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Abstract

In the category Top of topological spaces and continuous functions, we prove that descent
morphisms with respect to the class IE of continuous bijections are exactly the descent mor-
phisms, providing a new characterization of the latter in terms of subfibrations IE(X) of the
basic fibration given by Top/X which are, essentially, complete lattices. Also effective descent
morphisms are characterized in terms of effective morphisms with respect to continuous bijec-
tions. For classes IE satisfying suitable conditions, we show that the class of effective descent

morphisms coincides with the one of effective IE-descent morphisms.
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1 Introduction

Let ¢4, R and £ denote the classes of universal regular epimorphisms, regular epimorphisms and
effective descent morphisms, respectively.

In Top, descent morphisms are exactly the universal regular epimorphisms ([6], 2.2) and one
has the following inclusions £ CU C R.

It is well-known that the second inclusion is strict. In [9], J. Reiterman and W. Tholen gave a
filter-theoretic characterization of effective descent maps as well as an example to show that &£ is
properly contained in /. Aiming to understand better the first we looked for an easier example of
a descent map which is not effective for descent.

Using a criterion presented in [10], we give a very simple example involving bijective bundles
over finite and quite small spaces. We also describe a way to define non-effective descent morphisms.

The subfibration given by the bijective maps over some space X of the basic fibration given by
Top/X is a complete lattice: it is a small complete category with at most one morphism between
each pair of objects. Such categories are called thin in [1].

In this context, these are relevant subcategories. Indeed, descent morphisms with respect to
bijective maps (bijective-descent) are exactly the descent morphisms. Also effective descent maps
can be characterized in terms of effective maps for bijective-descent.

Furthermore, for regular epimorphisms p : F — B, bijective bundles occur in a natural way in
the category Des(p) of bundles over F equipped with descent data and morphisms compatible with
it: for each object (C,~;&), the morphism + from (C,v,£) to the terminal object (F, 1g;p1) has a
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(Bijective, M)-factorization, which plays an important role here. It is the factorization induced in
Des(p) by the comparison adjunction, as defined in Theorem 3.3 of [4].

A closer look to the meaning of descent data suggests a formulation of effective-global descent
in terms of effective descent with respect to surjective maps (surjective-descent). We prove that,
not only for surjective maps but also for classes I containing these maps and satisfying suitable

conditions, the (effective) descent morphism are exactly the (effective) IE-descent maps.
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2 Notations and definitions

For a continuous map p : £ — B, let T= (T, n,u) be the monad induced in Top/E by the
adjunction

pl = p*:Top/B — Top/E,

where p* and p! are defined by pulling back along p and by composition on the left with p, respec-
tively.
Descent data for an object (C,~), with respect to p, is given by a T-structure map

E:(ExpC,m) = (C,y),

where (E xp C, 71, 73) is the pullback of (p,pvy). Indeed, the category Des(p) of bundles over
the space E equipped with descent data and maps compatible with it is, up to isomorphism, the
Eilenberg-Moore category (’Top/E)T of T-algebras([3] and Beck (unpublished)).

If IE is a class of morphisms in Top which is stable under pullback along p, the restriction
of p* to the full subcategory of Top/B with objects all IE-bundles over the space B is a functor
p* IE(B) — IE(E). In the commutative diagram

PP

Top/B\ Des(p) = (Top/E)L
Top/E
(I)p
E(B) E Desg (p)
P ur
E(E)

the vertical arrows are full embeddings, ®? is the comparison functor and Desg(p) is the full
subcategory of Des(p) with objects all T-algebras (C,v;&) such that v € IE.



A map pis [E-descent if ®f, is full and faithful and pis effective IE-descent if @, is an equivalence.
In case IE is the class of all continuous maps, the prefix IE is dropped. However, for emphasis, we
sometimes use the terminology of [7] and speak of (effective) global-descent. We also speak about
open-descent, surjective-descent and bijective-descent when IE is the class of open embeddings,

surjective and bijective maps, respectively.

3 Effective descent versus descent

In a category A with pullbacks, a wuniversal regular epimorphism is a morphism whose pullback
along any morphism is a regular epimorphism.

Universal regular epimorphisms are descent morphisms in all categories with pullbacks ([6],
2.2).

Conversely, the pullback of a descent morphism p : F — B, along any morphism, is the
coequalizer of its kernel pair in X'/B and so it is a regular epimorphisms in this category. Indeed,
the descent condition for a morphism p : ¥ — B implies the existence of coequalizers of some kernel
pairs in X'/B. These are the coequalizers of the corresponding pairs in X', provided they exist. In
this case, the classes of universal regular epimorphisms and of descent morphisms coincide.

If, furthermore, X has a (Reg Epi, Mono)-factorization of morphisms then p is a descent

morphism if and only if p* reflects isomorphisms as it follows from the proof of Theorem 1.1 of [6].

The universal regular epimorphisms in Top where characterized by Day and Kelly in [5]. They
are the morphisms p : £ — B such that, for each b € B and directed open cover D of p~1(b), p(V)
is a neighbourhood of b, for some V € D.

For a morphism p : F — B in Top and (C,7v;£) € Des(p), let ¢ = coeq(n2,€) and § be the
unique morphism such that § - ¢ = p-~v. Then (Q,§) = VP (C,~;E), for the left adjoint ¥? to
OP - X /B — Des(p).

The diagram

) q
EXBC C Q
© |5
E p B

will be called a descent situation defining Q).

We recall that, for the comparison adjunction WP 4 ®P (e, 3), the unit and counit are defined
by
Q(Cy;¢) =<7,9> and ﬁ(A,f) g =T,
for w5 the pullback of p along f and g the coequalizer of its kernel pair. Furthermore, they are
pointwise bijective maps if p is surjective.

The following criterion will be our main tool in the sequel.

Theorem 3.1 ([10], 2.8) In Top, p is an effective descent morphism if and only if it is a universal

reqgular epimorphism and, for every descent situation defining @), the square is a pullback.



Let T be the monad defined in the introduction. For a T-algebra (C,~y;¢), we have that

v -& = 7y, because £ is a morphism of Top/FE,

E-np=1 and £-1xp&=&-1Xp 7,

because £ is a T-structure map.
From the equality v - £ = w1 and the fact that (72,£) is an effective equivalence relation (see

e.g. [10], 2.2 and 2.4), it is easy to prove the following:

Proposition 3.2 For a morphism p : E — B in Top and a descent situation as above, the following

holds:
(1) If p~H(b) Ny (C) # O then p~'(b) C 7(C):

(ii) For ¢,c € C, q(c) = q(c) if and only if £(v(c), ) = ¢ or, equivalently, {(v(c'),¢c) = .

From (i), we conclude that, for (C,v;£) € Des(p), the subspace v(C') of E is the pullback along
p of a subspace of B.

The second item tells us how to define the coequalizer of the pair (73, ).

We present now a very simple example of a non-effective descent map.

Example 3.3 Let E be the set {eyy, €19, €21, €92, €31, €32} with the topology generated by the
subsets Uy = {ey1,e21} and Uy = {eaz,e31} and B be the set {by,bs, b3} with the indiscrete
topology.

The function p : F — B defined by p(e;,) = b; is a universal regular epimorphism but it is not
effective for global descent. To prove the latter, consider (C, ;&) € Des(p), where C' has the same
underlying set as ' and the topology generated by the topology of E and the open set {eg;}. Then
we obtain a bundle (C,v), with y(z) = 2, equipped with descent data in the only possible way:
the T-structure map is the function £ : £ xp C' — C defined by £(2,y) = x. Indeed, the function

£ satisfies the equalities
v-&=m,{-np=1and £-1xpl=¢-1Xpna,

and is continuous because

& ea) =U xp (VU {exn}).

Hence we have a descent situation defining B

o q
ExgC C B
S |
E p B

in which the square is not a pullback.



More general examples can be defined using a similar method as we describe next.
Let B be a three element space {by, by, b3} which has a non-open indiscrete subspace with two
elements, say {bs, b3}. Consider a universal quotient p: £ — B satisfying the following conditions:

there exist non-empty open sets U; in F, for ¢ = 1,2, such that
o p~(by) C Uy UUy;
e p~1(by) NU; is not open in F, for i =1,2;
e p~i(z)NU; =0 whenever p~1(z) N U; # 0, for x # by and 7 # j.

It is obvious that the open sets U; and U, are not contained in p~!(by) and, without loss of
generality, we can assume that p='(b1) N Uy # @ and p~'(b3) N Uy # 0. Moreover, p~!(bs) has at
least two elements, otherwise it would be open in F and so {bs} would be open in B.

If we add to the topology of E the set W = p~1(by) N U; we obtain a bundle (C~), where the
underlying function of 7 is the identity, equipped with descent data £ : F xg C' — C' defined by
&(x,y) = x, as in the above example.

Also here p - v is the coequalizer of (7g,&), i.e. C has the same p-saturated open sets as E. To
prove that, we recall that O(C') is a singly generated frame extension of O(F), as introduced by

B. Banaschewski in [2], and the open sets of C' are of the form
W'=LiU(Wn Ly),

where L;, for i = 1,2, are open sets in F. Furthermore, we may take L; C L.

Let W' = p~!(S) be an open set in C' which is not open in E. Since W N Ly # §), we have
that p=t(by) C Ly, by the definition of W’ and because Ly C Ly. Hence W' = L; UW. Suppose
that S = {by} or S = {by,b2}. Then p~1(by) C L; UU; and, by the universality of the quotient
p, this implies that by belongs to some open subset of p(L1), p(Uy) or p(L; U Uy), which is false.
Also S # {by, b3}, otherwise p_l(bg) C L; and so b3 would belong to some open set contained in
p(L1) = {b2, b3}. Therefore, S = B and so that W’ = F| which contradicts our assumption.

Under the above conditions, we can define a topology on the underlying set of F generated by
O(F)UJU W, where W has no descent data with respect to p, to obtain a bundle (C,~) equipped
with descent data & for which ¢= coeq(m3,&) is p-+. Thus, like in the example above, we have a

descent situation defining B where the square is not a pullback.

Since effective descent morphisms are stable under pullback ([10], 3.1) all universal quotients
whose pullback along the subspace embedding of some three-element subspace is a map p satisfying

the prescribed conditions, are non-effective descent morphisms.

4 Characterizations of effective descent maps

Let IE C IE be classes of continuous functions stable under pullback along a morphism p and closed

under composition with isomorphisms.

Proposition 4.1 ([7], 2.6) The map p is IE-descent if it is I'-descent. An effective IE'-descent
map p is effective for IE-descent if and only if for each pullback diagram



T2

ExgD D
7711 15
F B

if 71 € IE and § € IE' then ¢ € E.

When this transferability condition holds for IE’ the class of all morphisms in Top, we say that
IE descends along p.

In this case,

e the IE-descent maps are exactly the IE-universal regular epimorphisms (as it follows from
Proposition 1.6 in [7]), that is the morphisms whose pullbacks along IE-morphisms are regular

epimorphisms.
o effective descent morphisms are effective IE-descent maps.

Theorem 4.2 A map in Top is global-descent if and only if it is a bijective-descent map.

Proof. It remains to prove each bijective-descent morphism p : F — B is a descent map. For a
directed open cover D of p~1(b), for some b € B, consider a space B’ with the same underlying set

as B and the coarsest topology containing the open sets of the space B and the sets of the form
{oyuB\p(V)

for all V € D, such that V Nnp~1(b) # 0.

The pullback p’ : E' — B’ of p along the map i : B — B, with i(z) = «, is a quotient. Indeed,
bijective-descent maps are bijective-regular epimorphisms because bijective maps descend along
surjections and p is surjective. Consequently, they are quotients because identities are bijective
maps.

The set p~1(b) is open in E’ because each # € p~1(b) belongs to

Vnp t({b}uB\p(V)) Cp~'(b),

for some V' € D, which is an open subset of E’. Hence {b} is open in B’ and so

{0y =Un({byuB\p(V))
for some U open in I and V € D. Therefore, b € U C p(V), i.e. b € int(p(V)). O

We remark that, since only the neighbourhoods of b in B’ are relevant in the proof 4.2, the
space defined in the proof of Theorem 1 in [5] can also be used to prove our claim.

From 4.1 and 4.2 one immediatly obtains the result below.

Corollary 4.3 For classes IE stable under pullback and containing the continuous bijections, IE-

descent maps are exactly the descent maps.

For IE the class of bijective maps, the subfibration given by IE(X) of the basic fibration given

by Top/X is a small category, because Top is well-powered. Since there is at most one morphism



between any two objects, IE(X) is, up to equivalence, the complete lattice of all topologies on
spaces X' for which 1: X’ — X is continuous.
If p is surjective, the functor p* : [E(B) — IE(F) has a left adjoint L defined on objects by

L(C,y) = (D, ),

where ¢ - ¢ is the (Reg Epi, Mono)-factorization of p-~. The counit € of the adjunction has as
components the maps induced by the diagonal property of the factorization: for each (A4, f) €
IE(B) the counit €4 is the unique map such that €, -¢ = 72 and [ -y =6, for
(D,0) = L(E xp A,71) . Then, since p* restricted to IE(B) is obviously faithful, we have that

p is a descent morphism < p*: E(B) — IE(E) is full

and this occurs if and only if IE(B) is a sublattice of IE(F).
From Theorem 1.1 in [6], already referred to at the beginning of Section 3, and the above

equivalence we conclude that
p* : Top/B — Top/E reflects isomorphisms < p* : I[E(B) — IE(F) is a full functor.

Also the effective descent maps can be characterized in terms of maps which are effective for

bijective-descent, as we show next.

Proposition 4.4 A map is effective for global-descent if and only if its pullback along an arbitrary

morphism is effective for bijective-descent.

Proof. Let IE denote the class of bijective maps. Then IE descends along surjections.

Since effective descent morphisms are effective for IE-descent, the necessity of the condition
follows from the fact that pullbacks of effective morphisms are effective descent morphisms.

Conversely, if the pullback of p along an arbitrary morphism is an IE-descent morphism, then
p itself is a descent map.

Let « denote the component of the unit of the WP - &F at (C,v;&) € Des(p). It is easy to
check that (C, a;() € Desg(mg), for ¢ =& f, where f: (K xB Q) xg C — E xp (' is the canonical

isomorphism as shown in the diagram

(ExB Q) xgqC
S
ExgC = C Q
R
ExpQ Q
EONRY
FE B

Since « is a bijective map and 7y : E Xp @@ — @ is effective for IE-descent, there exists some
(D, d) € IE(Q) such that ®32(D,§) is, up to isomorphism, (C, «; (). But the pullback of 73 along
d is the coequalizer of (m3,&), so d is an isomorphism. Consequently, « is an isomorphism and so

p is effective for global-descent. |

With very little change, the same proof works if we consider surjective maps instead of bijective

maps. In this case we can consider just pullbacks along subspace embeddings.



Proposition 4.5 A map is effective for global-descent morphism if and only if its pullbacks along

subspace embeddings are effective for surjective-descent.

Proof. Let now IE denote the class of surjective maps. Also in this case IE descends along surjective
maps.

If p is an effective descent map, its pullback along any morphism, being an effective descent
map, is effective for surjective-descent.

Now, for (C, ;&) € Des(p) we consider the diagram

7(C) x4 C
| f
EXBCZ\\\C ! Q
lo e
7(C) 4 A
fm
E B

where m-g is the (RegEpi, Mono)-factorization of v and A is the subspace of B such that p*(4,n) =
(v(C),m). If p’ is effective for surjective-descent, as in the proof of 4.4, we conclude that the upper
square is a pullback. Therefore, also the outer rectangle is a pullback and so p is effective for

descent. O

For arbitrary categories with pullbacks and classes IE satisfying suitable conditions, effective
IE-descent morphisms are stable under pullback along IE-morphisms. Indeed, if IE contains Iso(X),
is closed under composition and weakly left cancellable (i.e. ¢f,¢g € IE = f € IE), then the class of
effective IE-descent morphisms is stable under pullback along IE-morphisms.

This is Theorem 2.4 in [11], where, though clear in the proof that preceeds it, the restriction
to pullbacks along morphisms in IE, instead of along arbitrary morphisms, is not stated.

We are going to show that effective surjective-descent maps are stable under pullback along
arbitrary maps and so, by 4.5, that effective global-descent maps are exactly the maps that are
effective for IE-descent, for the class IE of surjective maps.

First we prove an auxiliary result.

Lemma 4.6 For the pullback (F'xpA, w1, 72) of the pair (p, f), let (C, ;&) be an object of Des(wy)
and D be the complement of 71 - v(C) in E. Then the bundle (C1] D, o), where o : C 11D — F
s the map induced by w1 - v and the subspace embedding of D in F, is equipped with descent data
with respect to p.

Proof. We define a function
(:Exp(C][D)—=C][D
by

e otherwise

C(Q@Z{ Ele,z) ifa el

and prove that it is continuous.



Identifying (E xp A) x4 C with F' xp C and denoting by 7¢ the coproduct injection, the

following

T2

ExpgC — C
1><Brgl ch
Exp (GHD)%GHD

K

L

is a commutative diagram in Top as we show next.

The morphism 1 X g 7¢ is an open embedding, because it is the pullback of the open embedding
7o along g, Also (-1 Xp710 =7-&.

For open subsets U of C,

which is open in EX xg (C'[I D).
By 3.2(i),
¢CYD)=Dxp (C][D)=ExpD

and for U =V N D, with V open in F,
CHU)=Uxp (CI] D)=V xp D,
which are open sets. Hence ( is a continuous function.

It is easy to check that { is a T-structure map and this completes the proof of the lemma. O

Proposition 4.7 Effective maps for surjective-descent are pullback stable.

Proof. With the notation of the previous lemma, let (C,v;&) € Desg(m3), where IE denotes the
class of surjective maps.

Identifying again (& xp A) x4 C' with £ xp C, we have that (C,~";§) € Des(p) for v/ = m17v.
Let g = coeq(wz2,£) and consider the diagram

Ech_é_.7T2 c ’ Q
|7 | h

EFxpg A i A
EERY

E B

For D = E\ m~(C),let o : C1] D — E be the morphism induced by 7" and by the subspace
embedding of D in E. By 4.6, (C1]D,o;¢) € Des(p), for the map ¢ defined there. Furthermore,
since o is surjective, (C'[[ D, 0;() belongs to Desg(p).

In the diagram



) q

1><BT01 17—0 , lg

Exp (GHD)%GHD LY
E
E B

where ¢’ = coeq(rs, (), the bottom square is a pullback, because p is effective for surjective-descent.

For each subset U of @
o(g”' (U) = ¢ (9(U))

and so ¢ is an open embedding because 7 is an open embedding and ¢’ is a quotient. Since open
embeddings are stable under pullback and weakly left cancellable, also the right-upper square is a
pullback.

Now, since 0 - 7 = 71 -y and 8’ - g = f - h, the outer rectangle in

q
C @
7| . | #
EFxpg A A
Y
E B

is a pullback. Since the bottom square is a pullback, the same holds for the upper square. Thus,

7o is effective for surjective-descent as claimed. O
Combining 4.7 and 4.5 we conclude the following;:

Theorem 4.8 Effective descent morphism in Top are exactly the maps which are effective for

surjection-descent.

Corollary 4.9 A map is effective for descent if and only if it is effective for IE-descent, for each
class IE stable under pullback which contains the surjective maps and descends along universal

quotients.

Proof. Under each one of the conditions, the morphism is a universal quotient.
Effective descent morphisms are effective IE-descent morphisms, because IE descends along uni-
versal quotients, and, by the same reason, effective IE-descent morphisms are effective for surjective-

descent. Now the conclusion follows from the previous result. |
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