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Weakly Schreier extensions for general
algebras

Graham Manuell and Nelson Martins-Ferreira

Abstract. Weakly Schreier split extensions are a reasonably large, yet well-
understood class of monoid extensions, which generalise some aspects of
split extensions of groups. This short note provides a way to define and
study similar classes of split extensions in general algebraic structures
(parameterised by a term θ). These generalise weakly Schreier extensions
of monoids, as well as general extensions of semi-abelian varieties (using
the θ appearing in their syntactic characterisation). Restricting again to
the case of monoids, a different choice of θ leads to a new class of monoid
extensions, more general than the weakly Schreier split extensions.
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1. Introduction

In the category of groups, the group A in a split extension X A B
k p

s
can be obtained from X, B and an action of B on X by the semidirect prod-
uct construction. The theory of split extensions of groups is important for
understanding the structure of groups, building new groups from old ones,
and doing homological algebra. An analogous theory can be developed for any
semi-abelian variety [2,3,6].
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Monoids fail to form a semi-abelian variety, since not all split extensions
are well-behaved. However, restricting to the class of Schreier split extensions
results in a theory which keeps the desirable properties of extensions of groups
(see [18,4,5]). If we relax the conditions somewhat, yet more general classes
of monoid extensions can be considered including that of weakly Schreier split
extensions [1,9].

Definition 1.1. A weakly Schreier split extension of monoids is a diagram

X A B
k p

s

where k is the kernel of p, s is a section of p and such that for every a ∈ A
there is an x ∈ X such that k(x) · sp(a) = a. The split extension is Schreier if
each x is unique.

These extensions were characterised in [7] and were later studied in [14,
16] as ‘semibiproducts’, where a certain retraction map q of the kernel map k
is considered as part of the structure.

There has been some interest in extending the notion of Schreier exten-
sions to other varieties of algebra (see [17,11]), though this has not yet been
carried out for weakly Schreier extensions. The aim of this paper is to provide
a very general definition of weakly Schreier split extension for pointed varieties
that recovers the usual theory for monoids, as well as for general semi-abelian
varieties. Our notion is parameterised by a term θ and by taking a different
choice of θ we can also obtain a more general class of monoid extensions with
similar properties.

In a Schreier split extension of monoids X A B
k p

s
, the middle

monoid A always has the cartesian product X × B as its underlying set (but
possibly with a different multiplication). Weakly Schreier extensions generalise
these by allowing the underlying set of A to be a certain subset (or equivalently
a certain quotient) of X × B. We will show in Example 4.2 that the new class
of monoid extensions we define is general enough to include cases where the
cardinality of A is strictly larger than X × B.

In the final section we show that equipping a category of algebras with
the class of θ-weakly-Schreier split extensions always gives an S-protomodular
category in the weak sense of [1].

2. Background and motivation

Group extensions are among the most important concepts in group theory:
they allow us to decompose complex groups into simpler parts and to use
knowledge about these parts to tell us things about the larger group. Indeed,
the ability to decompose groups in this way is the primary motivation for the
famous classification of finite simple groups (see [10]).

An important class of extensions is given by split extensions.
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Definition 2.1. A split extension of groups is a diagram

X A B
k p

s

where p is a quotient map, k is the kernel of p and s is a section of p.

Given the kernel group X and the quotient group B in a split extension,
the group A is always given by a semidirect product X �B, which has underly-
ing set X×B and multiplication given by (x1, b1)·(x2, b2) = (x1α(b1, x2), b1b2)
where α : B × X → X is a group action associated to the extension. Such a
classification is useful for building up groups from smaller ones.

There are also a number of ‘homological’ lemmas that can be proved
for group extensions. The following result can be useful for establishing prop-
erties of group homomorphisms between groups that can be decomposed as
semidirect products.

Lemma 2.2 (Split Short Five Lemma). Consider the following commutative
diagram of groups where the top and bottom rows are split extensions.

A1

A2

B1

B2X2

X1

g

p1

s1

p2

s2

h

k1

k2

f

If f and h are both (a) injective, (b) surjective, or (c) isomorphisms, then so
is g.

Since group extensions are so useful, there is a strong desire to generalise
the concept and the associated results to other algebraic structures. A broad
setting in which extensions can be studied is that of pointed protomodular
categories (see [2]). However, we will be concerned, not with general such
categories, but only with varieties of algebras whose categories satisfy this
condition.

These were characterised in [3] as those varieties with a unique constant
0, an (n + 1)-ary term θ, and n binary operations α1, . . . , αn such that the
equations αi(x, x) = 0 and θ(α1(x, y), . . . , αn(x, y), y) = x hold. We call these
semi-abelian varieties, but they had previously been studied under the name
classically ideal determined varieties in [19].

One important class of algebras that we would like to be able to handle
is that of monoids. However, monoids do not form a semi-abelian variety. One
problem is that general (split) extensions of monoids are not well-behaved. For
example, results such as the Split Short Five Lemma do not generally hold for
monoids. Nonetheless, there are classes of monoid extension that still behave
very similarly to group extensions. The notion of S-protomodular category
was introduced to describe this situation (see [5]).
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The ‘S’ in S-protomodular refers to a class of split epimorphisms (equipped
with their sections) which are used in the ‘good’ split extensions. The motivat-
ing example is the class corresponding to Schreier split extensions of monoids
(see Definition 1.1).

Like split extensions of groups, Schreier split extensions can be charac-
terised in terms of a notion of semidirect product and satisfy the Split Short
Five lemma. However, there are many important instances of monoid exten-
sions that are not Schreier (for example, see [8]). Therefore, the larger class of
weakly Schreier split extensions has also been studied recently (see [7]).

There is a natural desire to unify the theory of extensions of semi-abelian
algebras with that of (weakly) Schreier extensions of monoids, and to be able
to handle a wider range of algebraic structures. We will show how to do this,
and in the process we will also obtain an even larger class of monoid extensions
for which a useful kind of ‘semidirect product’ can be described.

3. θ-weakly-Schreier extensions

Let V be a variety of algebras with a unique constant 0 and a given (n+1)-ary
term θ such that θ(0, . . . , 0, x) = x. The category CV of such algebras is a
pointed category with zero morphisms given by the constant 0 maps. In such
a category, kernels, and hence split extensions, can be defined.

Definition 3.1. We say a split extension X A B
k p

s
in CV is θ-weakly-

Schreier if there exist n functions q1, . . . , qn : A → X such that θ(kq1(a), . . .
, kqn(a), sp(a)) = a. We may always assume qi(0) = 0.

Note that these qi functions are not required to be homomorphisms. In
the case of monoids with θ(x, y) = x + y, this reduces to the usual definition
of a weakly Schreier extension (assuming the axiom of choice).

Recall that a semi-abelian variety has a unique constant 0, an (n+1)-ary
term θ, and n binary operations α1, . . . , αn such that

• αi(x, x) = 0,
• θ (α1(x, y), . . . , αn(x, y), y) = x.

This θ satisfies our above condition, since

θ(0, . . . , 0, x) = θ(α(x, x), . . . , α(x, x), x) = x.

In this case every split extension X A B
k p

s
is θ-weakly-Schreier by

taking

kqi(a) = αi(a, sp(a)).

Note that αi(a, sp(a)) indeed lies in the kernel of p, since we have

p(αi(a, sp(a))) = αi(p(a), psp(a)) = αi(p(a), p(a)) = 0.

The paper [6] describes the semidirect product for semi-abelian varieties.
We can use a similar approach to construct the middle algebra A of a θ-weakly-
Schreier split extension in our more general setting.
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Consider a θ-weakly-Schreier split extension X A B
k p

s
. We de-

fine a function ψ : A → Xn × B by

ψ(a) = (q1a, . . . , qna, pa)

and a function φ : Xn × B → A by

φ (x1, . . . , xn, b) = θ (kx1, . . . , kxn, sb) .

Note that here and elsewhere we omit the brackets around the arguments of
the functions to avoid the proliferation of brackets.

These functions induce maps between the above extension and the ‘trivial’

split extension of pointed sets Xn Xn × B B
ιXn πB

ιB
where ιXn(�x) =

(�x, 0), πB(�x, b) = b and ιB(b) = (0, . . . , 0, b). (Here we write �x for the tuple
of elements (x1, . . . , xn).) In the following diagram φX and ψX are obtained
from φ and ψ from the universal property of the kernel. It is easy to see that
the other relevant squares commute by the definition of ψ and φ and the
assumption on θ.

X A B

Xn Xn × B B

k p

s

ιXn

πB

ιB

ψ φψX φX

Note that φψ = idA, since φ(ψ(a)) = θ(kq1(a), . . . , kqn(a), sp(a)) = a by the
θ-weakly-Schreier condition.

On the other hand, we find that the ith component of ψφ(x1, . . . , xn, b)
is equal to qi(θ(kx1, . . . , kxn, sb)) for i = 1, . . . , n, while the last component is
ps(b) = b. Thus, A maps bijectively onto the subset Y of Xn × B given by

Y = { (x1, . . . , xn, b) ∈ Xn × B | qi (θ (kx1, . . . , kxn, sb)) = xi for each i } .

The operations on A can then be transported along this bijection so that
an m-ary operation ω can be computed in Y by

[
ω
((

x1
1, . . . , x

1
n, b1

)
, . . . ,

(
xm
1 , . . . , xm

n , bm
))]

i

=
[
ψω

(
φ

(
x1
1, . . . , x

1
n, b1

)
, . . . , φ (xm

1 , . . . , xm
n , bm)

)]
i

= qi

(
ω

(
θ
(
kx1

1, . . . , kx1
n, sb1

)
, . . . , θ (kxm

1 , . . . , kxm
n , sbm)

))

and
[
ω

((
x1
1, . . . , x

1
n, b1

)
, . . . , (xm

1 , . . . , xm
n , bm)

)]
n+1

= ω
(
b1, . . . , bm

)
.

If ω and θ commute then the first formula simplifies to
[
ω
((

x1
1, . . . , x

1
n, b1

)
, . . . ,

(
xm
1 , . . . , xm

n , bm
))]

i

= qi

(
θ
(
kω

(
x1
1, . . . , x

m
1

)
, . . . , kω

(
x1

n, . . . , xm
n

)
, sω

(
b1, . . . , bm

)))

= ω
(
x1

i , . . . , x
m
i

)
.
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In particular, the 0 in Y is simply (0, . . . , 0, 0). However, in general there is
not anything more that we can do to simplify this further.

The corresponding extension is X Y B
k′ πB

ιB
where the kernel

map k′ is given by k′(x) = ψk(x) = (q1k(x), . . . , qnk(x), 0). This map can
also be defined without reference to the qi maps: for (�y, 0) ∈ Y note that
(�y, 0) = k′(x) if and only if φ(�y, 0) = φk′(x). But φk′(x) = k(x) and φ(�y, 0) =
θ(k(y1), . . . , k(yn), 0) = kθ(�y, 0), so that we have (�y, 0) = k′(x) if and only if
θ(�y, 0) = x. Hence, k′(x) is the unique element (�y, 0) ∈ Y such that θX(�y, 0) =
x. Also note that, by the definition of ψ, transporting the qi maps along the
isomorphism, simply gives the restrictions of the product projections πi : Xn ×
B → X.

In summary, we have the following proposition.

Proposition 3.2. A θ-weakly-Schreier extension X A B
k p

s
is isomor-

phic to an extension X Y B
k′ πB

ιB
, where Y is certain subset of Xn×B

and k′(x) is the unique element (�y, 0) ∈ Y such that θX(�y, 0) = x.
Suppose the maps q1, . . . , qn witness the θ-weakly-Schreier condition. For

each basic operation ω in the variety we define a map �γω : (Xn × B)m → Xn

by
(
�γω

(
x1
1, . . . , x

1
n, b1, . . . , xm

1 , . . . , xm
n , bm

))
i

= qi

(
ω

(
θ
(
kx1

1, . . . , kx1
n, sb1

)
, . . . , θ (kxm

1 , . . . , kxm
n , sbm)

))
.

The maps �γω for composite terms ω can be defined in terms of these as neces-
sary.

Then Y is given by

{ (�x, b) ∈ Xn × B | �γid(�x, b) = �x } ,

or, equivalently, by
{

(�x, b) ∈ Xn × B | �γθ(�0, �x, b) = �x
}

,

equipped with operations ωY defined by

ωY

(
�x1, b1, . . . , �xm, bm

)
=

(
�γω

(
�x1, b1, . . . , �xm, bm

)
, ωB

(
b1, . . . , bm

))
.

Remark 3.3. In fact, as can be seen by simply expanding the definitions, we can
define the subset Y ⊆ Xn × B using �γω for any term ω satisfying ω(�0, x) = x
in the variety. This is sometimes more convenient if θ is built out of many
operations.

We might now ask what conditions we need to impose on arbitrary �γω

maps for this construction to give a valid θ-weakly-Schreier extension.

• Firstly, we need to impose conditions on the �γω such that defining axioms
of the algebra hold (when restricted to Y ⊆ Xn × B).
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• Secondly, we must ensure well-definedness of k′ by requiring that for all
x ∈ X there is a unique �y ∈ Xn such that (�y, 0) ∈ Y and θX(�y, 0) = x,
or equivalently such that �γθ(�0, �y, 0) = �y and θX(�y, 0) = x.

• Next we guarantee that k′ is a homomorphism. Note that since k′ is bijec-
tive onto the restriction of its codomain to { (�y, b) ∈ Y | b = 0 }, it suffices
to ensure the inverse (�y, 0) �→ θX(�y, 0) is a homomorphism. This holds
when θX(�γω(�x1, 0, . . . , �xm, 0), 0) = ωX(θX(�x1, 0), . . . , θX(�xm, 0)) for all
�x1, . . . , �xm such that �γθ(�0, �xi, 0) = �xi. It then follows from the definition
of k′ that it is a kernel: clearly πBk′ = 0, while if (�y, 0) ∈ Y then setting
x = θX(�y, 0) we have k′(x) = �y.

• Finally, we add a condition that forces the extension to be θ-weakly-
Schreier (with the product projections as the qi maps). This means
�γθ(k′(x1), . . . , k′(xn), ιB(b)) = (x1, . . . , xn) for (x1, . . . , xn, b) ∈ Y . It
is more convenient to write this in terms of the elements �yi such that
(�yi, 0) = k′(xi). Then each xi = θX(�yi, 0) and so the condition becomes

�γθ

(
�y1, 0, . . . , �yn, 0,�0, b

)
=

(
θX

(
�y1, 0

)
, . . . , θX (�yn, 0)

)

for all �y1, . . . , �yn ∈ Xn such that �γθ(�0, �yi, 0) = �yi and

�γθ

(
�0, θX

(
�y1, 0

)
, . . . , θX (�yn, 0) , b

)
=

(
θX

(
�y1, 0

)
, . . . , θX (�yn, 0)

)
.

4. Examples

We have already noted that the case of semi-abelian varieties is captured by
this theory.

Another core example is, of course, that of weakly Schreier extensions
of monoids. These are simply θ-weakly-Schreier extensions with θ being the
monoid operation θ(x, y) = x+y. Our characterisation agrees with that in [7],
though our approach is more similar to that taken in [14].

Remark 4.1. Note that we might ask if Schreier extensions of monoids have a
generalisation to general algebras. This would mean requiring that the qi maps
be unique. This is equivalent to asking the map φ : Xn ×B → A to be injective
(and hence bijective). However, do note that for n ≥ 2 this seldom holds even
for semi-abelian varieties. For example, observe that Heyting semilattices form
a semi-abelian variety for n = 2 with θ(x, y, z) = (x ⇒ z) ∧ y (see [13]) and
consider the extension of Heyting semilattices given by

{a ≤ 1} ↪→ {0 ≤ a ≤ 1} � {[0] ≤ [a] = [1]}
with section defined by [0] �→ 0 and [1] �→ 1. If q1(x) = x ⇒ sp(a), then
any map q2 such that q2(1) = 1 and q2(a) = a witnesses the weakly Schreier
condition. See [6, Theorem 4.2] or [12, Corollary 3.2] for a characterisation of
the semi-abelian varieties for which every split extension is Schreier in this
sense.

Schreier split extensions of unital magmas were studied in [11]. Taking θ
to be the magma operation we recover a more general class of ‘weakly Schreier’
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split extensions of magmas. The Schreier extensions satisfy an additional con-
dition q1(θ(kx, sb)) = x, as explained in [15, pg 6], that forces the underlying
set of the middle magma to be the cartesian product of the other two (as in
Remark 4.1).

Our main new example is again monoids, but this time with θ given by the

ternary term θ(x, y, z) = x+z+y. In this case, an extension X A B
k p

s
is θ-weakly-Schreier if and only if there are q1, q2 : A → X such that a =
kq1(a) + sp(a) + kq2(a). This is a strictly more general class than the usual
class of weakly Schreier split extensions of monoids, which corresponds to
requiring q2 ≡ 0.

In particular, we note that in contrast to what happens with the usual
notion of weakly Schreier extensions, the middle monoid A here can have a
cardinality strictly larger than that of X × B.

Example 4.2. Suppose A is given by the following multiplication table.

⊕ 0 1 2 3 4
0 0 1 2 3 4
1 1 1 4 4 4
2 2 3 2 3 4
3 3 3 4 4 4
4 4 4 4 4 4

Let X = B = {0, 1} with saturating addition, let k be the obvious inclu-
sion, let p be defined by

p(a) =

{
0 if a ≤ 1
1 if a ≥ 2,

and suppose s : 1 �→ 2. This split extension is θ-weakly-Schreier with

q1(a) =

{
1 if a = 4
0 otherwise

q2(a) =

{
1 if a = 1or a = 3
0 otherwise.

Note that |A| = 5, while |X × B| = 4.

For this class of monoid extension we can use associativity to say more
about the ‘action’ given by �γ+. Given an extension, this is defined as

(
�γ+

(
x1
1, x

1
2, b

1, x2
1, x

2
2, b

2
))

i
= qi

(
kx1

1 + sb1 + kx1
2 + kx2

1 + sb2 + kx2
2

)

= qi

(
kx1

1 + sb1 + k
(
x1
2 + x2

1

)
+ sb2 + kx2

2

)
.

Now suppose we set u = sb1 + k(x1
2 + x2

1) + sb2. By the θ-weakly-Schreier
condition this can be expressed as u = kq1(u) + sp(u) + kq2(u) = kq1(u) +
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s(b1 + b2) + kq2(u). We then find
(
�γ+

(
x1
1, x

1
2, b

1, x2
1, x

2
2, b

2
))

i
= qi

(
kx1

1 + u + kx2
2

)

= qi

(
kx1

1 + kq1(u) + s
(
b1 + b2

)
+ kq2(u) + kx2

2

)

= qi

(
k

(
x1
1 + q1(u)

)
+ s

(
b1 + b2

)
+ k

(
q2(u) + x2

2

))
.

In this way �γ+ can be decomposed into four simpler maps. Set

σi (b, x, b′) = qi (sb + kx + sb′) ,

τi (x, b, x′) = qi (kx + sb + kx′) .

Then
(
�γ+

(
x1
1, x

1
2, b

1, x2
1, x

2
2, b

2
))

i
= τi

(
x1
1 + σ1

(
b1, x1

2 + x2
1, b

2
)
, b1

+b2, σ2

(
b1, x1

2 + x2
1, b

2
)

+ x2
2

)
.

Finally, in this case it is convenient to define Y to be
{

(�x, b) ∈ X2 × B | �γ+

(
�0, 0, �x, b

)
= �x

}
.

It is then routine to compute the axioms σ1,2(b, x, b′) and τ1,2(x, b, x′) to
obtain a characterisation of this class of extensions, though we will omit the
details.

5. Properties of these extensions

Schreier split extensions of monoids are very well-behaved and were the inspi-
ration for the notion of an S-protomodular category [5]. An S-protomodular
category has a class of split epimorphisms whose corresponding split exten-
sions behave similarly to general split extensions in a protomodular category.
In [1] Bourn defines a slightly weaker notion of S-protomodularity by omit-
ting a certain completeness condition. This weaker definition captures weakly
Schreier extensions of monoids. Our θ-weakly-Schreier extensions also give rise
to weakly S-protomodular categories in this sense.

Proposition 5.1. Let V be a pointed variety with term θ as above. The category
CV of these algebras together equipped with the class Σ of split epimorphisms
coming from θ-weakly-Schreier extensions is a weakly Σ-protomodular category.

Proof. Certainly the category CV is finitely complete and pointed. We require
that for every (p, s) ∈ Σ, ker p and s are jointly extremal-epimorphic, that Σ
contains all isomorphisms, and that Σ is stable under pullback.

The first condition is immediate from the definition of θ-weakly-Schreier
property. For the second, note that if p and s are mutual inverses, then
θ(k(0), . . . , k(0), sp(a)) = θ(0, . . . , 0, a) = a by the assumption on θ and hence
taking q1 = · · · = qn ≡ 0 we have (p, s) ∈ Σ.

For pullback stability, consider the diagram
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A ×B B′

A

B′

BX

X

f ′

p′

s′

p

s

f

k′

k

where (A ×B B′, f ′, p′) is the pullback of f and p and the bottom row is a θ-
weakly-Schreier extension. Note that by the universal property of the pullback
s′ is the unique section of p′ such that f ′s′ = sf . We see that X is the kernel
of p′ : (a, b′) �→ b′ since (a, 0) ∈ A ×B B′ if only if p(a) = f(0) = 0.

If q1, . . . , qn : A → X are the associated maps for the bottom extension,
we define maps q′

1, . . . , q
′
n : A ×B B′ → X by q′

i : (a, b′) �→ qi(a). Then

θA×BB′
(
k′q′

1

(
a, b′), . . . , k′q′

n

(
a, b′), s′p′(a, b′))

= θA×BB′ (k′q1a, . . . , k′qna, s′b′)

= (θA (kq1a, . . . , kqna, sfb′) , θB′ (0, . . . , 0, b′))

= (θA (kq1a, . . . , kqna, spa) , b′)

= (a, b′) ,

as required. �
Note that this weak form of Σ-protomodularity does not imply an ana-

logue of the Split Short Five Lemma. However, we do have the following result
for surjections generalising the case of weakly Schreier extensions of monoids.

Lemma 5.2. Let C be a pointed weakly Σ-protomodular category and consider
a morphism of extensions from the distinguished class Σ as in the following
diagram.

A1

A2

B1

B2X2

X1

g

p1

s1

p2

s2

h

k1

k2

f

If f and h are extremal epimorphisms, then so is g.

Proof. By the condition on Σ, the maps k2 and s2 are jointly extremal-epimorphic.
Since C has pullbacks, extremal epimorphisms are closed under composition. In
fact, it can be shown that composites of jointly extremal-epimorphic maps with
extremal epimorphisms are still jointly extremal-epimorphic. Thus, k2f = gk1
and s2h = gs1 are jointly extremal-epimorphic. It follows that g is extremal-
epimorphic, as required. �
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Finally, in good cases we would probably expect products X × B to give
rise to θ-weakly-Schreier split extensions. By pullback stability, this holds if
and only if the extension X

id−→ X → 1 is a θ-weakly-Schreier extension.
This holds whenever there are maps q1, . . . , qn : X → X such that θ(q1(x), . . . ,
qn(x), 0) = x for all x ∈ X. We note that this condition is satisfied in all our
examples, but fails for the variety of left-unital magmas (taking θ to be the
product).
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