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Abstract
The growing use of multimodal high-resolution volumetric data in pre-clinical studies leads to challenges related to the 
management and handling of the large amount of these datasets. Contrarily to the clinical context, currently there are no 
standard guidelines to regulate the use of image compression in pre-clinical contexts as a potential alleviation of this problem. 
In this work, the authors study the application of lossy image coding to compress high-resolution volumetric biomedical  
data. The impact of compression on the metrics and interpretation of volumetric data was quantified for a correlated mul-
timodal imaging study to characterize murine tumor vasculature, using volumetric high-resolution episcopic microscopy  
(HREM), micro-computed tomography (µCT), and micro-magnetic resonance imaging (µMRI). The effects of compression 
were assessed by measuring task-specific performances of several biomedical experts who interpreted and labeled multiple 
data volumes compressed at different degrees. We defined trade-offs between data volume reduction and preservation of 
visual information, which ensured the preservation of relevant vasculature morphology at maximum compression efficiency 
across scales. Using the Jaccard Index (JI) and the average Hausdorff Distance (HD) after vasculature segmentation, we 
could demonstrate that, in this study, compression that yields to a 256-fold reduction of the data size allowed to keep the 
error induced by compression below the inter-observer variability, with minimal impact on the assessment of the tumor 
vasculature across scales.
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Introduction

The field of bioimaging is experiencing several major 
boosts: for single cell imaging, the resolution revolu-
tion in electron cryo-microscopy [1] led to an exponen-
tial increase in resolved single particle structures. This is 
accompanied by a volumetric resolution which allows to 
image entire cells in 3D at a resolution of a few nanom-
eters using, for example, focused ion beam scanning elec-
tron microscopy. The same holds true for advanced light 
microscopy that routinely resolves subcellular structures, 
both below the diffraction limit (super-resolution) and in 
thick tissue with increased penetration depth (light-sheet, 
multiphoton, or high-resolution episcopic microscopy—
HREM) [2]. Additionally, frontiers of bioimaging are cur-
rently being pushed towards the integration and correlation 
of several modalities to tackle biomedical research ques-
tions holistically and across scales (correlative multimodal 
imaging—CMI) [3]. CMI is specifically moving towards 
the integration of in vivo with subsequent ex vivo imag-
ing modalities to bridge the gap between preclinical and 
biological imaging [4, 5]. Prominent examples of preclini-
cal imaging include micro-computed tomography (µCT) 
and micro-magnetic resonance imaging (µMRI) since they 
allow one to acquire 3D high-resolution datasets without 
violating the integrity of the specimen, making them a 
non-destructive alternative to serial histology [6]. While, 
traditionally, µCT was used to assess bone morphology 
and density, recently, its range of applications — based 
on radiopaque contrast agents — has expanded towards 
the characterization of heart, kidney, liver and lung mor-
phometry and function, vascular analysis, quantification 
of fat tissue, and the assessment of tumor load in organs. 
This information can be substantially enriched using 
µMRI which gathers metabolic, physiological, and func-
tional information non-destructively at a resolution of a 
few micrometers. Due to its non-ionizing interaction with 
the net nuclear magnetic moment of nucleons, in contrast 
to µCT, repeated studies are feasible, with no known side 
effects, to monitor physiological and pathophysiological 
processes in vivo, including ageing or disease progression.

As a result of these technological evolutions, it is becom-
ing routine to collect raw images of hundreds of gigabytes 
per imaging session. Recent advances in cryo-EM, includ-
ing those in detector technology with faster frame rates, 
have substantially increased data generation, with a typi-
cal single particle imaging session acquiring data in the 
gigabyte range. Light-sheet microscopy allows integrating 
super-resolution modules with lattice light-sheet micros-
copy acquiring data in the range of terabytes for a single 4D 
data set. A single HREM session can produce a dataset of 

several GB due to its micrometer resolution and capability 
of visualizing relatively big volumes of several mm3, and the 
volume of data of complex features and broad dimensions 
acquired in biomedical imaging, including µMRI and µCT, 
is growing exponentially [7]. In combination with dynamic 
CMI approaches, the sheer size of the bioimaging data truly 
enters the big data regime. Indeed, the biggest bottleneck 
of CMI is currently data handling and storage due to the 
plethora of complex, multimodal, time-varying, and diverse 
volumetric imaging data. Further increases in throughput 
and automation will generate even more data and raise the 
pivotal question of how to handle these huge amounts of 
data. On top of this, there are currently no data handling 
guidelines or data retention and management plans. Submis-
sion of acquired image data to public archives (EMPIAR or 
cell-IDR) will only allow to store a fraction of the acquired 
data [8]. In addition to the growing size of bioimage datasets, 
the diversity of image modalities included in multimodal 
workflows make the management and analysis of the data 
more complex [9]. One approach to alleviate this challenge is 
data compression. Since many quantitative analyses of image 
datasets do not exploit the full resolution of the acquisition 
scheme but are focused on specific macro-structures that 
are not greatly affected by compression artifacts, even lossy 
compression schemes might represent a versatile approach 
in tackling the huge amount of data in bioimaging.

An image compression system encompasses an encoder 
and a decoder: the encoder block is responsible for reducing 
image data redundancy and encoding this information into a 
compressed file (bitstream); a decoder block is responsible for 
decoding a bitstream and decompressing the image data, so that 
an image can be reconstructed and used for various purposes. 
The greatest advantage of lossless compression algorithms is 
their reversibility, i.e., lossless compressed image data can be 
fully restored without any mathematical difference. Contrarily, 
lossy image compression introduces irreversible changes to the 
image data, which induces mathematical differences between 
the original and the decompressed data. Another difference 
between these two classes of image compression systems is 
their efficiency: while standard lossless image compression 
typically delivers compression ratios in the order of 2:1 [10], 
lossy compression can achieve much higher compression rates 
at the expense of some distortion. By archiving compressed 
bitstreams instead of the raw image data, more images can be 
stored, and less bandwidth is required to transmit them. Both 
are urgently needed in the bioimaging community, including 
the multitude of bioimaging facilities.

In this paper, based on a published CMI feasibility study 
to visualize murine tumor vasculature across scales [11], 
we (i) compare achievable compression rates and data stor-
age reduction for each modality using lossy compression, 
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(ii) assess the minimal rate to preserve relevant quantitative 
image content (in this case, the tumor vasculature), and (iii) 
specifically quantify compression schemes for the micros-
copy technique HREM, and the preclinical imaging modali-
ties µCT and µMRI.

JPEG2000 and H.265/HEVC — Overview

JPEG2000 is an ISO standardized waveform-based cod-
ing system [12] built-upon the discrete wavelet transform 
(DWT). It provides features such as resolution scalability 
(i.e., the ability to restore the full-resolution image data pass-
ing through multiple down-sampled versions of the signal), 
partial decoding (i.e., the ability to decode specific portions 
of the image independently—random access), and region-
of-interest coding (i.e., the ability to encode predefined 
regions with higher quality, which are transmitted first in 
the bitstream). Furthermore, extensions such as the multi-
component transform (MCT) that expands the proposed 
single-component compression for polychrome content, or 
the 3D DWT version [13] to exploit the volumetric redun-
dancy that biomedical sequences usually present, make this 
coding system versatile enough to compress N-dimensional 
(N ≥ 3) image sequences.

The JPEG2000 coding pipeline includes multi-component 
transformation, tiling, wavelet-transform, quantization, and 
entropy-coding. The multi-component transformation mod-
ule makes use of either fixed non-integer (lossy) or integer 
(lossless) transforms to decorrelate the spectral components 
of the input image. The tiling module aims to divide each 
component into tiles (i.e., sub-units of data) which undergo 
independent compression; therefore, the tile dimension is 
related with the granularity of the random access achieved. 
An L-Level wavelet transform [12] is then separately applied 
to each component of a tile, generating a set of sub-bands 
of wavelet coefficients associated with varying degrees of 
texture details. The lossless mode uses a [3, 5] biorthogonal 
filter and the lossy mode employs a [7, 9] biorthogonal filter, 
as their wavelet base filters. In the case of lossy compression, 
the wavelet coefficients can be quantized differently in each 
sub-band. Then, the resulting DWT coefficients are grouped 
into non-overlapping rectangular structures called code-
blocks, which are entropy encoded according to a bit-plane 
binary arithmetic coding. Due to its progressive coding, ran-
dom access capabilities, and the availability of an interactive 
streaming protocol [14], JPEG2000 is the preferred choice 
for encoding very high-resolution optical microscopy images 
that require to be visualized top-to-bottom (i.e., starting from 
a down-sampled version up to local high-frequency detail) 
in a responsive way.

H.265/HEVC is a video coding standard [15] which 
exploits spatial redundancy, through intra-frame prediction 

techniques, and temporal redundancy enhanced with motion 
compensation techniques, commonly referred to as inter-
frame prediction. Inter-frame prediction is the basis of sev-
eral encoding modes that reduce redundancy along the third 
dimension — temporal in video and z-axis in volumetric 
data — to achieve more competitive compression ratios. The 
inter-prediction techniques are applied to groups of pictures 
(GOP) leading to frame inter-dependency, which determines 
the granularity of the random access to a certain image in 
the decoding process. Therefore, depending on how fine-
grained the random access is required to be, the number 
of reference images used for predictive coding should be 
adjusted accordingly (GOP size), as well as the number of 
images that can be individually decoded (intra-frame period) 
from the bitstream.

The H.265/HEVC algorithm employs a hierarchical 
image partitioning scheme that supports blocks from 4 × 4 
to 64 × 64 pixels, applying prediction techniques followed by 
DCT-based transformation as a decorrelation step, and quan-
tization of the coefficients. These are then entropy coded by 
a context-adaptive binary arithmetic coder, in the last stage 
of the encoding process. In lossless conditions, the system 
bypasses transform, quantization, and in-loop filters which 
are irreversible operations.

Some extensions have been defined to work with the 
H.265/HEVC core coder, like the Range Extensions (RExt) 
to make the system compatible with higher image resolu-
tions, bit-depth, as well as alternative color encoding for-
mats. H.265/HEVC also provides scalable modes, which 
have been adopted by Digital Imaging and Communica-
tions in Medicine (DICOM) [16] committee, offering a more 
efficient way to store and manage medical image data. The 
targeted applications include using HEVC streams to store 
and transmit compressed images, but also to produce lossy 
content out of the archived lossless streams. The H.265/
HEVC Scalable Monochrome profile, for example, can 
represent mono-chromatic sequences with resolution up to 
4096 × 2160 pixels, with a bit depth varying from 8 to 16 
bits, at 50–60 Hz, in a lossless or lossy format; radiology 
units working with CT and MRI scanners typically produce 
such content.

Related Work

The adoption of lossy over lossless compression schemes 
in biomedical image representation has long been a contro-
versial topic considering legal obligations that regulate the 
use of lossless compression for clinical applications due to 
the potential risk of corrupted data in clinical diagnostics. 
Notwithstanding, multiple efforts have been made by profes-
sional societies in the fields of radiology and pathology to 
provide objective guidelines for the use of lossy compression 
in clinical environments. In Europe, the recommendation 
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work [17] proposing the use of lossy compression in radiol-
ogy units follows other initiatives on the topic [18–20] that 
suggest maximal compression ratios (CR) ranging from 5:1 
to 24:1 for magnetic resonance imaging (MRI) data, and 
from 5:1 to 12:1 for computed tomography (CT) data. From 
an assessment by three radiologists on the impact of wavelet-
based lossy compression in brain MRI images [21], no sta-
tistical differences were reported among the experts for a CR 
of 20:1, which, in this case, had a distortion of 75 dB. For an 
increase of the CR to a value of 40:1 (PSNR of 70 dB), only 
one of the three radiologists demonstrated statistical differ-
ences relative to the baseline. More recently, in [22], a com-
pression method based on the encoding of Radon-transform 
coefficients was proposed, and tested on abdominal MRI 
images, as well as on axial CT views of the pancreas. In this 
study, PSNR values from 39 to 50 dB, and SSIM between 
0.72 and 0.98 with associated CR between 5:1 and 114:1 
were reported, while still preserving the appearance of the 
images. For the CT scans, PSNR and SSIM values were 
found to be slightly greater than for the MRI scans (PSNR: 
39 to 54 dB and SSIM between 0.79 and 0.98). In [23], a 
near-lossless compression method based on the factorization 
of the volume of interest using an optimized multilinear sin-
gular value decomposition framework was proposed. In the 
test dataset (N = 12 volumes, including MRI and PET scans), 
the authors report CR starting at 11:1 up to 37:1, minimum 
PSNR of 42 dB and minimum SSIM of 0.95, approximately. 
Another initiative aimed to provide visually lossless image 
compression was proposed in [24], specifically for dental 
orthopantomography images. The authors claim that nei-
ther artifacts or loss of diagnostically valuable information 
were induced with the proposed lossy compression solu-
tion, which was able to compress the data from 8:1 to 21:1 
with a minimum PSNR of 39 dB. Analogously, compression 
guidelines in the field of clinical pathology have been pro-
posed for optical microscopy. However, different limits of 
CRs have been reported for compressing microscopy data. 
In [25, 26], a reference CR of 20:1 was found to generate 
JPEG 2000 compressed images with indiscernible differ-
ences when compared to the original uncompressed content, 
although CRs up to 75:1 were reported as still appropriate 
for the diagnosis of Helicobacter pylori. The low variability 
evidenced by the quality metrics used in [27] to evaluate 
images compressed 8 to 21 times supports the eligibility of 
lossy image compression for clinical pathology applications. 
Particularly, PSNR values from 32 to 45 dB (depending on 
the presence of high-frequency components) were reported 
in association with CR in the range between 11:1 and 2:1. 
SSIM was also assessed in this study, and values greater 
than 0.90 were verified for the same CR range. Additional 
studies focused on quantifying the impact of lossy compres-
sion on the performance of computer aided diagnosis (CAD) 
tools that are used in routine clinical pathology to support 

decisions of medical staff. In [28] it was reported that using 
JPEG 2000 with compression ratios up to a CR of 256:1 
did not impact the output of a CAD routine used to segment 
and characterize the morphology of prostate glands, in the 
context of prostate carcinoma diagnosis. In another work 
[29], it was found that after JPEG 2000 compression with 
compression ratios up to 1:25 and 1:50, the outcomes of 
automated immunohistochemistry quantification, and breast 
tumor segmentation were identical.

Most of the works studying the impact of compression 
on the output of clinical pathology CAD systems were 
motivated by the increasing data throughput that the field 
of digital microscopy has experienced. However, and to the 
best of the authors’ knowledge, similar studies exclusively 
focusing on non-regulated image data (e.g. preclinical and 
biological research studies) do not exist, even though the 
imaging systems responsible for most of the data generated 
in imaging facilities are exclusively allocated to research 
studies [30, 31]. Motivated by this and considering the high 
demand for standardization in preclinical imaging [3], the 
present study aims to quantify the impact of standard lossy 
image compression in the context of a multimodal preclini-
cal study involving image data generated by radiology and 
optical imaging systems. The study considers as target data 
compression methods of the state-of-the-art H.265/HEVC 
and JPEG 2000 ISO standard encoders, widely used in 
commercial equipment and with robust and open-source 
implementations.

Materials and Methods

Imaging and Image Analysis Protocols

Imaging & Sample Preparation Protocols

Image acquisition protocols and sample preparation for all 
modalities were detailed in [11]. Below, we summarize the 
acquisition and sample preparation procedures for µMRI, 
µCT, and HREM based on [11], and Table 1 summarizes 
the representation, spatial resolution, and file size of a single 
tomographic imaging stack for the three modalities.

Once murine tumors reached a size of 20–70 mm3, µMRI 
was conducted using a 15.2 T Bruker system (Bruker Bio-
Spec, Ettlingen Germany), and a 35-mm quadrature birdcage 
coil. To visualize blood vessels, a 3D fast imaging tech-
nique was employed, utilizing a steady state free precession 
(FISP) sequence with a gradient echo readout. The imaging 
parameters were as follows: repetition time (TR)/echo time 
(TE) = 5.7/2.85 ms, 30° flip angle, 30 × 30 × 10 mm3 field of 
view, 500 × 500 × 50 matrix size, 60 × 60 μm2 in-plane reso-
lution, 200-μm slice thickness, and number of experiments 
[NEX] = 16. The resolution of the obtained images (refer to 
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Table 1) was calculated based on the field of view divided by 
the number of frequency and phase encoding steps (i.e., the 
imaging matrix). During image acquisition, mice were anaes-
thetized using isoflurane (4% induction, maintained at 1.5%).

For µCT (SCANCO microCT 50, SCANCO Medical 
AG, Brüttisellen, Switzerland), the whole animal was per-
fused with a contrast agent (30% Micropaque), which is a 
mixture of barium sulfate and 2% procine gelatin, immedi-
ately postmortem. The perfusion surgery was performed as 
described in [32] prior to application of the contrast agent. 
For fixation, the animal was perfused with saline containing 
1,000 IU heparin, followed by a perfusion of 4% formalde-
hyde, and another perfusion of saline. Each perfusion step 
took approximately 5 min and was done manually using a 
syringe. After perfusion fixation, the contrast agent mixture, 
heated to 40–50 °C, was injected into the animal using a 
20-ml syringe. Once the femoral artery and adjacent vein 
were filled with the contrast agent, the perfusion was com-
plete, and the animal was stored at 4 °C for 24 h-to allow 
the contrast agent to cure. The tumor and surrounding tis-
sues were then extracted and placed in a 15-ml centrifuge 
tube. The extracted tissues were scanned using a SCANCO 
microCT 50 at 90 kVp, 200 µA with 1000 projections per 
180° integrated for 400 ms, with a 20.48 mm field of view, 
and reconstructed to an isotropic voxel size of 10 µm. The 
scanning time for each sample varied between 105 and 
145 min depending on the tumor size. The resolution of the 
reconstructed scans depended on the scanning parameters, 
such as the field of view and binning, and was chosen to 
balance the scanning time and sample size (see Table 1).

HREM is an optical block face imaging technique that 
generates 3D volume data by aligning a series of digital 
images. This ex vivo method involves histologically process-
ing specimens and embedding them in methacrylate resin 
blocks dyed with eosin. The blocks are then physically sec-
tioned using a microtome or microtome-like device, while 
a microscope equipped with fluorescent filters and a basic 
digital camera captures subsequent images directly from the 
block surface during the sectioning process [2]. For HREM, 
tumor samples were dissected and subjected to a series of 
processing steps. First, the samples were washed in PBS for 
a duration of 2 days, followed by dehydration using ethanol 
of increasing concentrations. Specifically, the samples were 
soaked in 30%, 50%, and 70% ethanol for 24 h each, 80% 

ethanol for 16 h, 90% ethanol for 3 h, and 100% ethanol 
(with two changes) for 6 h. The 70%, 80%, 90%, and 100% 
ethanol solutions contained 0.4 g of eosin per 100 ml, which 
was sourced from Waldeck GmbH & Co. KG in Germany. 
After dehydration, the samples were treated with JB-4 solu-
tion A, which contained 1.25 g of catalyst (benzoyl peroxide, 
plasticized) and 0.4 g of eosin per 100 ml, and infiltrated 
for 7 days (with three changes) at 4 °C. The samples were 
embedded in eosin-dyed JB-4 using a standard protocol and 
oriented with the proximal end beneath the future block 
surface. The molds were sealed airproof and allowed to 
polymerize for 2 days. After baking the polymerized blocks 
for 48 h at 80 °C, they were stored at room temperature 
until HREM data generation. HREM volumes of interest 
comprising approximately 5000 single digital images were 
generated in a fully automated way in about 9 h. The data 
were acquired using a custom-made instrument according 
to a standard protocol as outlined in [33]. The pixel dimen-
sions of each section were 2.96 × 2.96 µm2, with a section 
thickness of 3 µm.

Segmentation Protocols & Datasets

For µMRI, a maximum intensity projection was used to 
visualize the vasculature in 3D. Raw data were acquired 
and exported into AMIRA [34] as NIfTI files. For µCT, 
reconstructions were performed directly with the SCANCO 
microCT software and stored as ISQ files. For further 
processing, the scan was exported as DICOM stacks. For 
HREM, image datasets were saved and processed as tiff 
files, using volume rendering to visualize the tumor and tis-
sues. Segmentation and visualization were carried out using 
the software Amira 2020.1 (Thermo Fisher Scientific). For 
HREM, because of unspecific tissue contrast, manual trac-
ing of vessel outlines in image sections was necessary and, 
due to the huge HREM files’ size of up to 50 GB, the work-
loads would surpass the feasibility of this study. Therefore, 
a volumetric region of interest was selected by another expe-
rienced researcher and used on the subsequent steps aimed 
to quantify the impact of lossy compression. The segmented 
results were exported as binary images to generate blood 
vessel masks.

The segmentation started with the original datasets of 
the three modalities by a single researcher (Segmentor #1). 

Table 1   Main characteristics 
(representation, spatial 
resolution, and size) of the 
multimodal test sequences used 
in the present study

Modality Bit depth X (px) Y(px) Z (slices) Resolution (µm) Raw 
file size 
(MB)

µ-CT 16 579 355 681 34 × 34x34 300
HREM 16 2150 2500 4730 3 × 3x3 50 800
µ-MRI 16 440 466 92 60 × 60x200 36
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Afterwards, the compressed data sets were segmented in 
random order concerning the compression degree. After a 
resting period of several days, the initial segmentation of 
each data set was re-examined searching for errors and miss-
ing parts. There was an attempt to spend the same amount 
of time segmenting each image stack, both original and 
compressed ones. To compare the segmentation accuracy 
in a compression-free scenario (inter-observer variability), 
another researcher segmented the original HREM and MRI 
datasets (Segmentor #2). In addition, each dataset was reas-
sessed after compression by Segmentor #1 and compared to 
his previous results, to quantify the intra-observer variability.

Configuration of the Image Encoders

JPEG 2000 and H.265/HEVC offer distinct mechanisms to 
control the distortion induced by the compression since the 
underlying rate-control mechanisms are based on different 
concepts. On one hand, JPEG 2000 allows to specify a target 
Peak Signal-to-Noise Ratio (PSNR) that affects the number of 
bits per pixel in the compressed image allocated to represent 
the encoded images at each coding pass of the entropy coding 
step. Higher PSNR values correspond to less distortion, i.e., less 
compression-related image quality degradation. On the other 
hand, H.265/HEVC makes use of a quality-control mechanism 
according to the so-called quantization parameter (QP). QP 
determines the scale of the discrete levels used to quantize the 
coefficients obtained after transforming the prediction residuals 
to the spatial frequency domain using a discrete cosine transform 
(DCT). Hence, high QP values correspond to a rough quantiza-
tion, which makes the preservation of fine, and high-frequency 
details more difficult after compression, but results in less bits 
per pixel used to represent the (compressed) image data.

To obtain comparable compressed files using both encod-
ers, a constrained range of objective quality (PSNR) values, 
between 40 and 60 dB, was set as the target quality for the 
JPEG2000 encoder, given that this range of PSNR values is 
associated to a visually lossless compression regime (con-
sidering natural image content). The configuration of the 
JPEG2000 compression corresponds to the one implemented 
by the default call to the OPENJPEG executable, with the 
target PSNR passed as an additional parameter.

Once all the slices were encoded, the volumetric sequence 
was reconstructed and the global PSNR was computed 
against the respective original/raw sequence. The encoding 
of the same data using H.265/HEVC involved the use of a 
heuristic procedure to determine the values for the QP param-
eter guaranteed that the resulting H.265/HEVC compressed 
files achieved similar objective quality (PSNR) to the ones 
obtained by JPEG 2000 compression. The HEVC/HEVC-
RA + RExt profile was configured with an Intra-Frame period 
and GOP size of 8, maximum coding unit size of 64 × 64, and 
with the fast search method for motion estimation.

Task‑Oriented Objective Assessment

Based on the published CMI feasibility study to visualize 
murine tumor vasculature across scales [11], we compared the 
morphological preservation of blood vessels within regions of 
interest after lossy compression. The blood vessel morphol-
ogy was extracted and quantified using manual and automated 
segmentation. The reference data corresponded to the manu-
ally segmented blood vessels of the raw datasets. The MRI 
(Fig. 1) and HREM (Fig. 5) sequences were used to quantify 
the impact of lossy compression on the performance of a man-
ual segmentation task, whereas the CT sequence (Fig. 3) was 
used to quantify the impact of compression on the performance 
of an automated approach using Otsu’s method for automatic 
thresholding [35]. For the HREM and MRI image sequences, 
the available segmentation masks included:

(a)	 the reference mask obtained after manual segmentation of 
the raw image data (annotations of Segmentors #1 and #2);

(b)	 a second reference mask drawn manually on the raw 
image data with a time lapse of 1 month to the first 
reference annotation (obtained by Segmentor #1 only);

(c)	 the masks drawn on each decompressed version, referred to 
as compressed masks (obtained by segmentator #1 only).

The masks in a) and b) were used to compute the inter- 
and intra-variabilities according to the method described in 
the “Intra-observer Variability” and “Inter-observer Vari-
ability” sections). For the CT image sequence, the pool of 
available segmentation masks included:

•	 the reference mask obtained after automated segmenta-
tion of the raw/uncompressed image data;

•	 the masks obtained after automated segmentation of each 
decompressed version.

Based on the available data, an N-to-1 format was used to 
compare the N compressed masks against the corresponding 
reference mask according to two objective scores typically 
employed in biomedical image segmentation problems [36]: 
Jaccard similarity coefficient, or simply Jaccard Index (JI), 
and the average Hausdorff Distance (HD). The JI consists 
of a widely adopted overlap measure in segmentation prob-
lems. Given two binary images X and Y, it is determined 
by dividing the number of annotated pixels at coincident 
positions by the total number of annotated pixels, according 
to the expression:

which is also referred to as “Intersection over Union” (IoU). 
In this study, the JI was computed per slice and arithmeti-
cally averaged for the entire 3D stack.

(1)JI(X, Y) =
x ∩ y

x ∪ y
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In addition, the average HD was also included in this study 
since it has also been reported as an appropriate metric for 
medical image segmentation problems [37], particularly in the 
presence of complex, and thin structures [38]. In order to com-
pute the HD between a pair of binary volumes X and Y, their 
corresponding sets of annotated points, herein represented by 
the discrete sets {X} and {Y} , have to be extracted. When com-
puting the HD between X and Y, the set of directed Euclidean 
distances from X to Y dXY , and its reciprocal set of distances 
dYX are required to be known. dXY can be obtained by iterating 
along {X} and finding the closest element in Y to the point xi , 
as given by the expression below.

After computing the reciprocal set of distances 
{
dYX

}
 , the 

average HD between point sets X and Y is defined as

with ||X|| and ||Y|| representing the number of points in 
distributions X and Y, respectively. To assess the inher-
ent variability of the manual segmentation process (i.e., 
to determine and normalize the best achievable JI and HD 
values), the intra-observer variability (IaOV) and the inter-
observer variability (IeOV) was calculated as described in 
2.3.1 and 2.3.2.

(2)
{
dXY

}
=
{
min d

(
xi, Y

)}
, xi ∈ X.

(3)HD(X, Y) =

�
1

∥X∥

∑
dXY +

1

∥Y∥

∑
dYX

�

2

Intra‑observer Variability

As mentioned, the observer responsible for annotating the struc-
tures of interest on the compressed files (Segmentor #1) seg-
mented the raw sequence twice with a time interval of approxi-
mately one month ( St=0 and St=1 , respectively). This allowed us 
to perform the reference pairing RP ∶

(
St=0, St=1

)
 to character-

ize the reproducibility of its annotations in a compression-free 
scenario. For this, the set of slices of the raw dataset was identi-
fied, in which the observer performed coherently between time-
points t0 and t1 . Since the main goal of this study aims to inter-
pret the quantitative impact of lossy image compression on the 
segmentation outcome, this step was crucial because otherwise 
the variation of the segmentation could have been mistakenly 
attributed to the compression. An empirically selected thresh-
old t ∶ JI ≥ 0.7 was used to filter out the slices with coherent 
segmentation V from the ‖N‖ available slices. Here, V repre-
sents the set of slices where the intra-observer agreement in a 
compression-free scenario was verified according to

The final IaOV value corresponds to the average of the 
JI between 

(
St=0, St=1

)
 , computed only at slices i ∈ V  , as 

given in Eq. 5

(4)V ∶
{
i, if JI

(
St=0,i, St=1,i

)
≥ t

}
i∈∥N∥

(5)IaOV(JI) =

∑V

i
JI
�
St=0;i, St=1;i

�

‖V‖

Fig. 1   Example of a raw HREM slice (left) with the corresponding annotations (right) enclosed by red bounding boxes
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A similar approach was followed to compute a IaOV fig-
ure based on the HD similarity metric. Specifically, when 
converting the reference binary volumes into discrete sets of 
annotated points, all the annotated voxels defined in slices 
that do not belong to a valid set V  were ignored.

Inter‑observer Variability

A second observer segments the raw HREM and MRI 
sequences following the same protocol as the first observer, 
and the segmentation data was used to compute an inter-
observer variability (IeOV), according to the following compu-
tational methodology. Starting from the sets of coherently seg-
mented slices specific to each observer (A and B), VA and VB , 
the set of slices where both observers achieved high agreement 
between their first and second segmentation on the raw data 
was represented by the logical conjunction VOAB

= VOA
∩ VOB

 . 
VOAB

 hence represents the set of slices where the segmenta-
tions of both observers are compared to define the IeOV. Since 
each observer created two reference masks for each modal-
ity, the next step involved merging these two segmentations (
St=0, St=1

)
 into one. The merging operation consisted of a 

logical intersection in the form of St=0 ∩ St=1 to keep only the 
annotations that are preserved between t0 and t1 time-points. 
Once the pair 

(
St=0, St=1

)
 of each observer was merged, the two 

resulting binary masks SA and SB were used to compute the JI 
for the slices belonging to VOAB

 . The inter observer variability, 
IeOV, is then defined as the average of the JI values of the 
slices in VOAB

 , as given by Eq. 6

Texture Analysis

Due to the lack of prior results in the scientific literature, it 
is not clear how the compression affects the image texture of 
“biomedically relevant” regions, and how the compression 
effects vary with the compression ratio. To ensure that the 
varying levels of compression induced real variations on the 

(6)IeOV(JI) =

∑VOAB

i
JI
�
SA;i, SB;i

�

‖VOAB
‖

image statistics at those regions, a prior quantitative texture 
analysis was accomplished before sharing the compressed 
data with the expert observers. First, the reference segmen-
tations were used to find the isolated annotations/segments 
at each slice. By iterating over all the annotations An=1,...,N , 
each one was represented by the respective bounding box 
Bn (see Fig. 1).

At each bounding box, a weighted version of the isotropic 
total variation operator wTVBn given by was computed. In 
this equation, yTopAn

 and xLeftAn
 refer to the top y-coordi-

nate and left x-coordinate, respectively, of the bounding box 
enclosing the An annotation. H and W correspond to the 
height and width of each bounding box Bn , respectively, and 
I represents the image intensity.

The total variation operator leads to a measure of image com-
plexity with respect to the spatial variation of the image texture, 
and since each bounding box includes not only the annotation 
of the object but also part of the background, the value of the 
total variation operator indicates the ability to delineate/segment 
the object. Particularly, the descriptor defined in Eq. 7 is more 
sensitive to regions where the image intensity varies with greater 
magnitude, which are particularly important for manual seg-
mentation tasks. Once all the bounding boxes were processed, 
the distribution of wTV values was averaged, and the result-
ing value represented the texture sharpness of each compressed 
image (Table 2). The values obtained demonstrate that the tex-
ture complexity at relevant regions decreases with the increase 
of the compression level, and in general, the magnitude of this 
decrease is greater using JPEG 2000 compression.

Results

The present section includes the results of the segmenta-
tion-assessment, generated according to the setup detailed 
in the “Materials and Methods” section for each encoder 
and imaging modality. The test datasets corresponds to the 
compressed files obtained as described in the “Configuration 

(7)
wTVBn

=

∑yTopAn
+H−1

i=yTopAn

∑xLeftAn
+W−1

i=xLeftAn

�
�I(i + 1, j) − I(i, j)�2 + �I(i, j + 1) − I(i, j)�2

H ×W

Table 2   The impact of 
compression ratio on the 
image details, grouped by 
modality and encoder. The 
values represent the percentage 
variation of the average 
weighted total variation 
(wTV) of each compressed file 
relatively to the raw data

CT HREM MRI

HEVC JPEG2000 HEVC JPEG2000 HEVC JPEG2000

CR ΔwTV(%) CR ΔwTV(%) CR ΔwTV(%) CR ΔwTV(%) CR ΔwTV(%) CR ΔwTV(%)

1 0 1 0 1 0 1 0 1 0 1 0
16 −1.2 8 −0.6 45 −1.6 10 −0.1 10 −2.2 9 −7.3
34 −1.9 9 −1.2 112 −3.0 33 −1.7 14 −4.0 15 −26.7
58 −4.0 12 −25.6 274 −6.3 159 −11.4 34 −7.7 44 −55.9

941 −16.4 643 −47.7 52 −10.0
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of the Image Encoders” section, and Table 3 starts this sec-
tion to summarize the achieved compression ratio of all the 
compressed files, and the target quality metric used by the 
encoders.

Qualitative Assessment of the Compression 
Schemes and Preservation of Vascular Structures

For µMRI and HREM, only vessels inside the tumor tissue 
were segmented. The image quality decreased with increas-
ing compression ratios for both compression schemes JPEG 
2000 and H.265/HEVC. Different compression artefacts 
occured, which made the segmentation process and the vis-
ual vessel identification by the expert more difficult and error 
prone. For example, the µMRI JPEG 2000 compressed data-
set with target quality of 45 dB (Fig. 2) demonstrates strong 
artefacts in a cross-like pattern. Upon visual inspection by 
Segmentors #1 and #2, it was found that, below 55 dB blood 
vessels were not faithfully identified anymore, and the posi-
tion of the vessels becomes uncertain (Fig. 3). Despite its 
coarse and blurry appearance, the slice compressed with 
H.265/HEVC with a target QP of 12 still preserved the big 
vessels and their morphology (bright spots at the top).

Regarding HREM, as for the visual inspection of µMRI 
datasets, the JPEG2000 compression method seems to pre-
serve less vascular structures than the HEVC compression. 
Using a target PSNR of 55 dB with JPEG 2000, some minor 
artefacts and blurriness can be observed (Fig. 4). However, 
below a target PSNR of 50 dB, major visual artefacts are 
created, which in turn result in incomplete morphology iden-
tification (Fig. 5) where a reduction of the vessels’ length, 
as well as the vanishing of other, typically smaller vessels, 

is visible. A very significant reduction of the volume of the 
segmented vasculature network can be verified using JPEG 
2000 with a target PSNR of 45 dB. This degradation, how-
ever, is not so evident with the increase of H.265/HEVC 
compression, which yields better results comparatively to 
JPEG 2000. In fact, for H.265/HEVC, although higher com-
pression still leads to missing and shorter vessels, the overall 
morphology resembles more the one visible in the original 
file.

For µCT, in contrast to both other modalities, the seg-
mentation was carried out automatically. Figures 6 and 7 
show that changing the compression parameters leads to 
changes on the segmented vasculature. For both H.265/
HEVC and JPEG 2000 a decrease in volume, length and 
number of vessels was observed for all compressed versions. 
The volumes compressed with H.265/HEVC showed only 
slight visual differences of the vasculature up until the target 
QP of 8, where the images become less noisy, compared 
to the original (Fig. 6). From a target quality of QP10 to 
QP20 a decrease in the vessel length can be observed. The 
JPEG2000 compression differs, as the image stack becomes 
unreliable in dB45. In dB40, the information of any vessels 
inside the stack is lost (therefore not shown).

Overall, for all three modalities, and compared to 
JPEG2000, H.265/HEVC compressed images resulted in 
better manual segmentation, and improved preservation 
of vascular parameters such as vessel length and morphol-
ogy at similar CRs (Fig. 7). Figure 8 provides a compact 
view of the multi-scale structural similarity index measure 
maps (MS-SSIM) [39], computed at regions depicted in 
Figs. 2, 4, and 6 for the highest compression tested for 
both JPEG2000 and H.265/HEVC. First of all, the most 

Table 3   Compression ratios 
and objective target quality 
for each encoder and modality 
combination

HREM

Encoder Target quality Compression ratio Encoder Target quality Compression ratio

JPEG 2000
65 dB 10

H.265/HEVC

60 dB (QP 2) 45
60 dB 33 58 dB (QP 5) 112
55 dB 159 56 dB (QP 10) 274
50 dB 643 54 dB (QP 17) 941

µMRI

JPEG 2000

55 dB 9

H.265/HEVC

57 dB (QP 2) 10
50 dB 15 54 dB (QP 5) 14
45 dB 44 49 dB (QP 10) 34

48 dB (QP 12) 52
µCT

JPEG 2000
57 dB 8

H.265/HEVC
53 dB (QP 5) 16

55 dB 9 50 dB (QP 8) 34
53 dB 12 48 dB (QP 10) 58
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compressed H.265/HEVC images presented slightly better 
quality than their JPEG2000 homologous (HREM: H.265/
HEVC – 52 dB, JPEG2000 – 45 dB; CT: H.265/HEVC 
– 46 dB, JPEG2000 – 45 dB; MRI: H.265/HEVC – 48 dB, 
JPEG2000 – 45 dB) and, as expected, the MS-SSIM maps 
also evidence an overall improved performance of H.265/
HEVC in retaining structural detail in comparison to 
JPEG2000. Furthermore, the MS-SSIM maps computed 
at JPEG2000 compressed images demonstrate a greater 
dispersion, denoted by greater difference in terms of struc-
tural detail between background (less complex) regions 
and foreground regions. MS-SSIM maps of H.265/HEVC 
compressed regions, on the other hand, show less disper-
sion with a more homogenous distribution of structural 
detail preservation.

Quantitative Assessment

The quantitative assessment of the compressed image files-
was characterized by two metrics: compression ratio (CR) and 
image quality. A CR-quality curve relates the distortion mag-
nitude introduced by the compression with the number of bits 
required by the encoder to represent the image. Figure 9 depicts 
the performance of both encoders, for each modality, through 
graphical representations of the correspondence between com-
pression ratio and the corresponding image quality value (in this 
case PSNR). The range of distortion values after compression 
with JPEG2000 and H.265/HEVC encoders was found to be 
between 45 and 65 dB. Furthermore, the curves highlight the 
superior compression efficiency of H.265/HEVC over JPEG 
2000 and, as expected lower quality associated with larger 

Fig. 2   µMRI of a mouse tumor 
after compression. The same 
region cropped from a slice of 
the MRI stack is displayed at 
different qualities (left column 
– JPEG 2000; right column – 
H.265/HEVC). Note the H.265/
HEVC blocking artefacts 
starting for 51 dB image qual-
ity. Note the high quality of 
the information preserved in 
images compressed with higher 
qualities, and all the JPEG 2000 
compressed versions up to a 
target quality of 55 dB



1836	 Journal of Digital Imaging (2023) 36:1826–1850

1 3

compression ratios. For the µCT sequence, the compression 
ratios for H.265/HEVC and JPEG 2000 did not match, since, 
from a compression ratio of approximately 12 onwards, the 
JPEG 2000 compressed versions did not reach the minimum 
quality required for automated processing, as reported indepen-
dently by the two observers. This can be due to the very thin vas-
cular structures that are difficult to represent in an efficient way 
using a DWT-based coding scheme. In line with the qualitative 

assessment, the quantitative evaluation of the compressed files 
according to the approach described in the “Texture Analysis” 
section, showed a gradual degradation of the image sharpness 
at regions corresponding to annotated vessels.

To quantitatively compare the compressed and the original 
datasets across modalities, only non-compressed slices where 
the intra-observer variability score (i.e., the Jaccard Index) was 
above a minimum acceptable value t were chosen. Figure 10 

Fig. 3   Segmented blood vessels 
in a mouse tumor extracted 
from images with varying level 
of compression (left column 
– JPEG 2000; right column – 
H.265/HEVC). The location of 
the mouse tumor sample imaged 
with µMRI and illustrated via 
a volume rendering combined 
with a surface rendering on the 
top left. The tumor is situated 
on the dorsal side of the left 
hip. In the images beneath, the 
tumor is shown separately, using 
surface and volume rendering. 
As compression increases from 
top to bottom fewer vessels are 
visible inside the tissue. Par-
ticularly, the image compressed 
with JPEG2000 with a target 
PSNR of 45 dB stands out, as 
many vessels are missing
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shows how changes in the parameter t determine the size ‖V‖ 
of the set of working/valid slices of HREM and MRI sequences. 
After visual inspection of the two HREM and MRI control 
segmentations, the threshold was set to t = 0.7 , which led to 
retaining more than one-third of the original number of slices 
for both modalities. It can be visually analyzed in Fig. 11 that a 
good preservation of the structural detail is still obtained with 
t = 0.7 , as suggested in [40].

Based on the Jaccard indices, we computed intra- and 
inter-observer reference values for HREM and µMRI 
for the uncompressed datasets, which are summarized 
in Table 4 and represented through red and pink dashed 
lines in Fig. 12. For the intra-observer variability, the 
same observer segmented the uncompressed datasets 
twice sequentially after a month, and for the inter-observer 
variability, two knowledgeable scientists segmented the 

Fig. 4   HREM images of a 
mouse tumor region extracted 
from images with varying level 
of compression. Left top corner: 
HREM image analysis, dis-
played via a volume rendering 
in combination with the image 
planes y,z. Other: Images of the 
same slice compressed with dif-
ferent quality (mid-row: JPEG 
2000 compression; bottom row: 
H.265/HEVC compression). 
The top right corner shows the 
original image, triangles mark 
segmented vessels. The high-
est H265/HVEC compression 
(bottom-right corner) resulted 
in detailed images in contrast to 
the highest JPEG2000 compres-
sion (target quality of 45 dB), 
which shows artefacts and a 
blurry appearance
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uncompressed datasets independently. The comparison 
of these segmentation procedures allowed us to quantify 
the reproducibility of the segmentation task, and to nor-
malize the results of segmentation after compression with 
these reference segmentations. In the best case of a single 
researcher segmenting the data twice, the Jaccard index 
reaches a maximum value of about 88%, which is even 
lower if two Segmentors annotate the raw data (maximum 
JI of only 75 and 63%). We therefore assume that any JI 
above 75% for HREM and 63% for MRI indicates a clear 

preservation of the vascular structure, which still allows 
for the quantitative analysis of the vessel lengths, volumes, 
and morphologies.

A statistical analysis of the available distributions of Jac-
card indices was performed using the Tukey multiple compar-
ison test (confidence level of 95%) to compare all the experi-
mental groups under study. The analysis was executed only 
for HREM and MRI since those were the modalities involved 
in the assessment of the manual segmentation task. Due to 
this, the distributions used to compute the intra-observer 

Fig. 5   Volume rendering of the 
segmented vessels of a mouse 
tumor HREM image stack after 
compression with varying levels 
(left column – JPEG 2000; right 
column – H.265/HEVC). Note 
the decrease in number and area 
of the segmented vessels using 
JPEG 2000 with a target quality 
of 45 dB. From 55 to 50 dB, 
JPEG 2000 shows differences 
mainly at the level of microves-
sels (capillaries)
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variability, and the inter-observer variability were only avail-
able for these modalities. In both cases (HREM and MRI), 
the distributions of Jaccard indices used to compute the intra 
and inter-observer variabilities showed significant statistical 
differences between each other, thus clarifying that the dashed 
lines in Fig. 12, used as delimiting reference levels for our 
analysis, come from statistically distinct distributions.

As expected, since lossy image compression introduces 
irreversible changes to the data, most of the evaluated points 
denoted statistical differences relatively to intra-observer 
variability (no compression, same observer), except the less 

compressed HREM files (JPEG2000 10:1, H.265/HEVC 
45:1), and MRI H.265/HEVC 14:1. All those points dem-
onstrated the best reported segmentation performance both 
in terms of Jaccard index and average Hausdorff Distance. 
In addition, most of the evaluated points also revealed sta-
tistical differences relatively to the inter-observer variabil-
ity (no compression, different observers) except the most 
compressed H.265/HEVC MRI file, and the JPEG2000 MRI 
files.

Assuming the inter-observer variability as the minimum 
threshold for the preservation of vascular morphologies, 

Fig. 6   µCT images of a mouse 
tumor vasculature extracted 
from an image with varying 
level of compression (left col-
umn – JPEG 2000; right column 
– H.265/HEVC). Visualization 
of the original data with volume 
rendering on the top (A). B–G 
One slice of the CT stack, sam-
pled from different compressed 
files. Note the blurred structures 
in F and G, notably affected by 
aggressive low-pass filtering 
characteristic of the lossy com-
pression algorithm
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the segmentation of compressed datasets that leads to statis-
tical differences relatively to the inter-observer distribution, 
and still presented an average performance (both in terms 
of JI and HD) greater than the average performance of the 
inter-observer distribution constituted a valid compression in 
the context of this study. Whenever this rule does not apply, 
there is sufficient evidence to advice against the use of such 
compressions.

Figure 12A, B demonstrate that using lossy compression 
on the HREM dataset up to 45:1 and 10:1 ratios with H.265/
HEVC and JPEG 2000, respectively, resulted in segmen-
tation errors statistically equivalent to the intra-observer 
variability. For intermediate levels of compression, in 
which further loss of performance is tolerated, it was veri-
fied that H.265/HEVC and JPEG 2000 compressions up to  
274:1 and 159:1 induced segmentation errors still below the 

Fig. 7   Comparison of the 
vasculature depicted in Fig. 6, 
imaged by µCT, and displayed 
via volume renderings compres-
sion (left column – JPEG 2000; 
right column – H.265/HEVC). 
Note that only slight differ-
ences appear in JPEG 2000 
(62 dB and 53 dB), and H.265/
HEVC (56 dB) in comparison 
to the original. Changes of the 
segmentation are more visible 
for H.265/HEVC 48 and 46 dB, 
but especially using JPEG 2000 
with target quality of 45 dB, 
where only the biggest vessels 
are segmented properly
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reference inter-observer variability for both metrics (JI and 
HD). Compression ratios in the order of 941:1 and 643:1 
although close to the inter-observer variability threshold 
according to the JI, cause significant changes in the seg-
mentations, as shown by the HD curve (Fig. 12B).

A similar analysis considering both the JI and HD results 
for the MRI dataset indicates that a compression ratio of 
52:1 can be achieved without significant impact when com-
paring to the least compressed H.265/HEVC volume with a 
compression ratio of 10:1. A compression ratio of 52:1 with 
H.265/HEVC implies segmentation errors slightly larger 
than the reference intra-observer variability but inferior to 
the inter-observer variability score. For this image modal-
ity specifically, given its low planar resolution and the very 
sparse annotations drawn, the JI displayed an overall poor 
performance in characterizing the impact of compression. 
This is because the JI constitutes a measure of overlap, with 
all the wrongly annotated voxels having the same impor-
tance. Contrarily, the HD, which considers the magnitude 
of such errors, displays a different behavior, as depicted in 
Fig. 12D, which indicates that the least compressed JPEG 
2000 volume (compression ratio of 9:1) is already slightly 
above the reference inter-observer variability. Therefore, 
was not possible to validate the use of lossy compression 
of µMRI images for segmentation tasks using JPEG 2000 in 
this study and this result is coherent with the results of the 
statistical analysis as all the JPEG2000 compressed MRI 
images under test did not differ significantly from the inter-
observer distribution. This fact demonstrates the robustness 
and completeness of analyzing the results considering the JI 
and HD simultaneously.

The results given in Fig. 12 demonstrate the applicability 
of the Hausdorff Distance in complementing the information 
provided by the JI. Particularly, while the average JI provides 
a global overlap measure, the Hausdorff Distance considers 
the magnitude of the deviations/distances between sets of 
points or line structures in space. This can be observed in 
Fig. 12A (HREM), where the average JI between the refer-
ence annotation and the H.265/HEVC is the same for the 
compression ratios of 112:1 and 274:1, but the HD score dif-
fers significantly. For the same modality, a decay of the HD 
scores was verified between JPEG2000 compression ratios 
of 33:1 and 159:1, while the JI was constant during the same 
compression ratios. This is due to outlier voxels that were 
found in a specific portion of the 33:1 compressed dataset, 
without corresponding annotations in the ground-truth mask 

at a close spatial location. In this case, given the isotropic 
voxels, the distance required to traverse along the Z axis 
(slices) was not particularly penalized when calculating the 
minimum Euclidean distance between the two points clouds 
voxel-wise (Eq. 2). As a result, the annotated voxels from 
the reference mask that were matched to the outliers wrongly 
annotated in the compressed mask corresponded to points 
far away along the Z axis but with similar coordinates in the 
XY plane.

For µMRI, Fig. 12D reveals the presence of errors with 
significant magnitude in the annotations drawn in JPEG2000 
compressed datasets given the sudden jump in the HD curve, 
as compared to their H.265/HEVC equivalents. In fact, the 
curve depicted in Fig. 12C provides further evidence about 
the insufficient use of the JI alone to measure the magnitude 
of the segmentation errors, since the JI only focuses on the 
overlap between the annotations without considering the real 
distance between wrongly annotated points relatively to the 
points annotated in the reference mask, e.g., in situations of 
identical segmentation masks up to some offsets.

In the case of the µCT, the results depicted in Fig. 11E, 
F reveal a consistent decay of the performance of the auto-
mated segmentation with the compression ratio for both 
encoders. Particularly, it was found that for a 12:1 CR, 
JPEG 2000 was still able to retain 94% of the annotated 
structures, and more than 85% given a H.265/HEVC 58:1 
CR, which translates into an average HD of approximately 
0.1 voxel. Overall, we showed that for both HREM and 
MRI sequences, the variability in the segmentation perfor-
mance, resulting from the use of lossy compression, was 
higher than the intra-observer variability but smaller than 
the inter-observer variability, except for MRI image data 
encoded with the JPEG 2000 encoder.

Figure 13 showcases examples of the use of the high-
est compression ratios under test for both encoders for 
each image modality. Particularly, the region depicted in 
Fig. 13a2, a3 demonstrates the robustness of both encoders 
in preserving the HREM texture information in the case of 
a prominent cross section of a vessel appearing in a region 
with a flat homogeneous background. The high planar (xy)  
resolution of HREM images ensures that the size of the ves-
sels sections is typically larger than the coding block sizes 
used by H.265/HEVC (from 4 × 4 to 64 × 64 pixels); this can 
also explain why artefacts are not observed due to blocking 
effect in the H.265/HEVC compressed images. However, some 
ringing artefacts on the JPEG 2000 compressed version can be 
seen at the regions of high-frequency content, corresponding 
to the background/foreground interface (Fig. 13a2). A differ-
ent scenario is presented in the second group (Fig. 12c1, c2, 
c3) consisting of a vascular cross section with poor contrast 
relative to the tumor tissue. Since no steep edges separate the 
foreground from the background, both encoders smooth out 
the local texture in a process similar to a low-pass filter that 

Fig. 8   MS-SSIM maps between compressed and uncompressed 
images. Images A, B, C correspond to regions depicted in Figs. 2, 4, 
and 6, respectively. Left column: MS-SSIM between the raw image 
and the corresponding most compressed JPEG 2000 image. Right 
column: MS-SSIM between the raw image and the corresponding 
most compressed H.265/HEVC image

◂
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makes the segmentation of the objects even more difficult after 
compression.

Figure 13e, g demonstrate that the lower spatial resolution 
of µCT and µMRI sequences that, combined with challeng-
ing image statistics, make the images more prone to compres-
sion artefacts, as depicted by the block effects evidenced after 
H.265/HEVC compression (Fig. 13e3, g3). For direct visual 
comparison between the most compressed µCT images with 
JPEG2000 (Fig. 13g2) and H.265/HEVC (Fig. 13g3), it should 
be noted that they are encoded with a significantly different 
number of bits (Fig. 9).

Although the slices of both modalities evidence sparse dis-
tribution of vessel clusters, most of the vessels’ cross-sections 
imaged by MRI appear as single-dots, which are particularly chal-
lenging to be segmented, even in a compression-free scenario. 
In contrast, the HREM slices often included larger continuous 
vascular regions that facilitates the segmentation task and make 
it more robust to errors related to fatigue or any other human-
related condition. Following this idea, we showed that the size of 

the annotated regions presented a predictor of the complexity of 
the segmentation task, since larger continuous structures are typi-
cally easier to identify and track slice-wise. Figure 14 shows the 
JI between the first and second HREM segmentations of the raw 
data (i.e., compression free) against the number of annotated ves-
sels and the average annotation area normalized by the slice area. 
The behaviors of these curves demonstrate that the segmentation 
task is simplified by the presence of fewer but larger structures.

Discussion

A first comparison of the performance of the two encod-
ers showed that H.265/HEVC delivered reconstructions of 
higher quality for a given compression ratio, which high-
lights its ability to represent the image information in a more 
compact way than JPEG 2000 (Fig. 9). This can be explained 
with the fact that H.265/HEVC is able to exploit the volu-
metric redundancy through motion estimation, thus leading 

Fig. 9   CR-quality curves for each modality, including H.265/HEVC compressed files (green lines) and JPEG 2000 compressed files (blue lines)

Fig. 10   Percentage of the total number of slices kept in the volume after applying the overlap threshold between the first and second reference 
segmentations on raw HREM (left) and MRI (right) sequences
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to more compact bitstreams than JPEG2000, as consistently 
verified in this study. However, by operating slice-wise with-
out any inter-slice coding dependency, JPEG 2000 can be 
used to encode dense volumetric sequences made of thou-
sands of slices in parallel, with potential significant savings 
in the total encoding time. JPEG 2000 offers an additional 
advantage over H.265/HEVC, which is related to its fine 
rate-control mechanism. The rate-distortion curves con-
firm that the rate-control implemented by the JPEG 2000 
encoder is more accurate given the low magnitude of the 
corresponding error bars. This aspect can be particularly 
relevant in the case of volumetric biomedical images as the 

Fig. 11   Two pairs of slices (top row: HREM, bottom row: MRI) 
extracted from the first (t = 0; left image) reference annotation, and on 
the right from the second (t = 1) reference annotation. The JI between 

the HREM annotations (top row) is 0.70, and the JI between the MRI 
annotations (bottom row) is 0.73

Table 4   Reference intra-observer variability (IaOV) and inter-observer 
variability (IeOV) values, computed as described in the “Intra-
observer Variability” and “Inter-observer Variability” sections for each 
objective score (JI and HD), grouped by image modality (HREM and 
MRI)

HREM MRI

IaOV JI HD JI HD
0.880 0.210 0.870 0.080

IeOV JI HD JI HD
0.750 0.840 0.630 0.663
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coding mechanism allows quality-control on a slice-basis, 
which can be used according to the importance of the data 
at specific slice indices.

The evaluation of the compressed images using a texture-
based descriptor confirmed the reduction of the details, and 
therefore of the image complexity, with the increase of the 
compression ratio (Table 2). Particularly, for the maximum 
compressed versions of each modality (34:1 for CT, 52:1 
for MRI, and 274:1 for HREM) the reduction of the texture 

descriptor value relatively to the corresponding uncom-
pressed images was of 1.9%, 10%, and 6.3% respectively. 
Since the computation of the descriptor was exclusively per-
formed around annotated regions, these values demonstrate 
the robustness of the encoders in preserving the relevant 
morphological features even considering the significant 
compression ratios.

The definition of a minimum overlap value t  used 
to identify the valid slices V  where the intra-observer 

Fig. 12   Results of the segmentation performance on lossy com-
pressed images, along with reference intra/inter-observer variabilities, 
quantified with JI and HD, for each modality. (Top: HREM, middle: 
MRI, bottom: CT). The red triangle icon indicates that the distribu-
tion of Jaccard Indices associated to the presented average value 

significantly differs (Tukey multiple comparison test) from the intra-
observer distribution. The pink circle indicates that the distribution of 
Jaccard indices associated to the presented average value significantly 
differs from the inter-observer distribution
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agreement was above 70% in a compression-free scenario, 
revealed that the JI is a poor description of the segmen-
tation performance. In fact, it was shown that a JI value 
of 0.7 correlates with the preservation of most structural 
details, particularly in cases where the foreground objects 
(vessels) are extremely thin. For example, in cases of ves-
sels of a width of 2 pixels, missing only 1 pixel while 
annotating the structures will result in a decay of the JI to 
0.5. In such cases, a pre-processing step that skeletonizes 
the vessel structure would help to normalize the annota-
tions, prior to the computation of the JI.

Assuming the JI of the inter-observer variability is 
the minimum threshold for the preservation of vascular 
morphologies and volume, it was concluded that lossy 

compression schemes were applicable to (i) the HREM 
dataset with compression ratios up to 274 for H.265/HEVC 
and up to about 159 for JPEG2000, (ii) and to the MRI 
dataset with compression ratios up to 52 for H.265/HEVC. 
The µCT dataset was found to be compressible up to 34 
times with H.265/HEVC and slightly more than 12 times 
with JPEG 2000, while maintaining the JI approximately 
at 0.90 or more. In metric terms, these compression setups  
originated average segmentation errors not greater than 
0.1 voxel. Based on the previously published CMI feasi-
bility study [11] where the morphological changes of the 
murine vasculature was assessed upon acquired resistance 
of in total 10 tumors, it was concluded that the data vol-
ume for HREM can be reduced from 510 GB to 1.9 GB 

Fig. 13   Regions with vessels 
along with the corresponding 
annotations extracted from the 
raw images (sub-index 1), most 
compressed version with JPEG 
2000 (sub-index 2), and most 
compressed version with H.265/
HEVC (sub-index 3)
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(10 datasets × 51 GB divided by 274), the data volume 
for µMRI can be reduced from 360 MB to about 7 MB 
(10 datasets × 36 MB divided by 52), and the data vol-
ume for µCT can be reduced from 3 GB to 88 MB (10 
datasets × 300 MB divided by 34)  to still preserve the 
biomedically relevant vascular morphology and allow the 
same conclusions. In total, considering the test volumes 
used in this study, there was a reduction of the data load 
from 513 GB to approximately 2 GB — a 256-fold reduc-
tion, while still allowing the quantitative assessment of the 
tumor vasculature across all modalities.

All the above studies are supported by objective met-
rics that can be adopted by any bioimaging team interested 
in quantitatively analyzing the impact of lossy compression 
on a specific bioimage processing pipeline. The proposed 
framework can also be used to evaluate the performance of 
one-to-multiple experts analysts for a given task, independ-
ent of lossy compression.

We have shown with our method that the JI alone is 
not  sufficient  to quantify segmentation performance. 
Applying  the Hausdorff distance together  with the JI 
allowed us to overcome these shortcomings, which is sup-
ported by the multiple comparisons statistical analysis of 
the Jaccard index distributions. Thus supported the con-
clusions drawn only after considering the HD results too, 
as particularly well depicted in Fig. 12C/D. Due to the 
discrepancy of data volume among the three modalities, 
the significance of the main findings should be put into 

perspective since most of the data volume is contributed 
in this study by HREM. In future, the authors will focus on 
extending the proposed framework to other experiments, 
involving different modalities but, preferably, with a more 
balanced multi-modal dataset. Another limitation of the 
present study corresponds to the fact that the inter-observer 
variability was exclusively based on uncompressed data; 
ideally, the inter-observer variability would be quantified 
when moving from the original to the compressed domain. 
However, this was not feasible since manual segmentations 
were very time consuming. Given these conditions, we 
decided to define the inter-observer variability using the 
best available data (uncompressed), to isolate the potential 
impact of compression distortions.

To the best of our knowledge, this is the first attempt to per-
form a thorough assessment on the impact of lossy compres-
sion using standard compression technology in a segmentation 
problem that involves multimodal imaging across scales in 
a pre-clinical context.

It is important to note that the achieved 256-fold reduc-
tion in data volume does not only tremendously alleviate 
the data storage and data transmission challenges, but can 
also facilitate data visualization: specifically, for the HREM 
datasets, manual segmentation was not trivial to handle in 
terms of computing power. This holds true for research lab-
oratories in general, and specifically for imaging facilities 
that produce GBs of data daily, which need to be stored 
and shared. Based on a discussion with Euro-BioImaging, a 

Fig. 14   Performance assessment of the HREM segmentation between time-points t0 and t1 on the raw dataset, as a function of the number of 
annotations per analyzed slice (left) and the average annotation area per analyzed slice (right)
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European research infrastructure consortium, we believe that 
in Europe alone, there are about 1200 bioimaging facilities 
that we estimate to produce PBs of data per year [41]. There 
are currently no standards and recommendations on how 
preclinical and biological imaging data across modalities 
should be archived and stored in terms of compression. Spe-
cifically, for imaging research infrastructures and facilities, 
well-defined data compression schemes will help to facilitate 
data storage and sharing, and to efficiently manage the big-
data regime in biomedical imaging.

Conclusions

In this work, we (i) compared achievable compression rates 
and data storage reductions for HREM, µCT, and µMRI 
using two standardized lossy encoding schemes (JPEG2000 
and H.265/HEVC), and (ii) assessed a maximal compression 
rate that ensures preservation of relevant image content (in 
this case, tumor vasculature) comparatively to the uncom-
pressed raw data, for each encoder. Compression rates and 
volume reductions of up to 256 were achieved for the HREM 
datasets for the H.265/HEVC compression that, in gen-
eral, reached higher compression ratios when compared to 
JPEG2000. The identification of compression ratios that still 
preserve the structural integrity of the vasculature and allow 
for quantitative analyses was based on several qualitative 
and quantitative assessments. After visual comparison of all 
segmented vessels for each imaging modality, the Jaccard 
index complemented by the Hausdorff Distance served as a 
measurement for the data similarity between decompressed 
and uncompressed datasets. Importantly, we observed very 
large variability even for the reference data that were pro-
duced by manual segmentation. Comparing the Jaccard 
index values computed on segmentations of compressed 
and uncompressed datasets allowed us to define a minimum 
acceptable Jaccard index. This analysis was achieved by 
comparing manual segmentations of the same uncompressed 
dataset from two independent Segmentors (inter-observer 
variability) and from a single Segmentor at different time 
points (intra-observer variability). This procedure allowed to 
normalize the segmentation results after compression rela-
tively to such baselines, and to set a Jaccard index of about 
0.7 as a measurement of good structural preservation in a 
compression-free scenario.

We believe the results of this work and the recommenda-
tions about which compression algorithms (and at which 
compression level) can be used safely can be useful to the 
biomedical imaging community and bioimaging facilities 
and represents a first step towards highlighting and defin-
ing compression schemes for improved storage, sharing and 
analysis of (compressed) big imaging data, both for micros-
copy and preclinical modalities.
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