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Our main focus concerns a possible lax version of the algebraic property of 
protomodularity for Ord-enriched categories. Having in mind the role of comma 
objects in the enriched context, we consider some of the characteristic properties 
of protomodularity with respect to comma objects instead of pullbacks. We show 
that the equivalence between protomodularity and certain properties on pullbacks 
also holds when replacing conveniently pullbacks by comma objects in any finitely 
complete category enriched in Ord, and propose to call lax protomodular such Ord-
enriched categories. We conclude by studying this sort of lax protomodularity for 
the category OrdAb of preordered abelian groups, equipped with a suitable Ord-
enrichment, and show that OrdAb fulfills the equivalent lax protomodular properties 
with respect to the weaker notion of precomma object; we call such categories lax 
preprotomodular.
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under the CC BY-NC-ND license (http://

creativecommons .org /licenses /by -nc -nd /4 .0/).

0. Introduction

The notion of a protomodular category [6] has proved to be central in the developments of categorical 
algebra of the last decades. A finitely complete category X is protomodular when the pullback functors 
α∗ : PtY (X) → PtA(X) are conservative for any morphism α : A → Y . When, in addition, X is pointed, X
is protomodular if and only if the Split Short Five Lemma holds. We recall in Theorem 2.1 well-known 
equivalent conditions expressed by properties on pullbacks which characterise protomodularity.

In the first part of this paper we introduce and study a lax version of protomodularity in the context 
of Ord-enriched categories. For a finitely complete Ord-enriched category C with comma objects and 2-
pullbacks, we replace pullbacks conveniently with comma objects or 2-pullbacks and the pullback change-of-
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base functors with comma object change-of-base functors in order to analyse lax versions of the properties of 
Theorem 2.1. Since comma objects are defined on ordered pairs of morphisms, we have two possible change-
of-base functors, given a morphism α : A → Y : the vertical comma object functor Vα : PtY (C) → PtA(C)
and the horizontal comma object functor Hα : PtY (C) → PtA(C). We show that the lax version of the 
equivalences in Theorem 2.1 hold for C; see Theorem 2.5, Corollary 2.6, Theorem 2.11 and Corollary 2.12.

Due to the above characterisations, we propose to call a finitely complete Ord-enriched category C which 
admits comma objects and 2-pullbacks lax protomodular when the comma object functor Vα is conservative 
for any morphism α in C. We shall call C colax protomodular when Cco is lax protomodular, that is, when 
Hα is conservative for any morphism α in C. The interplay between the different ingredients encoded on 
protomodularity is worked out in Section 2.

While the categories of internal groups and of internal abelian groups in Ord are protomodular, and hence 
lax and colax protomodular for any compatible Ord-enrichment by Corollary 2.7, the classical categories 
OrdGrp of preordered groups (studied e.g. in the recent work [8]) and OrdAb of preordered abelian groups 
and monotone homomorphisms are not protomodular. (In these categories the inversion morphism of the 
group structure is not necessarily monotone; it is, in fact, anti-monotone.) One can hence pose the following 
question:

Is there a non-degenerate Ord-enrichment of these categories so that protomodularity is recovered in a lax 
sense?,

which remains unanswered.
Nevertheless in the second part of the paper, in Section 3, we present an Ord-enrichment of OrdAb, 

denoted by OrdAb, which yet does not admit comma objects but admits precomma objects, and therefore 
allows the study of change-of-base functors with respect to precomma objects. Since the results for lax 
protomodularity can be carried out naturally to this weaker setting, we call a finitely complete Ord-enriched 
category C with precomma objects lax preprotomodular (resp. colax preprotomodular) when the precomma 
object functor Vα (resp. Hα) is conservative for any morphism α in C. We show in Section 3 that OrdAb is 
lax preprotomodular but not colax preprotomodular.

In addition, we analyse the behaviour of two different factorisation systems in OrdAb, which correspond 
to (bijective on objects, full and faithful) and (surjective on objects, monic, full and faithful) factorisation, 
showing that they are not pullback-stable, and so OrdAb fails to be Ord-regular.

1. The Ord-enriched change-of-base functors

In the following C denotes a finitely complete category enriched in the category Ord of preordered sets 
and monotone maps. (Recall that a preorder is a reflexive and transitive relation.) This means that for any 
objects X and Y of C, C(X, Y ) is equipped with a preorder such that (pre)composition preserves it. We 
will denote this preorder of morphisms by �. If we consider in C the reverse preorder we obtain again an 
Ord-enriched category which we denote, as usual, by Cco.

A morphism f : X → Y is said to be full when: given morphisms a, a′ : A → X such that fa � fa′, then 
a � a′; equivalently, fa � fa′ if and only if a � a′. Note that, in the Ord-enriched context all morphisms 
are faithful.

Given an ordered pair of morphisms (f : X → Y, g : Z → Y ) in C with common codomain, the (strict) 
comma object of (f, g) is defined by an object C and morphisms c1 : C → X, c2 : C → Z such that

(C1) fc1 � gc2;
(C2) it has the universal property: given morphisms α : A → X and β : A → Z with fα � gβ, there exists 

a unique morphism λ : A → C such that c1λ = α and c2λ = β, as in diagram (1.i) below;
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(C3) for morphisms α, α′ : A → X, β, β′ : A → Z such that fα � gβ, fα′ � gβ′, α � α′ and β � β′, the 
corresponding unique morphisms λ, λ′ : A → C verify λ � λ′;

(1.i)

A

α

β

λ

C
c2

c1 �

Z

g

X
f

Y.

The comma object of (f, g) will be denoted by f/g, its “projections” by π1 : f/g → X and π2 : f/g → Z, 
and the induced morphism as above by λ = 〈α, β〉. Note that, if C admits 2-products then condition (C3) is 
equivalent to the fact that the morphism 〈c1, c2〉 : C → X ×Z is full and faithful. Although the faithfulness 
of morphisms comes for free in this context, this is no longer the case in the general enriched context. For 
this reason, we chose to refer to both conditions throughout the text.

We call a construction as above the precomma object of (f, g) when only conditions (C1) and (C2) are 
required to hold.

Given a comma object diagram as in (1.i), if fc1 = gc2, then it is easy to check that f/g is the 2-pullback 
of (f, g); similarly the precomma object of (f, g) coincides with the pullback of (f, g).

From now on, C will denote a finitely complete category enriched in Ord which admits comma objects.
Given an object Y , as usual we denote by C/Y the slice category of C over Y . Our main change-of-base 

functors will be defined on points over Y . Here by point over Y we mean a morphism from the terminal 
object 1Y : Y → Y into an arbitrary object f : X → Y of C/Y ; that is, a C-morphism s : Y → X so that 
fs = 1Y . Hence a point in C is given by a split epimorphism f : X → Y with a chosen splitting s : Y → X. 
We denote by PtY (C) the category of points over Y in C.

Given a morphism α : A → Y in C, we can define two possible functors by taking comma objects along 

points. For a point X
f

Y
s

, we form the comma objects

A

1A

sα

〈1A,sα〉

A

sα

1A

〈sα,1A〉

α/f
π2

π1 �

X

f

and f/α
π2

π1 �

A

α

(1.ii) A
α

Y,

s

X
f

Y.
s

(1.iii)

These constructions define respectively the vertical and horizontal comma objects change-of-base functors:
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Vα : PtY (C) −→ PtA(C)
Z

γ

g
X

f

Y

s

�−→ α/g

Vα(γ)

α/f

π1

A,

〈1A,sα〉

where Vα(γ) is induced by the universal property of α/f , and

Hα : PtY (C) −→ PtA(C)
Z

γ

g

X
f

Y
s

�−→ g/α

Hα(γ)

f/α
π2

A,
〈sα,1A〉

where Hα(γ) is induced by the universal property of f/α.
As in any Ord-enriched category, the notion of adjoint pair of morphisms allows us to consider the 

following particular points, that play special roles in comma objects and consequently in the change-of-base 
functors, as explained next. A point (f, s) is called rali (short for right adjoint, left inverse) when sf � 1X ; 
it is called lali (short for left adjoint, left inverse) when 1X � sf . We denote by PtrY (C) (resp. PtlY (C)) 
the category of rali (resp. lali) points over Y .

Remark 1.1. It is easy to check that, in diagram (1.ii), with X
f

Y
s

a rali, also the point α/f
π1

A
〈1A,sα〉

is a rali since 〈π1, π2〉 : α/f → A × X is full and faithful, π1〈1A, sα〉π1 = π1 and π2〈1A, sα〉π1 = sαπ1 �

sfπ2 � π2. Analogously, if X
f

Y
s

is a lali, in diagram (1.iii) the point f/α
π2

A
〈sα,1A〉

is lali. In partic-

ular, for any morphism α : A → Y , the point α/1Y
π1

A
〈1A,α〉

is always rali, while the point 1Y /α
π2

A
〈α,1A〉

is always lali.
Therefore, for any morphism α : A → Y , Vα (co)restricts to a functor on rali points; similarly, Hα

(co)restricts to a functor on lali points.

2. Lax protomodularity

Several algebraic properties in a category X with pullbacks can be expressed by properties of the pullback 
functors α∗ : PtY (X) → PtA(X), for morphisms α : A → Y . One of the key results in this direction is the 
following (a proof can be found e.g. in [3]):

Theorem 2.1. For a category X with pullbacks, the following conditions are equivalent:

(i) the pullback functors α∗ : PtY (X) → PtA(X) are conservative for every α : A → Y ;
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(ii) for any commutative diagram of points

(2.i)

·

A

·

B

·

· · ·

(also commuting with the upward sections) where A and A B are pullbacks, then B is also a pullback;
(iii) for any pullback of a point (f, s) along an arbitrary morphism

(2.ii)

A×Y X

π1

π2
X

f

A Y,

s

the pair (π2, s) is jointly extremally epimorphic.

A finitely complete category X is called protomodular1 [6] if the equivalent conditions of the previous 
theorem hold in X.

Example 2.2. Some examples of protomodular categories are (see [3] for more examples):

• The variety Grp of groups and, more generally, of Ω-groups (the corresponding theory has, among its 
operations, a unique constant and the group operations). In fact, in [7] the varieties which form a 
protomodular category were characterized as those for which there exist n ∈ N and
– constants e1, . . . , en;
– binary operations α1, . . . , αn such that αi(x, x) = ei for all i = 1, . . . , n;
– an (n + 1)-ary operation θ such that θ(α1(x, y), . . . , αn(x, y), y) = x.

• Any additive category with finite limits.
• Setop and, more generally, the dual of any elementary topos.

If, moreover, the category X is pointed, then it is immediate to see that the conservativeness of all pullback 
functors α∗ : PtY (X) → PtA(X) is implied by (and hence equivalent to) the conservativeness of the pullback 
functors induced by the morphisms whose domain is the zero object. This last property is equivalent to the 
classical Split Short Five Lemma (see, for example, Proposition 3.1.2 in [3]). Hence, for pointed categories, 
protomodularity is equivalent to the validity of the Split Short Five Lemma.

Our goal now is to replace the protomodularity condition with a lax version of it, where we look at the 
conservativeness of the comma object functors. We can consider a “vertical” version of Theorem 2.1 where 
the α∗ are replaced by Vα and the points are vertical arrows as in diagrams (2.i) and (2.ii). Or we can 
consider the “horizontal” case with Hα and where the points appear horizontally in those diagrams. Despite 
this distinction, the equivalences obtained in C in one direction give immediately the corresponding results 
in the other direction when applied to Cco.

We chose vertical as our “priority case” with detailed proofs and simply state the equivalences for the 
horizontal case. Note that an Ord-enriched category may fulfill the equivalent vertical properties and fail 
to fulfill the horizontal ones, or vice-versa. We propose the names lax protomodular category for an Ord-
enriched finitely complete category C with comma objects and 2-pullbacks such that the above mentioned 

1 The original definition only asks for X to admit the existence of pullbacks of points along arbitrary morphisms. When X is such, 
the equivalences of Theorem 2.1 still hold.
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equivalences hold in the vertical direction and colax protomodular category with respect to the horizontal 
direction (see Definition 2.13).

Replacing pullbacks with comma objects to get similar equivalences as those in Theorem 2.1 is not 
straightforward. Properties on pullbacks do not give similar properties on comma objects; e.g. gluing comma 
objects together does not give a comma object in general. However, there are some well-known properties 
combining comma objects and 2-pullbacks, whose proof can be found, for instance, in [13]:

Lemma 2.3. Let C be a finitely complete Ord-enriched category which admits comma objects. Consider the 
diagram where the right square is a comma object and the left square is commutative

P

p1

p2
f/g

π1

π2

�

Z

g

X ′
x

X
f

Y.

The outer rectangle is a comma object if and only if the left square is a 2-pullback.

A similar result holds by stacking squares vertically:

Lemma 2.4. Let C be a finitely complete Ord-enriched category which admits comma objects. Consider the 
diagram where the bottom square is a comma object and the top square is commutative

P

p1

p2
Z ′

z

f/g

π1

π2

�

Z

g

X
f

Y.

The outer rectangle is a comma object if and only if the top square is a 2-pullback.

We now prove that when we replace the pullback functor with a comma object functor and the pullbacks 
with comma objects we obtain enriched versions of the equivalence Theorem 2.1 (i) ⇔ (ii).

Theorem 2.5. Let C be a finitely complete Ord-enriched category which admits comma objects and 2-
pullbacks. The following statements are equivalent:

(i) Vα : PtY (C) → PtA(C) is conservative for any morphism α : A → Y .
(ii) In any diagram where the left square 1 and total rectangle 1 2 are comma diagrams and the right 

square 2 is commutative

(2.iii)

α/f

�π1

π2
X

f

χ
U

g

A

i1

α

1
Y

s

β

2
V,

t
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that is, απ1 � fπ2, i1 = 〈1A, sα〉, fs = 1Y , gt = 1V , βf = gχ, χs = tβ, the right square 2 is a 
2-pullback.

Proof. (i) ⇒ (ii). In the following diagram

α/1Y
ρ2

σ

ρ1

Y

s

1Yα/f

�

π2

3

π1

X

f

A
α

1
Y

we get an induced morphism σ : α/1Y → α/f such that the bottom square and total rectangle are comma 
objects; thus the top square 3 is a 2-pullback (Lemma 2.4). Similarly, we get an induced morphism ϕ : α/f →
α/1Y

α/f
π2

ϕ

π1

X

f

fα/1Y

�

ρ2

5

ρ1

Y

1Y

A
α

4
Y

such that 5 is a 2-pullback. It is easy to check that ϕσ = 1α/1Y
.

Next we prove that the following diagram

α/1Y
ρ2

ρ1 �

Y
β

1Y

V

1V

A
α

4
Y

β

6
V

is a comma object diagram. Indeed:

(C1) βαρ1 � βρ2;
(C2) if m : M → A and n : M → V are such that βαm � n, then βαm � gtn. We get an induced morphism 

λ : M → α/f
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M

λ

m

tn

α/f

�

π2

π1

X

f

χ
U

g

A
α

1
Y

β

2

s

V

t

such that π1λ = m and χπ2λ = tn. We consider the morphism ϕλ : M → α/1Y which is such that 
ρ1ϕλ = π1λ = m and βρ2ϕλ = βfπ2λ = gχπ2λ = gtn = n. To prove the uniqueness of such a 
morphism, suppose that ξ : M → α/1Y is such that ρ1ξ = m and βρ2ξ = n. Then tβρ2ξ = tn or, 
equivalently, χsρ2ξ = tn, from which we get χπ2σξ = tn. Since also, π1σξ = π1ξ = m, we conclude 
that λ = σξ, from the universal property of the comma object of (βα, g). It follows that ϕλ = ϕσξ = ξ;

(C3) consider morphisms c, c′ : B → A, d, d′ : B → V such that βαc � d, βαc′ � d′, c � c′ and d � d′. Let 
b = 〈c, d〉, b′ = 〈c′, d′〉 be the induced morphisms from B to α/1Y . With respect to the comma object 
diagram 1 2 , we have morphisms c, c′, td, td′ such that βαc � gtd, βαc′ � gtd′, c � c′ and td � td′. 
Thus the induced morphisms σb, σb′ : B → α/f are such that σb � σb′. Then b = ϕσb � ϕσb′ = b′.

In the following diagram

α/f
π2

ϕ

π1

X
χ

f

U

g

α/1Y ρ2

5

ρ1

σ

Y
β

2

s

V

t

A
α

4
Y

β

6
V,

the bottom rectangle and the total diagram are comma objects, so that the top rectangle is a 2-pullback 
(Lemma 2.4).

Next, we take the 2-pullback of β and g to get the following diagram

α/f
π2

ϕ

π

X
χ

f

〈f,χ〉

U

gP

β′

g′

α/1Y ρ2

σ

Y
β

s

t′

V.

t

Since the whole rectangle is a 2-pullback, the bottom left quadrangle is a 2-pullback; let us call it 7 . The 
diagram composed by 4 on the bottom and 7 on top is a comma object diagram (Lemma 2.4). This is the 
front face in
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α/f

π1

π2

Vα(〈f,χ〉)=1α/f∼=

X

f

〈f,χ〉

α/f

ϕ

π
P

g′

α/1Y

ρ1

ρ2

7

σ

Y

t′

A

〈1A,α〉

i1

α

4
Y ;

s

the left point being (ρ1ϕ, σ〈1A, α〉) = (π1, i1). Note that, Vα(〈f, χ〉) = 1α/f , so that 〈f, χ〉 is an isomorphism 
by assumption. This proves that 2 is indeed a 2-pullback.

(ii) ⇒ (i). Consider an arbitrary morphism α : A → Y and a morphism γ : (f, s) → (g, t) in PtY (C). 
Suppose that Vα(γ) is an isomorphism

α/f

π1

π2

Vα(γ)∼=

X

f

γ

α/g

ρ1

ρ2
U

g

A
α

j1

i1

Y ;

s

t

here i1 = 〈1A, sα〉 and j1 = 〈1A, tα〉. The diagram

α/f

�π1

π2
X

f

γ

∗

U

g

A

i1

α
Y

s

1Y

Y

t

is of the type (2.iii). The whole rectangle is a comma object diagram because it is the same as

α/f

π1

Vα(γ)
∼= α/g

�ρ1

ρ2
U

g

A
1A

A
α

Y,
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where the left commutative square is obviously a 2-pullback (see Lemma 2.3). By assumption ∗ is a 2-
pullback; thus γ is an isomorphism. �

The horizontal version of the previous result is stated next.

Corollary 2.6. Let C be a finitely complete Ord-enriched category which admits comma objects and 2-
pullbacks. The following statements are equivalent:

(i) Hα : PtY (C) → PtA(C) is conservative for any morphism α : A → Y .
(ii) In any diagram where the top square 1 and total rectangle are comma diagrams and the bottom square 

2 is commutative

f/α

�

π2

π1

A
i2

α1

X
f

χ

Y

β2

s

U
g

V,
t

that is, fπ1 � απ2, i2 = 〈sα, 1A〉, fs = 1Y , gt = 1V , βf = gχ, χs = tβ, the bottom square 2 is a 
2-pullback.

Corollary 2.7. Let X be a protomodular category. Then any Ord-enrichment X of X that admits comma 
objects and 2-pullbacks fulfills the equivalent conditions of Theorem 2.5 and of Corollary 2.6.

Proof. Note that pullbacks coincide with 2-pullbacks in this setting. Consider a diagram as in Theo-
rem 2.5.(ii). Following its proof above, we deduce that 5 2 is a (2-)pullback. Since 5 is also a (2-)pullback, 
we conclude that 2 is a (2-)pullback from protomodularity (Theorem 2.1). �

Remark 2.8. The statements of Theorem 2.5 and Corollary 2.6 still hold when we replace 2-pullbacks with 
(1-)pullbacks. Indeed, in the proof of the implication (i) ⇒ (ii) in Theorem 2.5, we can take the pullback 
of β and g and still conclude that 7 is a 2-pullback. The rest of that proof is the same. For (ii) ⇒ (i) in 
Theorem 2.5, we get that ∗ is a pullback and can still conclude that γ is an isomorphism.

In the 1-dimensional context, in Theorem 2.1, the proof of the equivalence between condition (iii) and 
conditions (i) and (ii) uses the following well-known fact: the conservativeness property of a left exact 
functor F is equivalent to its conservativeness on monomorphisms. A functor F is said to be conservative 
on monomorphisms if, for every monomorphism f , if F (f) is an isomorphism, then so is f . Any pullback 
functor α∗ : PtY (X) → PtA(X) preserves finite limits, as soon as the base category X admits pullbacks along 
split epimorphisms. In the enriched context, such a property fails to hold for the comma objects functors. In 
fact, given a morphism α : A → Y and the terminal object (1Y , 1Y ) of PtY (C), the comma object α/1Y does 
not necessarily give rise to the terminal object (1A, 1A) of PtA(C) (nor does 1Y /α). Despite this setback, 
we still obtain a similar result with respect to the conservativeness of Vα and Hα.

Proposition 2.9. Let C be a finitely complete Ord-enriched category which admits comma objects. The fol-
lowing statements are equivalent:
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(i) Vα : PtY (C) → PtA(C) is conservative, for any morphism α : A → Y .
(ii) Vα : PtY (C) → PtA(C) is conservative on monomorphisms, for any morphism α : A → Y .

Proof. (i) ⇒ (ii). Obvious
(ii) ⇒ (i). Consider an arbitrary morphism α : A → Y and a morphism γ : (f, s) → (g, t) in PtY (C). 

Suppose that Vα(γ) is an isomorphism

α/f

π1

π2

Vα(γ)∼=

X

f

γ

α/g

ρ1

ρ2
U

g

A
α

j1

i1

Y ;

s

t

here i1 = 〈1A, sα〉 and j1 = 〈1A, tα〉. From Lemma 2.4, the top quadrangle is a 2-pullback. Taking kernel 
pairs vertically we obtain a diagram where both downward squares are 2-pullbacks

α/f
π Eq(γ)

γ1 γ2

α/f
π2

X;

d

here d = 〈1X , 1X〉. Combining the 2-pullback with first projections and the comma object of (α, f), we get 
a comma object (Lemma 2.4) which is the front face in

α/f

π1

π2

Vα(d)

X

f

d

α/f

π1

π Eq(γ)
fγ1

A
α

i1

i1

Y.

s

ds

By assumption, the monomorphism d is an isomorphism. This implies that γ1 = γ2 and, consequently, γ is 
a monomorphism. Applying our assumption again, we conclude that γ is an isomorphism. �

Corollary 2.10. Let C be a finitely complete Ord-enriched category which admits comma objects. The follow-
ing statements are equivalent:

(i) Hα : PtY (C) → PtA(C) is conservative, for any morphism α : A → Y .
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(ii) Hα : PtY (C) → PtA(C) is conservative on monomorphisms, for any morphism α : A → Y .

Thanks to these facts, we get the following:

Theorem 2.11. Let C be a finitely complete Ord-enriched category which admits comma objects. The following 
statements are equivalent:

(i) Vα : PtY (C) → PtA(C) is conservative for any morphism α : A → Y .
(ii) for any comma object of the form

α/f
π2

π1 �

X

f

A

i1

α
Y,

s

the pair (π2, s) is jointly extremally epimorphic; here i1 = 〈1A, sα〉.

Proof. (i) ⇒ (ii). Let m be a monomorphism for which the diagram

M

m

α/f

p

π2
X Y

σ

s

commutes. We get the following diagram

α/f

π1

p

Vα(m)=1α/f

M

fm

m

α/f

π1

π2
X

f

A
α

i1

i1

Y.

s

σ

Note that the top quadrangle is a 2-pullback, so that the back face is a comma object diagram (Lemma 2.4). 
Since m is a monomorphism and mpi1 = π2i1 = sα = mσα, it follows that pi1 = σα. From the assumption 
we conclude that m is an isomorphism.

(ii) ⇒ (i) Conversely, for any morphism α : A → Y , a diagram as above gives a factorisation of π2 and 
s through the monomorphism m, which is then an isomorphism by assumption. This proves that Vα is 
conservative on monomorphisms, which is equivalent to being conservative (Proposition 2.9). �

Corollary 2.12. Let C be a finitely complete Ord-enriched category which admits comma objects. The follow-
ing statements are equivalent:

(i) Hα : PtY (C) → PtA(C) is conservative for any morphism α : A → Y .
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(ii) for any comma object of the form

f/α
π2

π1 �

A
i2

α

X
f

Y,
s

the pair (π1, s) is jointly extremally epimorphic; here i2 = 〈sα, 1A〉.

Having recovered the lax versions of the equivalences in Theorem 2.1 for Ord-enriched categories, we can 
now propose the following:

Definition 2.13. A finitely complete Ord-enriched category C which admits comma objects and 2-pullbacks 
is called lax protomodular when the comma object functor Vα is conservative for any morphism α : A → Y

in C. We say that C is colax protomodular when Cco is lax protomodular, that is when the comma object 
functor Hα is conservative for any morphism α : A → Y in C.

Exactly as in the classical case, it is immediate to see that, in a pointed Ord-enriched category C with 
comma objects, the conservativeness of all comma object functors Vα is equivalent to the conservativeness 
of the functors ViA , where iA : 0 → A is the only arrow from the zero object (and the same holds for the 
H’s). Then, in the pointed context, C is lax protomodular if and only if the following lax version of the 
Split Short Five Lemma holds:

Theorem 2.14. Let C be a pointed finitely complete Ord-enriched category which admits comma objects and 
2-pullbacks. C is lax protomodular if and only if, given a commutative diagram of split sequences of the form

0/f

α

k
X

β

f

A

γ

s

0/f ′ k
X

f ′

A′,
s′

if α and γ are isomorphisms, then β is, too.

A similar result holds for pointed colax protomodular categories.

Remark 2.15. All the results of this section still hold when replacing comma objects with precomma objects 
and when replacing 2-pullbacks with (1-)pullbacks. We use the same notation Vα and Hα for the precomma 
object functors. A finitely complete Ord-enriched category C which admits precomma objects is called lax 
preprotomodular when the precomma object functor Vα is conservative for any morphism α in C. We say 
that C is colax preprotomodular when Cco is lax preprotomodular.

Example 2.16.

(1) According to Corollary 2.7, an Ord-enriched protomodular category with comma objects and 2-pullbacks 
is both lax and colax protomodular.
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(2) If T is the theory of a protomodular variety, then the category CT of internal T -algebras in C is 
also protomodular, and so it is both lax protomodular and colax protomodular, for any compatible 
Ord-enrichment which admits 2-pullbacks and comma objects.
This applies in particular to OrdT . We point out, however, that, for any algebraic theory T which 
contains a Mal’tsev operation, the preorder of any internal T -algebra in Ord is symmetric: if X ∈ OrdT

and p : X3 → X is a monotone Mal’tsev operation, then, for x, y ∈ X with x � y one obtains that 
y = p(x, x, y) � p(x, y, y) = x. This is the case of every theory T of a protomodular variety since it has 
a Mal’tsev operation defined by

p(x, y, z) = θ(α1(x, y), . . . , αn(x, y), z)

(using the operations described in Example 2.2). Therefore, the obvious Ord-enrichment inherited from 
Ord – the pointwise Ord-enrichment – will be also symmetric.
Throughout by degenerate Ord-enrichment we mean one whose hom-sets are symmetric.

(3) Let D be a finitely complete category with the (degenerate) Ord-enrichment where f � g for all parallel 
morphisms f and g. It is easy to check that D admits comma objects, which are simply binary products 
and their projections. When D is pointed, then it gives an example of a lax protomodular category, since 
Vα is conservative for any morphism α : A → Y . Indeed, consider the following commutative diagram

A× Z

π1

π2

Vα(γ)=1A×γ∼=

Z

f

γ

A×X

ρ1

ρ2
X

g

A
α

Y,

s

t

where Vα(γ) = 1A × γ is an isomorphism. Using the top quadrangle pullback above (Lemma 2.3) in the 
commutative diagram

Z

γ

〈0,1Z〉

1Z

A× Z

∼=1A×γ

π2
Z

γ

X
〈0,1X〉

1X

A×X
ρ2

X,

we conclude that the left square is a pullback; this proves that γ is an isomorphism.
(4) The former two examples raise the question

Is there a protomodular category with a non-degenerate Ord-enrichment with comma objects and 
2-pullbacks?
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Since the dual of an elementary topos is protomodular, one can more specifically ask:

Is there an elementary topos with a non-degenerate Ord-enrichment admitting cocomma objects and 
2-pushouts?

We have put this question to Peter Johnstone, who collected some interesting results on the subject in 
[10]. Namely:
– The only poset-enrichment of a localic topos over Set is the discrete one.
– The Ord-enrichment of a topos for which equalizers and exponential adjunctions are Ord-enriched is 

degenerate.
Moreover, in [10] an example of a topos with a non-degenerate Ord-enrichment is presented, but it does 
not fulfil our conditions since it does not have cocomma objects.

(5) In the next section we will study the behaviour of OrdAb equipped with a suitable Ord-enrichment. It 
is not an example of a (co)lax protomodular category since it does not admit comma objects (although 
it admits precomma objects). Hence we pose the more general open question

Is there any lax protomodular or colax protomodular non-degenerate Ord-enriched category?

3. The 2-category OrdAb of preordered abelian groups

Both the categories Grp of groups and Ab of abelian groups are protomodular, while OrdGrp and OrdAb
are not (see Theorem 4.6 in [8]). In this section we introduce an enriched preorder structure on morphisms 
which does work in favour of lax protomodularity for OrdAb.

We start by analysing possible Ord-enrichments for the category OrdGrp of preordered groups and mono-
tone homomorphisms. We recall that a preordered group is a (not necessarily abelian) group (X, +, 0)
equipped with a preorder � such that the group operation is monotone

x � y, u � v ⇒ x + u � y + v,

for any elements x, y, u, v ∈ X; their morphisms are the monotone group homomorphisms. The preorder of 
a group (X, +, 0) is completely determined by its positive cone, which is the submonoid of X, closed under 
conjugation, given by its positive elements, PX = {x ∈ X : 0 � x}.

In OrdGrp the pointwise preorder on morphisms trivialises; that is, if one defines, for morphisms f, g : X →
Y , f � g if, for all x ∈ X, f(x) � g(x), then also f(−x) � g(−x), and consequently, � is symmetric. So, 
instead we use the pointwise order restricted to positive elements, and define, for morphisms f, g : X → Y

of OrdGrp,

(3.i) f � g ⇔ ∀x ∈ PX , f(x) � g(x).

It is straightforward to check that (pre)composition preserves the preorder of OrdGrp(X, Y ), for any pre-
ordered groups X and Y , and so this defines an Ord-enriched category OrdGrp.

OrdGrp does not have precomma objects in general. In order to prove this assertion first note that, if 
(1.i) is a precomma object in OrdGrp, then C is isomorphic to X×Z, as a group, and c1, c2 are the product 
projections. This follows easily from the following inequality



16 M.M. Clementino et al. / Journal of Pure and Applied Algebra 227 (2023) 107348
(X × Z, 0)
πZ

πX �

Z

g

X
f

Y

and the universal properties of products and precomma objects. So what remains to be studied is the 
existence of a positive cone for X × Z that makes (1.i) a precomma object. Let Y be a preordered group, 
y ∈ PY and ϕ : Z → Y with ϕ(1) = y, where Z is the usual ordered group of integers, and assume that the 
precomma object of (ϕ, 1Y ) exists in OrdGrp:

(Z× Y, P )
π2

π1 �

Y

1Y

Z
ϕ

Y.

Then it is easy to check that (1, y) ∈ P , and so, by conjugation, (1, a + y − a) belongs also to P , for any 
a ∈ Y . Therefore y = (ϕπ1)(1, a + y − a) � π2(1, a + y − a) = a + y − a. Since this inequality is not valid 
in general, we conclude that the precomma object may not exist. As an example of this failure, consider 
the group Y of monotone bijective (and therefore continuous) endomaps of the real line y : R → R with the 
operation given by composition, ordered by y � y′ if, for every x ∈ R, y(x) � y′(x). Then, for instance, 
for y, a : R → R defined by y(x) = x + 1 and a(x) = x

2 , y is positive, since, for every x, x � y(x), but 
y � a ◦ y ◦ a−1.

To overcome this absence of precomma objects, we focus on its full subcategory OrdAb of preordered 
abelian groups. Here the preorder of an abelian group (X, +, 0) is completely determined by a submonoid 
of X of its positive elements, PX = {x ∈ X : 0 � x}, since closedness under conjugation comes for free. We 
consider in OrdAb the Ord-enrichment inherited from OrdGrp.

Then OrdAb does not admit comma objects in general, but it admits precomma objects. As for OrdGrp, 
if (1.i) is a (pre)comma object in OrdAb, then C is isomorphic to X × Z, as a group, and c1, c2 are the 
product projections as in the diagram below:

(3.ii)

f/g = (X × Z,Pf/g)

π1

π2

�

Z

g

X
f

Y.

The positive cone of f/g = X × Z must be

Pf/g = {(x, z) ∈ PX×Z : f(x) � g(z)}.

Indeed, if α : A → X, β : A → Z are such that fα � gβ, then 〈α, β〉 : A → X × Z is monotone: for every 
a ∈ A, if a � 0 then both α(a) � 0 and β(a) � 0, and, moreover, fα(a) � gβ(a), hence 〈α, β〉(a) ∈ Pf/g.

To check that (3.ii) is not always a comma object, consider f = g = 1Z, where again Z is the usual 
ordered group of integers, so that Pf/g = {(n, m) ∈ Z × Z ; n � 0, m � 0, n � m}. The homomorphisms 
t, t′ : Z → Z × Z, defined by t(n) = (n, 4n) and t′(n) = (3n, 5n) for every n ∈ Z, are monotone and such 
that π1t � π1t

′ and π2t � π2t
′, but t �� t′: t(1) � t′(1) would imply (2, 1) = t′(1) − t(1) ∈ Pf/g, which is 

false.
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Note that, in the precomma object above, π2 is split by the morphism 〈0, 1Z〉 : Z → X × Z (as usual), 
while π1 is not split by the group homomorphism 〈1X , 0〉 : X ��� X ×Z, since it is not monotone (denoted 
��� to emphasize it is not a morphism in OrdAb). Actually, (π2, 〈0, 1Z〉) is a rali point: for any (x, z) ∈ Pf/g, 
we get (0, z) � (x, z), because x ∈ PX ; thus 〈0, 1Z〉π2 � 1f/g.

The following result proves the conservativeness of the vertical precomma object change-of-base functor 
with respect to the slice category, which implies the same property with respect to points. Thus OrdAb is 
a lax preprotomodular category.

Proposition 3.1. For any morphism α : A → Y in OrdAb, the precomma object functor Vα : OrdAb/Y →
OrdAb/A is conservative.

Proof. We build the diagram

A× Z

ρ1

ρ2

Vα(γ)=1A×γ∼=

Z

g

γ

〈0,1Z〉

A×X

π1

π2
X

f

〈0,1X〉

A
α

Y

where the front and back faces are precomma diagrams (in particular, απ1 � fπ2, αρ1 � gρ2) and fγ = g. 
Note that the upper trapezoid also commutes with the precomma projection splittings, i.e. 〈0, 1X〉γ =
Vα(γ)〈0, 1Z〉. If Vα(γ) (= 1A × γ) is an isomorphism, then γ is also an isomorphism. The inverse of γ is 
given by the composite of morphisms ρ2Vα(γ)−1〈0, 1X〉 : X → Z, since

γρ2Vα(γ)−1〈0, 1X〉 = π2Vα(γ)Vα(γ)−1〈0, 1X〉 = π2〈0, 1X〉 = 1X
ρ2Vα(γ)−1〈0, 1X〉γ = ρ2Vα(γ)−1Vα(γ)〈0, 1Z〉 = ρ2〈0, 1Z〉 = 1Z . �

The corresponding horizontal result does not hold for OrdAb, as the next example shows.

Example 3.2. In the following diagram

(Z× Z, 0)

11Z×Z

0

(Z× Z, 0 ×N)

2

+

1Z×Z

(Z,N)

1Z

〈0,1〉

(Z× Z,N ×N)
+

(Z,N),
〈0,1〉

it is easily checked that both 1 and the outer rectangle are precomma objects. Indeed the positive cone of 
Z × Z for both precomma objects is given by

{(z, z′) ∈ Z× Z ; z � 0, z′ � 0, z + z′ � 0} = {(0, 0)}.
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However, 2 is commutative but it is not a pullback, showing that OrdAb does not satisfy condition (ii) of 
Corollary 2.6, that is, OrdAb is not colax preprotomodular.

With respect to the horizontal precomma object change-of-base functor and its conservativeness for 
OrdAb, we can only prove that each Hα is conservative when applied to rali points. As mentioned above, 
the top projection of a precomma object of a pair of morphisms (f : X → Y, g : Z → Y ) always gives rise 
to a rali point (π2, 〈0, 1Z〉). However, taking the precomma object of (f, g), when (f, s) is a rali point, gives 
rise to a point (π2, 〈sg, 1Z〉) which is not necessarily rali. For instance, in the precomma object of (1Z, 1Z), 
(π2, 〈1Z, 1Z〉) is not a rali. So, the functor below goes from rali points to ordinary points.

Proposition 3.3. For any morphism α : A → Y in OrdAb, the functor

Hr
α : PtrY (OrdAb) → PtA(OrdAb)

is conservative.

Proof. We build the diagram

Z ×A

ρ1

ρ2Hr
α(γ)=γ×1A

∼=

X ×A

π1

π2
A

αZ
g

γ

X
f

Y
s

t

where the front and back faces are precomma diagrams (in particular, fπ1 � απ2, gρ1 � αρ2); also fγ = g, 
γt = s and sf � 1X . If Hr

α(γ)(= γ×1A) is an isomorphism, then it easily follows that γ is a monomorphism 
(=injective) and an epimorphism (=surjective). We cannot proceed as in the previous proof since the vertical 
projections of precomma objects need not be split epimorphisms. To conclude that γ is an isomorphism, it 
suffices to show that γ is a regular epimorphism, i.e. that γ(PZ) ⊇ PX , which gives γ(PZ) = PX .

For x ∈ PX , we get x − sf(x) ∈ PX , because f is rali, thus (x − sf(x), 0) ∈ PX×A. Since f(x − sf(x)) =
0 � α(0), then (x −sf(x), 0) ∈ Pf/α. It follows that ρ1H

r
α(γ)−1(x −sf(x), 0) ∈ PZ . We also have tf(x) ∈ PZ . 

So, there exists an element z = ρ1H
r
α(γ)−1(x −sf(x), 0) +tf(x) ∈ PZ , such that γ(z) = x −sf(x) +γtf(x) =

x − sf(x) + sf(x) = x. �

Finally we remark that Ord-enriched regularity does not follow from the corresponding1-dimensional 
property. Indeed, as an epireflective subcategory of the regular category OrdGrp (see [8] and [4]), OrdAb is 
a regular category in the sense of [2], but OrdAb is not Ord-regular (cf. [5] and [11]), neither in the case 
we consider as right factor M of the factorisation the full and faithful morphisms nor the monic, full and 
faithful morphisms. Indeed, as we show next, in both cases there is a class of morphisms E such that (E , M )
is a non-stable orthogonal factorisation system.

Proposition 3.4. Let M (respectively M ′) be the class of (respectively monic and) full and faithful morphisms 
in OrdAb and let
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E = {h : A → B bijective ; for all b ∈ PB , b = h(a′ − a), for a′, a ∈ PA}, and

E ′ = {h : A → B surjective ; for all b ∈ PB , b = h(a′ − a), for a′, a ∈ PA}.

(1) A morphism f : X → Y in OrdAb belongs to M if, and only if, for all x, x′ ∈ PX , x � x′ ⇔ f(x) �
f(x′); a full and faithful morphism f belongs to M ′ if, in addition, it is an injective map.

(2) Given a commutative diagram

(3.iii)

A

h

u
X

f

B
v

Y,

with h ∈ E ′ and f ∈ M ′, there exists a unique morphism d : B → X such that dh = u and fd = v.
(3) Given a commutative diagram (3.iii), with h ∈ E and f ∈ M , there exists a unique morphism d : B → X

such that dh = u and fd = v.
(4) Every morphism in OrdAb factors through a morphism in E ′ followed by a morphism in M ′.
(5) Every morphism in OrdAb factors through a morphism in E followed by a morphism in M .
(6) (E , M ) and (E ′, M ′) are non-stable factorisation systems.

Proof. (1) If f : X → Y is full and faithful and x, x′ ∈ PX are such that f(x) � f(x′), then ϕ, ϕ′ : Z → X

defined by ϕ(1) = x and ϕ(1) = x′ are morphisms in OrdAb such that fϕ � fϕ′, and so ϕ � ϕ′, or, 
equivalently, x � x′. Conversely, if for all x, x′ ∈ PX , x � x′ ⇔ f(x) � f(x′) and fg � fh, for 
g, h : W → X, then, for every w ∈ PW , f(g(w)) � f(h(w)) and so g(w) � h(w), that is g � h.

(2) Given (3.iii) with h ∈ E ′ and f ∈ M ′, since h is surjective and f is injective, we define the homomor-
phism d : B → X as usual in Ab: d(b) = u(a) for any a ∈ h−1(b). Then d is the unique map such that dh = u

and fd = v. It remains to show that it is monotone: if b ∈ PB , then b = h(a′ − a) for some a, a′ ∈ PA, and 
d(b) = u(a′ − a). From v(b) = f(u(a′ − a)) ∈ PY , we get u(a′ − a) ∈ PX , since f is full and faithful; thus 
d(b) = u(a′ − a) ∈ PX .

(3) An analogous argument shows that morphisms in E are orthogonal to full and faithful morphisms: 
given (3.iii) with h ∈ E and f ∈ M , since h is bijective we define d : B → X by d(b) = u(a), where a is the 
unique element of h−1(b). Monotonicity of d follows from arguments similar to those used above.

(4) Every morphism g : Z → Y factors as Z
g′

(g(Z), P ′) m
Y , where P ′ = {y ∈ PY ; y =

g(z′ − z) for z, z′ ∈ PZ}, with, by construction, the corestriction g′ of g in E ′ and the inclusion m in M ′.

(5) Analogously, every morphism g : Z → Y factors as Z
1Z (Z,P )

g̃
Y , where P = {z ∈

Z; g(z) ∈ PY and z = z′′ − z′ for z′, z′′ ∈ PZ}, with the identity 1Z in E , and g̃ defined as g, which is full 
and faithful due to the way P is defined.

(6) Since all these classes are closed under composition with isomorphisms, we may conclude that both 
pairs are factorisation systems in OrdAb (cf. [1, Definition 14.1]).

To show that they are not stable, we consider the following pullback

(Z, {0}) 1

1

(Z,−N)

1

(Z,N)
1

(Z,Z),
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where (Z, N) → (Z, Z) belongs to both E and E ′ but (Z, {0}) → (Z, −N) does not belong to either of 
them. �

Remark 3.5. In [9] the category V -Grp of V -groups and V -homomorphisms, for a commutative and unital 
quantale V , was studied. (The reader may want to give a look at [9], and the subsequent paper [12], to 
know more on V -groups.)

Very briefly, we point out that what we have done for OrdAb can be generalized for the category V -Ab of 
abelian V -groups and V -homomorphisms, for a commutative and unital quantale V . The Ord-enrichment in 
V -Ab is defined, for V -homomorphisms f, g : (X, a) → (Y, b) by f � g if, for all x ∈ X, a(0, x) � b(f(x), g(x))
in V ; as for OrdAb, we denote this Ord-enriched category by V -Ab. This category has precomma objects: 
given morphisms f : (X, a) → (Y, b) and g : (Z, c) → (Y, b) in V -Ab, the precomma object is defined as in 
the following diagram

(X × Z, d)

π1

π2

�

(Z, c)

g

(X, a)
f

(Y, b),

where d((x, z), (x′, z′)) = a(x, x′) ∧ c(z, z′) ∧ b(f(x′ − x), g(z′ − z)), for every (x, z), (x′, z′) ∈ X × Z. Since 
d makes X × Z a V -category and it is invariant under shifting, (X × Z, d) is a V -group by [9, Proposition 
3.1]. Moreover, from the definition of d it follows that the projections π1 and π2 are V -homomorphisms, 
and that fπ1 � gπ2. The universal property of this diagram is easily checked, that is, conditions (C1) and 
(C2) are satisfied.

Now it is clear that the inclusion

OrdAb V -Ab

becomes Ord-enriched and preserves precomma objects, and so we may conclude directly that V -Ab does 
not have comma objects in general.

From the failure of lax preprotomodularity for OrdAbco it follows immediately that V -Abco is not lax 
preprotomodular. Still, using exactly the arguments of the proof of Proposition 3.1 and the description of 
precomma objects above, it is straightforward to conclude that V -Ab is lax preprotomodular.

Acknowledgements

We are grateful to John Bourke for his interesting tips on 2-dimensional regularity, Graham Manuell 
for useful discussions on Ord-enrichments on toposes, and mostly to Peter T. Johnstone for his thorough 
thoughts on topos Ord-enrichments, which gave rise to the notes [10].

We are also grateful to the referee for several suggestions that helped to improve the final version of the 
paper.

References

[1] J. Adámek, H. Herrlich, G.E. Strecker, Abstract and Concrete Categories: The Joy of Cats, reprint of the 1990 original 
Wiley, New York, 1990, Repr. Theory Appl. Categ. 17 (2006) 1–507.

[2] M. Barr, P.A. Grillet, D.H. van Osdol, Exact Categories and Categories of Sheaves, Lecture Notes in Math., vol. 236, 
Springer-Verlag, 1971.

[3] F. Borceux, D. Bourn, Mal’cev, Protomodular, Homological and Semi-Abelian Categories, Math. Appl., vol. 566, Kluwer 
Acad. Publ., 2004.

http://refhub.elsevier.com/S0022-4049(23)00031-2/bib63FD528B6578A6B38D2648F353487E91s1
http://refhub.elsevier.com/S0022-4049(23)00031-2/bib63FD528B6578A6B38D2648F353487E91s1
http://refhub.elsevier.com/S0022-4049(23)00031-2/bib749550E3C79B508019CC2065DAD0B3D6s1
http://refhub.elsevier.com/S0022-4049(23)00031-2/bib749550E3C79B508019CC2065DAD0B3D6s1
http://refhub.elsevier.com/S0022-4049(23)00031-2/bib9D3D9048DB16A7EEE539E93E3618CBE7s1
http://refhub.elsevier.com/S0022-4049(23)00031-2/bib9D3D9048DB16A7EEE539E93E3618CBE7s1


M.M. Clementino et al. / Journal of Pure and Applied Algebra 227 (2023) 107348 21
[4] F. Borceux, M.M. Clementino, M. Gran, L. Sousa, Protolocalisations of homological categories, J. Pure Appl. Algebra 212 
(2008) 1898–1927.

[5] J. Bourke, R. Garner, Two-dimensional regularity and exactness, J. Pure Appl. Algebra 218 (2014) 1346–1371.
[6] D. Bourn, Normalization equivalence, kernel equivalence and affine categories, Springer Lect. Notes Math. 1488 (1991) 

43–62.
[7] D. Bourn, G. Janelidze, Characterization of protomodular varieties of universal algebras, Theory Appl. Categ. 11 (2003) 

143–147.
[8] M.M. Clementino, N. Martins-Ferreira, A. Montoli, On the categorical behaviour of preordered groups, J. Pure Appl. 

Algebra 223 (2019) 4226–4245.
[9] M.M. Clementino, A. Montoli, On the categorical behaviour of V -groups, J. Pure Appl. Algebra 225 (2021) 106550.

[10] P.T. Johnstone, Notes on Ord-enrichment of Toposes, June 2022, manuscript.
[11] A. Kurz, J. Velebil, Quasivarieties and varieties of ordered algebras: regularity and exactness, Math. Struct. Comput. Sci. 

27 (2017) 1153–1194.
[12] A. Michel, Torsion theories and coverings of V -groups, Appl. Categ. Struct. 30 (2022) 659–684.
[13] V. Aravantinos-Sotiropoulos, The exact completion for regular categories enriched in posets, J. Pure Appl. Algebra 226 

(2022) 106885.

http://refhub.elsevier.com/S0022-4049(23)00031-2/bib0C1014713697EA181689A18C9A9647A4s1
http://refhub.elsevier.com/S0022-4049(23)00031-2/bib0C1014713697EA181689A18C9A9647A4s1
http://refhub.elsevier.com/S0022-4049(23)00031-2/bib461B1990FE86AF962CD15A16A26DCEB8s1
http://refhub.elsevier.com/S0022-4049(23)00031-2/bibF7941EC93B048BFB180BBC93D90CC820s1
http://refhub.elsevier.com/S0022-4049(23)00031-2/bibF7941EC93B048BFB180BBC93D90CC820s1
http://refhub.elsevier.com/S0022-4049(23)00031-2/bibDDD70BBAF5BE05E1E9CADED444C03095s1
http://refhub.elsevier.com/S0022-4049(23)00031-2/bibDDD70BBAF5BE05E1E9CADED444C03095s1
http://refhub.elsevier.com/S0022-4049(23)00031-2/bibAC2D6C5FB0A5082362B33B77ACA5BE29s1
http://refhub.elsevier.com/S0022-4049(23)00031-2/bibAC2D6C5FB0A5082362B33B77ACA5BE29s1
http://refhub.elsevier.com/S0022-4049(23)00031-2/bibF81EB7C9306563E5D3208A8AF3EF17F0s1
http://refhub.elsevier.com/S0022-4049(23)00031-2/bib5240BA2AE676B63D2BF1D706A9016990s1
http://refhub.elsevier.com/S0022-4049(23)00031-2/bib5240BA2AE676B63D2BF1D706A9016990s1
http://refhub.elsevier.com/S0022-4049(23)00031-2/bibCE1E61624F032F37A338B7ECCC05A90Cs1
http://refhub.elsevier.com/S0022-4049(23)00031-2/bib325FC57F275CD8A61D88800C1C52E541s1
http://refhub.elsevier.com/S0022-4049(23)00031-2/bib325FC57F275CD8A61D88800C1C52E541s1

	On lax protomodularity for Ord-enriched categories
	0 Introduction
	1 The Ord-enriched change-of-base functors
	2 Lax protomodularity
	3 The 2-category OrdAb of preordered abelian groups
	Acknowledgements
	References


