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Abstract

The use of histograms for estimation of Radon-Nikodym derivatives is addressed. Some
results concerning the convergence have been established with no reference about the behaviour
of the error. In this paper we study the mean square convergence rate of this error. The
optimization of the partitions thus obtained recovers the n~2/3 rate known for some problems
that are included in this more general framework.

1 Introduction

Inference for point processes has been the object of a very wide literature, including problems such
as regression estimation, Palm distributions or density estimation, among others. This note intends
to completement results by Jacob, Oliveira [8, 10], where histograms were considered to estimate
Radon-Nikodym derivatives of point processes or, to be more accurate, compound point processes.
The general idea is to define two integrable point processes £ and n with mean v and p, respectively,
such that ¢ < v and estimate ‘;—5. This framework has been used in Ellis [5] for a particular choice
of £ and 7, in order to address density estimation, Jacob, Mendes Lopes [6], where instead of point
processes the authors considered absolutely continuous random measures, thus setting the problem
in terms of the random densities associated, Jacob, Oliveira [8, 9, 10] wit the same framework as
stated here. All the references quoted above suppose independent sampling and, with the exception
of [8] and [10] where histograms are considered, kernel estimates. Some work has been produced for
non independent sampling in this framework: Bensaid, Fabre, [1] considered strong mixing samples,
Ferrieux [4] and Roussas [11, 12, 13] considered associated sampling. All these extensions deal with
kernel estimates.

Besides the convergence in several modes of the estimators defined, some references address also
the mean squared convergence rate. Results are mentioned in Bensaid, Jacob [2] and Ferrieux [4],
both for kernel estimates. It is interesting to note that, although the setting is quite general, the
results derived recover the known rates in some classical estimation problems that are included in
this setting. The complements of the results of Jacob, Oliveira [8, 10] mentioned above will mean
that we seek the mean squared convergence rate for the histogram based on independent sampling.
Again, we will find the optimal convergence rates for the classical problems included in this setting.
The methods used here are quite close to those used by Bensaid, Jacob [2].
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2 Auxiliary results

Although in [8] and [10] the authors considered point processes on some metric space, here we
will take them to be on IRP, for some fixed p > 1. Some more generality could be achieved, but
then we would be limited on the subsequent analysis of the convergence rates. The main tool, as
expected, are Taylor expansions and these may be used in a more general setting than IR?, leading
to conditions somewhat weaker than the differentiability conditions we will use, but with no real
gain on the results. So, we choose to work in IRP, to gain readability and also because for the usual
examples this is quite satisfactory. We will suppose that y < v < A, the Lebesgue measure on IR?.

Just for sake of completeness we recall here how to reduce our setting to obtain some classical
estimation problems. We will denote by 14 the indicator function of the set A.

e (Ellis [5]) Density estimation: take { = v a.s., n = dx, where X is a random variable. Then
3—’; is the density of X with respect to v.

e Regression: suppose Y is an almost surely non negative real random variable and X a random
variable on IRP. Then, if £ = §x and n = Ydx, the conditional expectation E(Y|X = s) is a
version of %'

e Thinning: suppose { = Zfil 0x;, where the X,,, n € IN, are random variables on IR?,
an, n € IN, are Bernoulli variables, conditionally independent given the sequence X,, n € IN,
with parameters p(X,), and put n = Efil a;dx,. Then ‘é—ﬁ is the thinning function giving
the probability of suppressing each point.

e Marked point processes: let ( = Ei]\il d(x;,1;) be a point process on IR” x T such that the
margin £ = Ei]\il dx, is itself a point process. If B C T is measurable, choosing a,, = T(T3,),
and n = YN, o;dx,, we have

FC(A x B) = /A 2—5(3) F¢(ds x R),

thus %% is the marking function.

e Cluster point processes: suppose { = EZ-]L E;.V:il d(x;,v;;) 18 a point process on R? xIR?
such that ZZ-]L Z;V;I dy;,; is also a point process (for which it suffices that, for example,
N and the N,, n € IN, are almost surely finite). The process & = Ei]\; dx,; identifies the
cluster centers and the processes (x, = Zﬁvzil dy; ; identify the points. The distribution of  is
characterized by a markovian kernel of distributions (7, z € IRP) with means (u,, z € IRP)
such that, conditionally on ¢ = Zfil 0z, (Czyy---,Cs,) has distribution 7, ® -+ ® 7y, .
Defining n(A) = ((A x B), with B € B fixed, we have 3—5(:5) = pz(B) v-almost everywhere.

e Markovian shifts: this is a special case of the previous example, when N; = 1 a.s., 1 > 1.
Looking at the previous example, the conclusion is that the random vector (Y7,...,Y},) has
distribution pz, ®- - -® iz, (we replaced the double index of the Y variables by a single one as,
for each i fixed, there is only one such variable). Then it would follow that 3—5(:5) = uz(B) =
P(Y € B|X =x).

So, as illustrated by the examples above, we will be concerned with the estimation of the
Radon-Nikodym derivative %’5.

To define the histogram we introduce a sequence of partitions Iy, & € IN, of a fixed compact
set B, verifying



(P1) for each k € IN, I}, C B;

(P2) for each k € IN, IIj, is finite;

(P3) sup{diam(I): I € Iy} — 0;

(P4) for each k € N and I € Iy, v(I) > 0;

(P5) for each k € IN, hy, = A(I), I € Il and limg_, o, hy = 0.

Given a point s € B we denote by Ij(s) the unique set of II;, containing the point s and define,
for each k£ € IN,

o) = ¥ 2y - 1)

= V(Ti(s))

It is well known that if ¢ is a version of ‘é—ﬁ continuous on B, then

sup |gi(s) — ¢(s)| — 0.
sEB

Given ((¢1,m1),...,(én,mn)) an independent sample of (¢,7) and defining &, = % i &, T, =

% 1 Mi, the histogram is

M) () — Talls(s))

#nls) = &0 (1(5))

Iell,, gn( )

(we define ¢, (s) as zero whenever the denominator vanishes, as usual), where the dependence of k
on n is to be precised to obtain the convergence.

As we are not working with embedded partitions we need the following assumptions, as in
Jacob, Oliveira [10]. A measure m on IRP xIR? verifies condition (M) with respect to the measure
v on R? if m = my 4+ my where ms is a measure on A, the diagonal of IR” xIR? and m is a measure
on RPXIRP \ A, verifying

dmq
dv®v

(M1) m; < v ® v and there exists a version 7; of the Radon-Nikodym derivative which is

bounded;

(M2) my < v*, where v* is the measure on A defined by lifting v, that is, such that v*(A*) = v(A)
with A* = {(s,s) : s € A}, and there exits a continuously differentiable version 7y, of the
Radon-Nikodym derivative ‘333.

In [10] the function 2 was only supposed continuous, as only the convergence of the estimator
was considered. The differentiability will allow the use of the Taylor expansion that serve as a tool
for establishing the convergence rates.

The following is essential for the analysis of the estimator.

Theorem 2.1 (Jacob, Oliveira [10]) Suppose m is a measure on RP xIRP that verifies condition
(M) with respect to v and the sequence of partitions Iy, k € IN, verifies (P1)-(P5). Then

Z m(I x I)

o0 T;(s) — y2(s,8)

Il

uniformly on B.



Then, as shown in [10] if
nhy, — +o00 (1)

and E£E®E, En®n verify (M), ¢, (s) converges in probability to ¢(s). If further, there exists R > 0,
such that, for every I C B and k > 2,

E¢H(I) < R*2RIEE(D)

En*(I) < RF 2k En*(I)

the convergence is uniformly almost complete.
When supposing E¢; ® ¢, verifies (M), with (1, (s € {¢,n}, we introduce measures that will be

denoted by mCI’<2 and mgl’@ respectively, with the corresponding densities denoted by 7@,@ nd
C1,C2
Y2

Let f and g be versions of fii and & 7K, respectively. Then, if B ® £, En ® n verify (M) and (1)
is satisfied,

Zfz n(s)) — f(s)

gn(s) = g9(s)

nh, =

As we have ¢, (s) i) and p(s) = ?((z)), we will look ate the convergences g,(s) — g(s) and

fn(s) — f(s).
To finish with the auxiliary results, we quote a lemma enabling the separation of variables in
the quotient .

Lemma 2.2 (Jacob, Niéré [7]) Let X and Y be non-negative integrable random variables then,
for € > 0 small enough,

(280> gy > 1290 oy 1 - 5250

Y E(®Y) E(X) 4E(X) E(Y) 4E(X)
3 The convergence rates

E(Y)

According to the final lemma of the preceding section we will separate the variables, so we start
with the convergence rates for the histograms f,, g, and also for their product.

Theorem 3.1 Let f and g be versions of fii—g\ and %, respectively, continuously differentiable on
the compact set B. Suppose the sequence of partitions Iy, k € IN, verifies (P1)-(P5), the moment
measures EE ® &, En @ n both verify (M) and (1) holds. Then

&€ P
C 2= 2239 L omzy g 9F () 9f >, 1
B )~ 00 = 2w 00) S FL g o+
v3" (s, 5) I 1
E(gn(s) — g(s))* = ZnT +O0(h}) gl:l G—%(S)a—xl(s) +o(hy + n—hn)
&n p
— (s §) — a(s))] = 12 (s, 5) 2 3f8@ o(h2 1
B = ) 0n(5) = )] = P08+ 00 35 G006+ o0k + )



Proof : As usual decompose E(f,(s) — f(s))? = Var(fn(s)) + (Efa(s) — f(s))?, and write

1 1
Efu(s) = .—v(In(s)) = .— | [(t) A(dt)
hn hn In
(we drop the mention to the point s on the set I,,(s) whenever confusion does not arise). Now, as
f is continuously differentiable, we may write, with ¢t = (¢1,...,1p),
P
Z $)(t — sk) + O(l t =5 |°),
k=1
thus
1 Pof 1 9
Efp(s) — :—/ 9T () (ty — Adt+—/0t— A(dt
R0 =56 = g [ GO N+ g [0l 1) A
— ot Y. 2o+ o)
" =1 a(IIk

as || t — s || < hyp and A(I,) = hy. On the other hand

Var(fa(s)) = > BE(5) — — BE(Ty).

Writing E€2(1,,) = EE @ (I, x I,) = m$S(I, x I,) +m§S(I7), it follows that

mi”(In X In) _ 1 'yf’é dA® X < sup ‘7§’§(:1:,:1:)‘ AI,) — 0

hn B hn I, %Iy, z€B
and
676 I* 1
mala) L 58 X
hn hn I

1 1 u
= o [ e v - [ 3 s+ektk—sk>>(tk—skw(dt>
hn Jr; hn Jrx

n k=1

£ 075 1
= 15°(s,9) + 3 5 2(5)0(hn) + Ho(——),
k=1 Niin
so, according to (1),
my™ () _ 05558 | 1
nh2 nhy, nhy’

The remaining term #EQS (In) = %(%:))2 is clearly an O(2), so, gathering all these approx-
imations, we get the result announced. The other two approximations are proved analogously.
[ |

It is possible to be more precise about the factor O(h2) that multiplies the sum of derivatives if

we have a more accurate description of the sets involved. Suppose that I,, = szl (an s On e+ P k]
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with h, = hp1 - hyp, then looking back to the development of Efy,(s) — f(s) we would find the
integral

1 an,1+hn,1 Gn,p+hn,p p af P h2 kT 2hn k(sk — ap k)
b hnp /an,l /a =1 0%k (5) {01 = o) i 2k

n,p

2

To look at the convergence rate of E(p,(s) — ¢(s))” we will decompose, as in Bosq, Cheze [3],

2 S
Blgn(s) — o(s))? = £ B (£ () — £(s))+

70s)
b B — 9(5)” = 22 Bl (g (s) — () (Fuls) — Fl)]
f2(s) 12(s) o
1
B E) — PN — 1)~
o Bl (6) = (Do) = £ (6) = 9051

Thus, when developing the last two terms, we will need the convergence rate of E(f,,(s) — f(s))?.

Lemma 3.2 Let f be a version of ?1_5 continuously differentiable on B. Suppose the sequence of
partitions Iy, k € IN, verifies (P1)-(P5), the moment measure E®& verify (M), that there exists
R > 0 such that, for every I C B and k = 3,4,

E¢*(I) < REE*(I), En*(I) < REp*(I). (3)

Finally, if (1) holds,

Proof : We develop

E(fa(s) — f(s))* =
= E(fn(s) — Efn(5))" + 4B(fn(s) — Efa(s))*(Efa(s) — f(s)) +

+6E(fn(s) — Efu(5))*(Efu(s) — f(5))* + (Efu(s) — f(s))*

and look at each term. From the proof of theorem 3.1,

4
(Efu(s) = f(s))" = <0(hn) > o (s) + 0(’@%) = O(hy)

= O
and 2
B(fa(s) = F)A(ELs) = F(3)) = O()



Developing now the third order moment, we find

BUu(s) = B (o))" = B T) = B T) + ()

The last term is an O(n—12), while the others, using (3)

Be(L) R (mﬁ’ﬁ(fnxm +rn%’%;)) oL

E¢ (1)
<R
by, b,

n2h3  — 7 n2h3  n2h2

n2h3 ~ n2h, hn by,

B (L)v(In) _ 1 <m§’5(1nxfn>+m§’fa;>>v(m:O( L

so the sum behaves like O(— WTRT ). After multiplying by Ef,,(s) — f(s) we find then an O(-2 nThT ). As

for the remaining term, we again develop
E(fu(s) —Efa(s))" =

1 4 6
= ngh%E#(In) - n3h%E€3(In)u(In) o BE (1) () = —5 v () +

n

3(n—1)
n3h}

+ E *(§(In) — v(In))*.
Applying again (3) and reproducing the same arguments as above, it is easily checked that the sum
of the first four terms is an O(— hg) The last term, again after development and using (M) is

easily found to be an O(n2h2 ). So as (1) holds we finally get E(f,,(s) — Ef,(s))* = O(n2h2 ), which
after summing with the convergence rates of the other terms proves the lemma. B
We are now ready to study E(p,(s) — ¢(s))? using the decomposition (2).

Theorem 3.3 Let f and g be versions of g5 v and Z)\, respectively, continuously differentiable on
B. Suppose the sequence of partitions Hk, k € IN, wverifies (P1)-(P5), the moment measures
E¢ ® £,En ® n both verify (M) and (3) hold. Further, suppose that there exist real numbers
B> a >0 such that

nhiaﬁﬁﬂ i @
and that
E((toi(s)]l{wn(s)>h;a}) — 0, (5)
then
2 _ O(h2 P f L 2
Pl Z = T ( 2:: oy _,CZ )
+m (£2(5)98 (5, 5) — 20(s)2E (5. ) +7am, (s, 5)) +

1/2 1 5/4

1
+—+ =

2
+o(hy, + 1/2 whe T T n3/4h711/4)




Proof : We will go through each term in (2) to derive the convenient rates to each one.
The first three are easily treated as a consequence of the rates derived in the proof on theorem
(3.1). In fact, according to that proof, it remains to verify that the two last terms in (2) are an

1/2 5/4 . _ .
o(h2 + %‘1‘/—2 ﬁ + %?/7 + —-2L 7). For this put g, (s) = % and write

n3/4h

El(wn(s) = ¢* () (fals) = £(5))°] =

= E[(¢5(5) = Gn(s) (fuls) = £(5))°] + (@ (s) — ©*(s))E(fn(s) — f(5))*.

Obviously @2 (s) — ¢(s), and, as seen in the proof of theorem 3.1, E(f,,(s)— f(s))? = O(h%+ﬁ),

SO
1

(Z2(5) = (5)BUa(s) — F(5))* = oh2 + ——).
Let £, = h? — 0, o, = h;® — +00, and write

E[(#7,(s) = @ () (fuls) = f(5))*] <

< (on + @n(s))E [|<Pn(3) — @n(s)| (fu(s) — f(s))Q]I{Lpn(s)San}I[{|Lpn(s)_$n(s)|Sg}:| +

(6)
+(an + Pn(s)E [|‘Pn(3) — on(8)] (fnls) — f(s))2]I{Lpn(s)§an}]I{|Lpn(s),gn(s)|>g}} +
+E[(#7(5) = @ () (fa(5) = F(5))* T, (s)>an)]-
The first term of this expansion is bounded above by
(an + Bn(5)enElfals) — £(5))” = olh + ),
according to the proof of theorem 3.1, as a,e, — 0.
The second term in (6) is bounded above by
(e + Buls)E [(Fals) = £ Ly (005 <
(7)
< (an + @n(9)) B2 (fals) = f(5))' P2 (lon(s) = Bnls)] > e) -
According to lemma 2.2, we have
P (ion(s) ~ Ga(s)] > ) < P (loa(s) ~ Boals)] > ZBfu(5)) +P (Ifn(S) ~Efo)] > 2T ((,j))> -

We shall look at the first term arising from this inequality, the other being treated analogously.

(@n + u(s)PEV2(Fals) = F(5) P2 (1ga(s) = Ba ()] > FES(5)) <

< (an + Gn(5)2EY2(fu(s) — f(5))" (16E(gn(3) _ Egn(s))2>l/2 )

ez B2 fn(s)
/2
B o, 4 ¥ 1 1
= (A + Pals) 6nEfn(s)O(h" tant nhn) (nl/Qh}/Q)



according to the proof of theorem 3.1 and lemma 3.2. As ¢, (s) — ¢(s) and Ef,(s) — f(s), the
asymptotic behaviour is given by

2 1/2
ay, 9 n 1 1
- O(hz + T nhn)o(nl/zh}/?)'

The choice of the sequences «;, and ¢, acerts that

2
o} 1
GOl ) 0,
€n n1/2hn
1/2
so the second term in (6) is an o(h2 + Z’l’/z + ﬁ)

We look now at the third term in (6). Applying Holder’s inequality, this term is bounded above
by

BY2(fn(5) = 1) BY2 (6 () g (1500 ) + BY2(fnls) = F()'B(5) P2 (pu(s) > o)

1/2
and this is an o(h2 + % + ﬁ) according to (5).
To finish our proof, we still have to treat that last term arising in (2). We first apply Holder’s
inequality,

E[(on(s) = ¢(5))(fn(s) = £(s))(gn(s) —g(s))] <

< B2 [(pals) = 0(5))* (fa(s) = (5))?] B2(gn(s) — g(s))*.
The first factor is further bounded by
22BY2 [(n(s) = Bn(5))? (Fa(s) = £())%] + 22EV2 [(@n(5) = 0(5))* (fuls) = F())?]

the analysis of which proceeds as the one made for the second term from (2), showing a convergence

te of oY/2(h2 + M7 4+ L) The factor E 2 = 0L + 12 finally h
rate of o'/(hy, + —l—W) e ac/or (gn(s) —9(s))* = O + hiy), so we finally have a
2 h? 1, Kt 1
convergence rate o(hn+m+—+m+w

nhn
The optimization of A, indicates one should choose h,, = ¢n™"/°, whether one bases this opti-
mization on the convergence rate given in lemma 3.2 or in theorem 3.3. In this case, we get

E(fa(s) = f(5))* = O(n*/?)
E(gn(s) — g(5))* = O(n"?/?)
E[(fu(s) = f(5))(gn(s) = g(s))] = O(n~>/?)
E(fu(s) = f(5))* = O(n~*/?)

E(n(s) = ¢(s))* = O(n?/?),

thus finding the n=2/3 convergence rate which is well known for density or regression estimation,
for example, although (5) means some restrictions in each case. Also, theorem 3.3 is applicable
choosing, for instance, § = 2« < 1/2.

), which concludes the proof. B
1/3
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