(t)dw;(z(t)) = 0.

An immediate consequence of (12) and this assumption is that VX,Y € I'(T'M)
one has

(Vxp)(Y) = (Vyp)(X) and (Vxp2)(Y) = (Vyp2)(X). (23)

Theorem 4.1 Under assumption 1, the system of equations (19) is Hamiltonian with
Hamiltonian H in (22), in the sense that it is equivalent to the following set of equa-
tions:



oH

T = —
Ip1
: oOH
V = —
Ip2
(24)
. 0H
P Tov
. OH
pl - ax 9
OH oH oH oOH
where we view o e .M, P eT.M, v el M, e el M.
o oH .
Proof - From (22) it is clear that I V and so the first equations in (19) and (24)
P1
are equivalent as required.
From (22) again, we have
oOH
—— =Xl = Wy W
Ip2
So,
pv .
— =V 4+ VyV =3
7 + Vv D2
and, as a consequence, V= Ylp, — VvV = ——  as required.

Ip2
We now proceed to get the third equation. From (19) and (13) respectively one

D D .
gets % = —p1 + p2(VV) and % = p2 + Vyps. So,

P2 = —p1+p2(VV) = Vyp,. (25)
On the other hand it follows from (22), (9) and (10) that

oH
v p1+ (Vp2)(V) + Vyps. (26)

Again from (9) and (10), if X is a vector field along z,

p2(VxV) = X(p2(V)) = (Vxp)(V) = =(Vxp2)(V), (27)
since py(V') does not depend on x. Replacing (27) in (26) we obtain
oOH :
oy ~ P o Pp2(VV) 4+ Vvpy = —p2

and the third equation holds.

10



Finally, to obtain the equation for p; we write H in (22) in the following equivalent

DV .
form. Here we take into consideration that 7 =V + VyV and from (19) that
DV
= =31y,
dt P2

1
H = 5}?2(2_1}?2) —p2(VyV) + pr (V)

= %pz(?lpz) - pz(%) + (V) +pa(V)

- _%pz(?lpz) +p2(V) + pa(V).

Thus, for any vector field X along = we have

X(H) = —p (Vx(S7p2)

since pa(V) + p1(V) does not depend on 2. Now, from (19) and (13)

—p1(Vv) + p2(V(E7'p2)) = p1 + Vpi,

thus
pr=—Vypr —pi(VV) + p2(V(E7 " p2)).
However, from (9) and (10)

(Vvp)(X) +pi(VxV) = (Vvp)(X) = (Vxp)(V) + X(pi (V)
= dpl (V7 X)v
which vanishes identically by assumption 1. Thus we have

pu(X) = pa(Vx (7)) = =X (H) = —dH(X).

5 Applications to Earlier Formulations

In this section we briefly apply the equations (19) to obtain a new interpretation of
existing results.

Theorem 5.1 The system of equations (19) solves the extremal flow (7).
We start the proof with a lemma.

Lemma 5.2 For Z,V € ['(T'M), n e I'(T*M), one has

D Dn D
EU(VVNZ = E(VZV) + 1 (E(VZV) — V%V) .

11



Proof - Just notice that

d D
S0V V) = Z(VV) |7 +0(V 52 V)

and simultaneously

d Dn D
EU(VZV) = E(VZV) + U(E(VZV)-
D O
Proof of Theorem 5.1 From (19) % = p2(VV) = p1 so, from lemma 5.2,
D2p2 Dp, Dp, D
J)=———+ —2(V5zV —(VzV)=VopzV ).
a2 Z) dt+dt(z)+p2<dt(z) %)

Again, substituting from (19) and using % — 7 + Vy Z and the symmetry of V
we obtain

D2p2
T2 (Z)

DV D
=p(VzV) — pZ(VZW) +p2(Ve,vV) = pi(VZV) + py (E(Vz‘/) — V%V)

= po(=VV =V ViV 4 Vo vV 4+ VV + V.V + VeV YV =V, V = Ve, 2V)
=p2(Vy,vev,zV + VyVzV =V ,Vy V)
P2 (Vizv)V + Vy ViV =V Vi V)

=p(R(V, Z)V).

DV DV

Now, since from (19) % = X7 'p,y it follows that po(X) = (Zﬁ)(X) =< WvX >
D D?

If X is chosen to be parallel along x, that is % = 0, we have %(X) =< %,X >

D? D*V
and dt};z (X) =< W’X >. As a consequence
D3V DV
< X >= pQ(R(V,X)V) =< W,R(V,X)V >

3’
and using the symmetries of the curvature tensor R (see Milnor [9]), we have

D3V DV
dt3 + 1 dt ’

which is nothing other than the equation (7) .

V)V =0, (28)

12



We also have an expression (22) for the Hamiltonian function corresponding to the
Hamiltonian system (24) . In [3], Camarinha found an invariant for the flow (28) or
(7), namely the function I in the next lemma. Here we show that [ is indeed H given

by (22).
Lemma 5.3 The function

[_1<DV DV> <D2V
2 dt ’ dt dt?’

is an invariant of the flow (28) and I = H, where H is the Hamiltonian function (22).

V>

Proof
d
That o = 0 along the flow (28), follows easily from the properties of the curvature
2

tensor R. Since X 'p, = %, _1% = lthy and from (19) %(V) =—m(V)+
p2(Vy V), it easily follows that

1DV DV Dps 1DV DV D*V

=s<a>aV =< a>Eg
2 dt 7 dt 2’

5.1 The Lie group case

We now specialize to the case where () = (i, is a compact or semisimple Lie group,
with Lie algebra G. In this case @) is parallelizable and the equations (19), and indeed
the equations (24), may be given a global interpretation. In this case we also have an
explicit expression for the connection corresponding to the unique bi-invariant metric
on (i, VxY = L[X, Y], (see, for instance, Milnor [9]).

For the Lie group G we may assume {X7,..., X, } is a basis of left-invariant vector
fields and {w;,...,w,} is a dual basis of left-invariant one-forms. It follows that the
equations (20) are indeed globally defined and we may identify V. pq, pa, as elements
of G, G* and G* respectively. However, dp; and dp; will not now vanish in general so
assumption 1 cannot be made and the equations will not retain the Hamiltonian form
of theorem 4.1.

At this point it is important to point out that some of the formulas in section 2
have simpler expressions when () is a Lie group G.

If n € G* and adx is the adjoint map

ady : G — g , X€EQg,
Y —= [X)Y]

then the adjoint of adx is given by:
adyn(Y) = —noadx(Y) = —n([X,Y]). (29)

13



If XY are left-invariant vector fields on G and 7 is a left-invariant one-form on G,

then Y(n(X)) =0, VX,Y and, consequently,
dn(X,Y) = —n([X,Y]). (30)

Also taking into account that VyX = [V, X] one gets

1
Vxn= §ad}77. (31)

It remains an interesting problem to identify the correct symplectic structure in
this case, which will be the natural symplectic form on T*TTG.

Lemma 5.4 In the case of a compact or semisimple Lie group G with Lie algebra G,
the extremal equations (20) may be written in the form

= (Ly).V

V=3"p,

. , 32
p1 = —adyp (32)
p2=—p1

where V € G, p1,ps € G, and & = (L,).V, where L, is left translation in the Lie group
G and (L)« is the differential of L, at the identity eq.

Proof - As a consequence of (30) and (31), we may write the equations (13) with
Ve qg,p,p2 € G in the form

&= (Ly)V

V = Z_lpz

: . L
pr = —adyp + §ad2_1p2p2

p2 = —p1.
But from (30) and the definition of X,
adg_lme(X) = pQ([Z_1p27X]) =< Z_lp% [Z_lp%X] >,

which vanishes since < X, [V, Z] >=< [X,Y], 7 >.

Corollary 5.5 The equations (32) imply that
V+H[V, V] =0 (33)

14



Proof - From equations (32), V = —X7!p; and hence V= X~'ad}p,. Therefore,
VX edg,

<V, X >= (B V)(X) = adypi(X) = pi([V, X]) = pu
and

< [Vv V]vX >=—=< V? [VvX]) = —(ZV)([V,X]) = pl([va])v

from which the result follows.
O

Equations (33) , were first written down in this generality, as a specialization of the
extremal flow (28), in Crouch and Silva Leite [4] but see also Noakes, Heinzinger and
Paden [10]. A specific problem in optimal control of the form (4)-(5)-(6) was treated
in Bloch and Crouch [2] where an analysis was made between the Hamiltonian and
the Lagrangian formulation of higher order optimal control problems. We treat the
example again here in a slightly different setting.

Consider the problem:

T1
min / — < u,u > dt,
o 2

U

subject to

{QmQ
Q € S0(n); u,Qy € so(n) .

Ql =Uu
and boundary conditions

Here < A, B >= trace(AT B). To solve the problem we construct the Hamiltonian

1
H(u,Q, ., p1,p2) =< p2,u >+ < p1, Q> —5 <uu>. (34)

Thus the optimal control is u* = py € so(n), from which we get

1
H:§<p2,p2>—|-<p1,Q1Q>.

Using properties of the trace of a matrix we obtain

. 1
P2 = —5(}?1QT - QP1T)7

(35)
P = —Q1Tp1-

Indeed, since

< p1, Q >= trace(plTﬂlQ) = trace(QTQITpl) =< Q,QlTpl >,

15



oH

L= —@ = —QlTpL
Also,
1 T 1 T
< p1, 1Q >= §trace(p1 Q)+ §trace(p1 0Q).
But since
trace(plTﬂlQ) = —trace(ﬂlQplT) = — <O, QplT >
and

trace(p; Q) = —trace(piQT) =< Qi p Q" >,

it follows that |
< p1,hQ >= 5 < QlaplQT - QP1T >

and
oH 1

o 2 0 T T )
D2 o0, 5 < Oy, p1Q Qpy >

We hypothesize a solution where p; = Q2Q, with Qs € so(n). If we make this
assumption it follows from (35) that

}?2 = _Q27
Qy = [, Q]

and so, the full extremal equations may be written as

Q=00
Q1 = P2
(36)
P2 = —(,
0, = [, Q)

The equations (36) are precisely the equations in lemma 5.4. The Hamiltonian for
the extremal flow may be written as

H = < p2,p2 >+ < pr, Q>

[N

< p2,p2 >+ < 0, Q >

[N

= —<pyp2>+ <00 >

16



We note that with this form of H, equations (36) are not Hamiltonian, but indeed the
full equations

Q=00

Q1:1@2

pr =~ Q" — Q)

P = —Q1Tp1

are Hamiltonian with respect to the Hamiltonian

1 1
H = B < p2,p2 > +§ <p1QT—QP1TaQI >
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