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Abstract

The use of histograms for estimation of Radon�Nikodym derivatives is addressed� Some

results concerning the convergence have been established with no reference about the behaviour

of the error� In this paper we study the mean square convergence rate of this error� The

optimization of the partitions thus obtained recovers the n���� rate known for some problems

that are included in this more general framework�

� Introduction

Inference for point processes has been the object of a very wide literature� including problems such
as regression estimation� Palm distributions or density estimation� among others� This note intends
to completement results by Jacob� Oliveira ��� ���� where histograms were considered to estimate
Radon	Nikodym derivatives of point processes or� to be more accurate� compound point processes�
The general idea is to de
ne two integrable point processes � and � with mean � and �� respectively�
such that �� � and estimate d�

d� � This framework has been used in Ellis ��� for a particular choice
of � and �� in order to address density estimation� Jacob� Mendes Lopes ���� where instead of point
processes the authors considered absolutely continuous random measures� thus setting the problem
in terms of the random densities associated� Jacob� Oliveira ��� 
� ��� wit the same framework as
stated here� All the references quoted above suppose independent sampling and� with the exception
of ��� and ���� where histograms are considered� kernel estimates� Some work has been produced for
non independent sampling in this framework� Bensa��d� Fabre� ��� considered strong mixing samples�
Ferrieux ��� and Roussas ���� ��� ��� considered associated sampling� All these extensions deal with
kernel estimates�

Besides the convergence in several modes of the estimators de
ned� some references address also
the mean squared convergence rate� Results are mentioned in Bensa��d� Jacob ��� and Ferrieux ����
both for kernel estimates� It is interesting to note that� although the setting is quite general� the
results derived recover the known rates in some classical estimation problems that are included in
this setting� The complements of the results of Jacob� Oliveira ��� ��� mentioned above will mean
that we seek the mean squared convergence rate for the histogram based on independent sampling�
Again� we will 
nd the optimal convergence rates for the classical problems included in this setting�
The methods used here are quite close to those used by Bensa��d� Jacob ����
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� Auxiliary results

Although in ��� and ���� the authors considered point processes on some metric space� here we
will take them to be on IRp� for some 
xed p � �� Some more generality could be achieved� but
then we would be limited on the subsequent analysis of the convergence rates� The main tool� as
expected� are Taylor expansions and these may be used in a more general setting than IRp� leading
to conditions somewhat weaker than the di�erentiability conditions we will use� but with no real
gain on the results� So� we choose to work in IRp� to gain readability and also because for the usual
examples this is quite satisfactory� We will suppose that �� � � �� the Lebesgue measure on IRp�

Just for sake of completeness we recall here how to reduce our setting to obtain some classical
estimation problems� We will denote by �IA the indicator function of the set A�

� �Ellis ���� Density estimation� take � � � a�s�� � � �X � where X is a random variable� Then
d�
d� is the density of X with respect to ��

� Regression� suppose Y is an almost surely non negative real random variable and X a random
variable on IRp� Then� if � � �X and � � Y �X � the conditional expectation E�Y jX � s� is a
version of d�

d� �

� Thinning� suppose � �
PN

i�� �Xi � where the Xn� n � IN� are random variables on IRp�
�n� n � IN� are Bernoulli variables� conditionally independent given the sequence Xn� n � IN�
with parameters p�Xn�� and put � �

PN
i�� �i�Xi � Then d�

d� is the thinning function giving
the probability of suppressing each point�

� Marked point processes� let 	 �
PN

i�� ��Xi�Ti� be a point process on IRp � T such that the

margin � �
PN

i�� �Xi is itself a point process� If B � T is measurable� choosing �n � �IB�Tn��
and � �

PN
i�� �i�Xi � we have

E	�A�B� �

Z
A

d�

d�
�s� E	�ds� IR��

thus d�
d� is the marking function�

� Cluster point processes� suppose 	 �
PN

i��

PNi
j�� ��Xi�Yi�j� is a point process on IRp�IRp

such that
PN

i��

PNi
j�� �Yi�j is also a point process �for which it su�ces that� for example�

N and the Nn� n � IN� are almost surely 
nite�� The process � �
PN

i�� �Xi identi
es the
cluster centers and the processes 	Xi �

PNi
i�� �Yi�j identify the points� The distribution of 	 is

characterized by a markovian kernel of distributions �
x� x � IRp� with means ��x� x � IRp�
such that� conditionally on � �

PN
i�� �xi � �	x� � � � � � 	xn� has distribution 
x� � � � � � 
xn �

De
ning ��A� � 	�A�B�� with B � B 
xed� we have d�
d� �x� � �x�B� �	almost everywhere�

� Markovian shifts� this is a special case of the previous example� when Ni � � a�s�� i � ��
Looking at the previous example� the conclusion is that the random vector �Y�� � � � � Yn� has
distribution �x��� � ���xn �we replaced the double index of the Y variables by a single one as�
for each i 
xed� there is only one such variable�� Then it would follow that d�

d� �x� � �x�B� �
P�Y � BjX � x��

So� as illustrated by the examples above� we will be concerned with the estimation of the
Radon	Nikodym derivative d�

d� �
To de
ne the histogram we introduce a sequence of partitions �k� k � IN� of a 
xed compact

set B� verifying

�



�P�� for each k � IN� �k � B�

�P�� for each k � IN� �k is 
nite�

�P�� sup fdiam�I� � I � �kg 	
 ��

�P�� for each k � IN and I � �k� ��I� � ��

�P�� for each k � IN� hk � ��I�� I � �k and limk��� hk � ��

Given a point s � B we denote by Ik�s� the unique set of �k containing the point s and de
ne�
for each k � IN�

gk�s� �
X
I��k

��I�

��I�
�II�s� �

��Ik�s��

��Ik�s��
�

It is well known that if 
 is a version of d�
d� continuous on B� then

sup
s�B

jgk�s�	 
�s�j 	
 ��

Given ����� ���� � � � � ��n� �n�� an independent sample of ��� �� and de
ning �n � �
n

Pn
i�� �i� �n �

�
n

Pn
i�� �i� the histogram is


n�s� �
X
I��k

�n�I�

�n�I�
�II�s� �

�n�Ik�s��

�n�Ik�s��

�we de
ne 
n�s� as zero whenever the denominator vanishes� as usual�� where the dependence of k
on n is to be precised to obtain the convergence�

As we are not working with embedded partitions we need the following assumptions� as in
Jacob� Oliveira ����� A measure m on IRp�IRp veri
es condition �M� with respect to the measure
� on IRp if m � m��m� where m� is a measure on �� the diagonal of IRp�IRp and m� is a measure
on IRp�IRp n�� verifying

�M�� m� � � � � and there exists a version �� of the Radon	Nikodym derivative dm�

d��� which is
bounded�

�M�� m� � ��� where �� is the measure on � de
ned by lifting �� that is� such that ���A�� � ��A�
with A� � f�s� s� � s � Ag� and there exits a continuously di�erentiable version �� of the
Radon	Nikodym derivative dm�

d�� �

In ���� the function �� was only supposed continuous� as only the convergence of the estimator
was considered� The di�erentiability will allow the use of the Taylor expansion that serve as a tool
for establishing the convergence rates�

The following is essential for the analysis of the estimator�

Theorem ��� �Jacob	 Oliveira 
���� Suppose m is a measure on IRp�IRp that veri�es condition

�M� with respect to � and the sequence of partitions �k� k � IN� veri�es �P����P��� Then

X
I��k

m�I � I�

��I�
�II�s� 	
 ���s� s�

uniformly on B�

�



Then� as shown in ���� if
nhn 	
 �� ���

and E���� E��� verify �M�� 
n�s� converges in probability to 
�s�� If further� there exists R � ��
such that� for every I � B and k � ��

E�k�I� � Rk��k� E���I�

E�k�I� � Rk��k� E���I�

the convergence is uniformly almost complete�
When supposing E	� � 	� veri
es �M�� with 	�� 	� � f�� �g� we introduce measures that will be

denoted by m�����
� and m�����

� � respectively� with the corresponding densities denoted by ������� and

������� �
Let f and g be versions of d�

d� and d�
d� � respectively� Then� if E� � �� E� � � verify �M� and ���

is satis
ed�

fn�s� �
�

nhn

nX
i��

�i�In�s�� 	
 f�s�

gn�s� �
�

nhn

nX
i��

�i�In�s�� 	
 g�s�

As we have 
n�s� � gn�s�
fn�s�

and 
�s� � g�s�
f�s� � we will look ate the convergences gn�s� 	
 g�s� and

fn�s� 	
 f�s��
To 
nish with the auxiliary results� we quote a lemma enabling the separation of variables in

the quotient 
n�

Lemma ��� �Jacob	 Ni
er
e 
��� Let X and Y be non�negative integrable random variables then�
for � � � small enough������XY 	

E�X�

E�Y �

���� � �

�
�

����� X

E�X�
	 �

���� � �

�

E�Y �

E�X�

�



����� Y

E�Y �
	 �

���� � �

�

E�Y �

E�X�

�
�

� The convergence rates

According to the 
nal lemma of the preceding section we will separate the variables� so we start
with the convergence rates for the histograms fn� gn and also for their product�

Theorem ��� Let f and g be versions of d�
d� and d�

d� � respectively� continuously di�erentiable on

the compact set B� Suppose the sequence of partitions �k� k � IN� veri�es �P����P��� the moment

measures E� � �� E� � � both verify �M� and ��	 holds� Then

E�fn�s�	 f�s��� �
����� �s� s�

nhn
�O�h�n�

pX
k�l��

�f

�xk
�s�

�f

�xl
�s� � o�h�n �

�

nhn
�

E�gn�s�	 g�s��� �
����� �s� s�

nhn
�O�h�n�

pX
k�l��

�g

�xk
�s�

�g

�xl
�s� � o�h�n �

�

nhn
�

E��fn�s�	 f�s���gn�s�	 g�s��� �
����� �s� s�

nhn
�O�h�n�

pX
k�l��

�f

�xk
�s�

�g

�xl
�s� � o�h�n �

�

nhn
�

�



Proof � As usual decompose E�fn�s�	 f�s��� � Var�fn�s�� � �Efn�s�	 f�s���� and write

Efn�s� �
�

hn
��In�s�� �

�

hn

Z
In

f�t� ��dt�

�we drop the mention to the point s on the set In�s� whenever confusion does not arise�� Now� as
f is continuously di�erentiable� we may write� with t � �t�� � � � � tp��

f�t� � f�s� �
pX

k��

�f

�xk
�s��tk 	 sk� �O�k t	 s k���

thus

Efn�s�	 f�s� �
�

hn

Z
In

pX
k��

�f

�xk
�s��tk 	 sk� ��dt� �

�

hn

Z
In

O�k t	 s k�� ��dt�

� O�hn�
pX

k��

�f

�xk
�s� �O�h�n�

as k t	 s k � hn and ��In� � hn� On the other hand

Var�fn�s�� �
�

nh�n
E���In�	

�

nh�n
E���In��

Writing E���In� � E� � ��In � In� � m���
� �In � In� �m���

� �I�n�� it follows that

m���
� �In � In�

hn
�

�

hn

Z
In�In

����� d�� � � sup
x�B

�������� �x� x�
��� ��In� 	
 �

and

m���
� �I�n�

hn
�

�

hn

Z
I�n

����� �t� t� ���dt�

�
�

hn

Z
I�n

����� �s� s� ���dt� �
�

hn

Z
I�n

pX
k��

������
�xk

�s� �k�tk 	 sk���tk 	 sk� �
��dt�

� ����� �s� s� �
pX

k��

������
�xk

�s�O�hn� � �o�
�

nhn
��

so� according to ����

m��x�
� �I�n�

nh�n
�

����� �s� s�

nhn
� o�

�

nhn
��

The remaining term �
nh�n

E���In� � �
n�

��In�
hn

�� is clearly an O� �n�� so� gathering all these approx	

imations� we get the result announced� The other two approximations are proved analogously�

It is possible to be more precise about the factor O�h�n� that multiplies the sum of derivatives if
we have a more accurate description of the sets involved� Suppose that In �

Qp
k�� �an�k� an�k�hn�k�

�



with hn � hn�� � � � hn�p� then looking back to the development of Efn�s� 	 f�s� we would 
nd the
integral

�

hn�� � � � hn�p

Z an���hn��

an��
� � �

Z an�p�hn�p

an�p

pX
k��

�f

�xk
�s��tk 	 sk� dt� � � � dtp �

pX
k��

h�n�k 	 �hn�k�sk 	 an�k�

�hn�k
�

To look at the convergence rate of E�
n�s�	 
�s��� we will decompose� as in Bosq� Cheze ����

E�
n�s�	 
�s��� �

��s�

f��s�
E�fn�s�	 f�s����

�
�

f��s�
E�gn�s�	 g�s��� 	

�
�s�

f��s�
E��gn�s�	 g�s���fn�s�	 f�s����

�
�

f��s�
E��
�n�s�	 
��s���fn�s�	 f�s����	

	
�

f��s�
E��
n�s�	 
�s���fn�s�	 f�s���gn�s�	 g�s����

���

Thus� when developing the last two terms� we will need the convergence rate of E�fn�s�	 f�s����

Lemma ��� Let f be a version of d�
d� continuously di�erentiable on B� Suppose the sequence of

partitions �k� k � IN� veri�es �P����P��� the moment measure E��� verify �M�� that there exists

R � � such that� for every I � B and k � �� ��

E�k�I� � RE���I�� E�k�I� � RE���I�� ���

Finally� if ��	 holds�

E�fn�s�	 f�s��� � O

�
h�n �

hn
n

�
�

n�h�n

�
�

Proof � We develop

E�fn�s�	 f�s��� �

� E�fn�s�	 Efn�s��
� � �E�fn�s�	 Efn�s��

	�Efn�s�	 f�s�� �

��E�fn�s�	 Efn�s��
��Efn�s�	 f�s��� � �Efn�s�	 f�s���

and look at each term� From the proof of theorem ����

�Efn�s�	 f�s��� �

�
O�hn�

pX
k��

�f

�xk
�s� �O�h�n

��

� O�h�n�

and

E�fn�s�	 f�s����Efn�s�	 f�s��� � O�
h�n
nhn

��

�



Developing now the third order moment� we 
nd

E�fn�s�	 Efn�s��
	 �

�

n�h	n
E���In�	

�

n�h	n
E���In���In� �

�

n�h	n
�	�In��

The last term is an O� �
n�
�� while the others� using ���

E�	�In�

n�h	n
� R

E���In�

n�h	n
�

R

n�h�n

�
m���

� �In � In�

hn
�
m���
� �I�n�

hn

�
� O�

�

n�h�n
�

E���In���In�

n�h	n
�

�

n�hn

�
m���

� �In � In�

hn
�
m���

� �I�n�

hn

�
��In�

hn
� O�

�

n�hn
��

so the sum behaves like O� �
n�h�n

�� After multiplying by Efn�s�	 f�s� we 
nd then an O� hn
n�h�n

�� As

for the remaining term� we again develop

E�fn�s�	 Efn�s��
� �

�
�

n	h�n
E���In�	

�

n	h�n
E�	�In���In� �

�

nnh�n
E���In��

��In�	
�

n	h�n
���In� �

�
��n	 ��

n	h�n
E ����In�	 ��In��

��

Applying again ��� and reproducing the same arguments as above� it is easily checked that the sum
of the 
rst four terms is an O� �

n�h�n
�� The last term� again after development and using �M� is

easily found to be an O� �
n�h�n

�� So as ��� holds we 
nally get E�fn�s�	Efn�s��
� � O� �

n�h�n
�� which

after summing with the convergence rates of the other terms proves the lemma�

We are now ready to study E�
n�s�	 
�s��� using the decomposition ����

Theorem ��� Let f and g be versions of d�
d� and d�

d� � respectively� continuously di�erentiable on

B� Suppose the sequence of partitions �k� k � IN� veri�es �P����P��� the moment measures

E� � ��E� � � both verify �M� and �
	 hold� Further� suppose that there exist real numbers

� � � � � such that

nh�	��
��n 	
 �� ���

and that

E�
�n�s��If�n�s��h��
n g� 	
 �� ���

then

E�
n�s�	 
�s��� �
O�h�n�

f��s�

�

�s�

pX
k��

�f

�xk
�s�	

pX
k��

�g

�xk
�s�

��

�

�
�

nhnf��s�

	

��s������ �s� s�	 �
�s����� ��s� s� � ���� ��s� s�



�

�o�h�n �
h
�
�
n

n�
�
�

�

nhn
�

h


�
n

n�
�
�

�

n	
�h
�
�
n

�

�



Proof � We will go through each term in ��� to derive the convenient rates to each one�
The 
rst three are easily treated as a consequence of the rates derived in the proof on theorem
������ In fact� according to that proof� it remains to verify that the two last terms in ��� are an

o�h�n � h
���
n

n���
� �

nhn
� h

���
n

n���
� �

n���h
���
n

�� For this put e
n�s� � Egn�s�
Efn�s�

and write

E��
�n�s�	 
��s���fn�s�	 f�s���� �

� E��
�n�s�	 e
�n�s���fn�s�	 f�s���� � � e
�n�s�	 
��s��E�fn�s�	 f�s����

Obviously e
�n�s� 	
 
�s�� and� as seen in the proof of theorem ���� E�fn�s�	f�s��� � O�h�n�
�

nhn
��

so

� e
�n�s�	 
��s��E�fn�s�	 f�s��� � o�h�n �
�

nhn
��

Let �n � h
n 	
 �� �n � h�	n 	
 ��� and write

E��
�n�s�	 e
�n�s���fn�s�	 f�s���� �

� ��n � e
n�s��E hj
n�s�	 e
n�s�j �fn�s�	 f�s����If�n�s��	ng�Ifj�n�s��e�n�s�j��gi�
���

���n � e
n�s��E hj
n�s�	 e
n�s�j �fn�s�	 f�s����If�n�s��	ng�Ifj�n�s��e�n�s�j��gi�
�E��
�n�s�	 e
�n�s���fn�s�	 f�s����If�n�s��	ng��

The 
rst term of this expansion is bounded above by

��n � e
n�s���nE�fn�s�	 f�s��� � o�h�n �
�

nhn
��

according to the proof of theorem ���� as �n�n 	
 ��
The second term in ��� is bounded above by

��n � e
n�s���E h�fn�s�	 f�s����Ifj�n�s��e�n�s�j��gi �
���

� ��n � e
n�s���E�
��fn�s�	 f�s��� P�
� �j
n�s�	 e
n�s�j � �� �

According to lemma ���� we have

P �j
n�s�	 e
n�s�j � �� � P

�
jgn�s�	 Egn�s�j �

�n
�
Efn�s�

�
�P

�
jfn�s�	 Efn�s�j �

�n
�

E�fn�s�

Egn�s�

�
�

We shall look at the 
rst term arising from this inequality� the other being treated analogously�

��n � e
n�s���E�
��fn�s�	 f�s��� P�
�
�
jgn�s�	 Egn�s�j �

�n
�
Efn�s�

�
�

� ��n � e
n�s���E�
��fn�s�	 f�s���
�
��E�gn�s�	 Egn�s��

�

��nE
�fn�s�

��
�
�

� ��n � e
n�s��� �

�nEfn�s�
O�h�n �

h
�
�
n

n�
�
�

�

nhn
�O�

�

n�
�h
�
�
n

�

�



according to the proof of theorem ��� and lemma ���� As e
n�s� 	
 
�s� and Efn�s� 	
 f�s�� the
asymptotic behaviour is given by

��n
�n

O�h�n �
h
�
�
n

n�
�
�

�

nhn
�O�

�

n�
�h
�
�
n

��

The choice of the sequences �n and �n acerts that

��n
�n

O�
�

n�
�h
�
�
n

� 	
 ��

so the second term in ��� is an o�h�n � h
���
n

n���
� �

nhn
��

We look now at the third term in ���� Applying H�older�s inequality� this term is bounded above
by

E�
��fn�s�	 f�s���E�
�
	

�n�s��If�n�s��	ng



� E�
��fn�s�	 f�s��� e
�n�s� P�
� �
n�s� � �n�

and this is an o�h�n � h
���
n

n���
� �

nhn
� according to ����

To 
nish our proof� we still have to treat that last term arising in ���� We 
rst apply H�older�s
inequality�
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The 
rst factor is further bounded by
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the analysis of which proceeds as the one made for the second term from ���� showing a convergence

rate of o�
��h�n � h
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� h�n�� so we 
nally have a

convergence rate o�h�n � h
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�� which concludes the proof�

The optimization of hn indicates one should choose hn � cn��
	� whether one bases this opti	
mization on the convergence rate given in lemma ��� or in theorem ���� In this case� we get
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thus 
nding the n��
	 convergence rate which is well known for density or regression estimation�
for example� although ��� means some restrictions in each case� Also� theorem ��� is applicable
choosing� for instance� � � �� � ����
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