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Abstract: The improper disposal of toxic and carcinogenic organic substances resulting from the
manufacture of dyes, drugs and pesticides can contaminate aquatic environments and potable water
resources and cause serious damage to animal and human health and to the ecosystem. In this
sense, heterogeneous photocatalysis stand out as one effective and cost-effective water depollution
technique. The use of metal oxide nanocomposites (MON), from the mixture of two or more oxides
or between these oxides and other functional semiconductor materials, have gained increasing
attention from researchers and industrial developers as a potential alternative to produce efficient
and environmentally friendly photocatalysts for the remediation of water contamination by organic
compounds. Thus, this work presents an updated review of the main advances in the use of
metal oxide nanocomposites-based photocatalysts for decontamination of water polluted by these
substances. A bibliometric analysis allowed to show the evolution of the importance of this research
topic in the literature over the last decade. The results of the study also showed that hierarchical and
heterogeneous nanostructures of metal oxides, as well as conducting polymers and carbon materials,
currently stand out as the main materials for the synthesis of MON, with better photocatalysis
performance in the degradation of dyes, pharmaceuticals and pesticides.

Keywords: metal oxide; nanocomposites; organic pollutants; water remediation; heterogeneous
photocatalysis

1. Introduction

The increase in industrial and agricultural production, combined with the accelerated
growth of the world population in recent decades, are some of the main factors that
contribute to the pollution of the physical and biological components on Earth [1,2].

For instance, plastic, textile, pharmaceutical and pesticide products consumption has
grown exponentially, being vital for society, but is seriously contributing to fast-growing
pollution worldwide [1–3]. In other words, wastewater with organic pollutants must
primarily undergo decontamination treatments and meet the purity standards required by
government agencies before being discharged into waterways [3–5].
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Primary treatment of wastewater, using filtration and sedimentation, generally cap-
tures only larger particles. The smaller particles remain in the water, with the need for
additional costs in a water treatment plant to arrange other decontamination methods in
order to lessen the problem. Among the alternative techniques, it is possible to mention
chemical oxidation, other filtration processes (using sand and biological filters), membrane
separation, adsorption of the compounds with activated carbon, and ozonation [5].

The scarcity of effective and low-cost procedures that ensure large scale discard and
treatment of manufacturing wastes (due to their toxicity and carcinogenic composition
resulting from the decomposition of its molecules) is a limitation for the decontamination
of aquatic environments and potable water, vital for life preservation [1,4,5]. All these
substances negatively interfere in the life cycle of species, and in the availability and
quality of vital elements for living beings [4,6]. For example, the contamination of aquatic
systems (rivers, lakes, effluents, etc.) by organic compounds can result in imminent risks
to human health. Ingestion and/or skin contact with organics-contaminated water can
involve diseases, such as diarrhea, motion sickness, dermatitis, malnutrition and even
cancer [4]. In this sense, the search for new technologies and functional materials for the
treatment of organics-contaminated waters, which are able to meet current needs, with
lower cost and environmental impact, is an open field of research today [6–8].

Metal oxide nanostructures (materials that respond to external stimuli like light, elec-
tric field, magnetic field, pressure, to mention only a few) have gained increasing attention
from academic researchers and industrial developers, as potential materials to produce effi-
cient and environmentally friendly devices for the remediation of water contamination by
organic compounds [9–12]. Currently, among the techniques for removing contaminants us-
ing metal oxides, heterogeneous photocatalysis stands out. These applications are directly
related to metal oxide nanostructures properties, such as: high chemical and structural
stability; high surface area/volume ratio; excellent electrical/electronic bulk and electric
charge transfer properties (electrons (e−) and holes (h+)); easy surface interactivity with
contaminant molecules; and the possibility of reusing the material in new decontamination
cycles [13].

In addition, metal oxides can form nanocomposites with other oxides and other func-
tional materials, such as conducting polymers and carbon-based materials, in order to
ensure greater surface area/volume ratio, lower electron-hole recombination and better ad-
sorption, photocatalysis and sensing performances, when compared to results reported for
pure oxides [13–15]. These nanostructured materials allow for a wider range of applications
considered an active research object today.

This work presents an updated review on the use of metal oxide-based nanocomposites
photocatalysts for remediation of organics-contaminated water. A bibliometric analysis is
also presented, showing the evolution of this research topic in the literature over the past
decade. In addition, recent scientific contributions to the area are presented and discussed
based on the performed analysis.

2. Metal Oxides and Photocatalysis
2.1. Fundamentals of Metal Oxides

Metal oxides belong to the group of semiconductor materials, which have chemi-
cal structures formed by the interaction of charges belonging to oxygen atoms (highly
electronegative) with atoms of metallic elements. By definition, semiconductors have a
structure composed of electronic bands, where the valence band (filled) is separated from
the conduction band (unfilled) by a bandgap, with sufficient energy (around 1.0–3.0 eV) to
maintain them with electrical insulators behavior at the temperature of 0 Kelvin [16,17].

Metal oxides gained attention in the 1950s due not only to their potential to catalyze
acid-base reactions, but to their potential participation with double acid-base sites in
catalytic events (small regions that have the simultaneous participation of an acid and
a base) [18]. In general, the catalytic surface of metal oxides consists of anionic oxygen
centers, as Lewis base sites (O2−), and of coordinatively unsaturated cationic metal centers,
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as Lewis acid sites. Anionic oxygen centers have high electronegativity and can form ionic
bonds when interacting with metals.

These materials can be produced through various industrial methods, such as chemical
treatments of their precursor reagents, hydrothermal and precipitation reactions, sol-gel,
sputter-coating, green synthesis, among others [19].

With these synthesis routes, it is possible to produce metal oxides with particle sizes
on the nanometric scale (of the order of 10−9 m), which directly influences the increase in
the surface area/volume ratio of these materials and, consequently, the greater efficiency in
the application of these oxides as functional materials.

These materials present characteristics of conductors when they are excited by exter-
nal environmental stimulus (such as light, pressure, electrical field, heat, magnetic field,
etc.) with enough energy to allow electrons (e−) of the valence band to migrate to the
conduction band, jumping over the bandgap (consequently generating active holes (h+)
in the valence band) [16,17]. In other words, their electrical and electronic properties are
directly dependent on their electronic bands’ energy structure.

In this context, metal oxide nanostructures stand out in relation to other materials
due to their synergistic combination between high superficial area/volume ratio and
tunable optical, magnetic, electrical, mechanical, thermal, catalytic and photochemical
characteristics, all resulting from their bulk and surface [20]. These properties combined
with their excellent chemical, structural and environmental stability, ensure them a variety
of emerging applications, such as the production of electrochemical, optical and gas sensors,
fuel cells, solar cells, piezoelectric devices, supercapacitors, adsorbents, photocatalysts, just
to mention a few [20–22].

The surface morphology of most metal oxides is critical in a variety of chemical
processes. Metal oxides have been widely studied due to their optical, electronic, magnetic,
electrical and mechanical characteristics, in addition to their high chemical stability and
resistance to high temperatures (higher than the observed for polymeric materials), making
them suitable for various applications in Science & Technology [21].

Gas sensing [23] and environmental remediation [24] by means of photodegradation
of organic dyes and heavy metals in aquatic media are examples of processes that can
be performed and/or improved by enhancing metal oxides surface interaction with the
media [25].

When these materials are available in nanometric scale, they may present improved
physical and chemical properties, such as adsorption capabilities, diffusion, surface area
and modifiable surface functionalities, physicochemical stability, among others [20,22].

Metal oxide-based nanocomposites (MON) are materials that are originated in the in-
teraction between two or more metal oxides, or between metal oxides and other functional
nanomaterials. Conducting polymers, metal nanoparticles and carbon-based materials are
some examples of functional materials that are known to improve metal oxides proper-
ties [22,26,27]. The main objective of this interaction is to provide enhanced attributes to
the resulting material in comparison to those presented by single oxides, such as greater
chemical/structural stability, lower bandgap, electron/hole recombination reduction, and
greater contact area [13].

The possibility of producing metal oxide-based nanocomposites with controlled size,
morphology, composition, and interaction with other structures, will allow one to im-
prove the just mentioned characteristics, opening simultaneously new perspectives for
environmental applications, such as more efficient photocatalysis processes used for decon-
tamination of aqueous media.

2.2. Electronic Structure

Metal oxides exhibit changes in their electrical/electronic properties based on varia-
tions in their crystalline structure, promoted by doping processes and/or external stimuli,
such as electrical field, temperature, light, etc. These properties are based on the Band
Theory (proposed by the physicist Felix Bloch, in 1928), which states that in a system with N
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identical atoms, each of the atoms orbitals gives rise to N new orbitals, thus forming a set of
N levels with very close energy. The formed set is known as energy bands (Figure 1a) [28].
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According to this model, metal oxides as well as all other semiconducting materials
possess two well-defined energy bands: the valence band (VB) and the conduction band
(CB) (Figure 1a). The band formed by the energy levels occupied by electrons, in the
lower layers of the electronic distribution, is named the valence band, while the energy
levels non-occupied by electrons in the higher layers form the conduction band. Between
the VB and the CB, there is a quantum forbidden energy region (where no energy levels
can be filled by electrons), called bandgap or forbidden band, which width is known as
Eg. The energy dimension of this region determines whether a material is a conductor,
semiconductor or insulator [28,29].

In other words, the bandgap determines the minimum energy needed to excite the
electrons from the VB to the CB, with a wavelength (λ) in the range of the ultraviolet–
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visible radiation spectrum [30]. For insulating materials, the bandgap energy is greater
than 5 eV and the density of free charge carriers in the CB is extremely low. In the
case of semiconducting materials, the bandgap is much narrower (less than 5 eV): thus,
they can change their condition from insulator to conductor by absorbing energy from
irradiated photons, which possess energy greater than that of the bandgap. Consequently,
VB electrons acquire enough energy that allows them to reach the CB (in the condition
that they are free electrons, e−), which provides the semiconductor characteristics of a
conductive material [28,29]. The excitation of an electron from the VB to the CB generates
a hole (or hole, h+) in the VB, which behaves like a positively charged particle. As a
consequence, two charge carriers are generated, an electron (e−) and a hole (h+) (Figure 1b):
this phenomenon is known as photoexcitation [31].

In these materials, photoexcitation can be hindered by electron/hole recombination.
When recombination occurs, the hole is undone. On the other hand, the continuous inci-
dence of an external stimulus on the material (a light source, for example), with energy
greater than the bandgap of the material, can produce new holes in the VB, raising the elec-
trons from the VB to the CB. Thus, it is possible to reduce the rate of the electron/hole recom-
bination, therefore improving photocatalysis processes, for example, which directly depend
on the interaction of the electric charge carriers with the contaminant molecule atoms.

Semiconductors can also be classified as intrinsic or extrinsic, due to the absence or
presence of impurities in their crystalline lattice, respectively [32]. Intrinsic semiconductors
have the same amount of positive and negative carriers, since, for each electron that is
promoted to the valence band, a hole is generated in the conduction band.

Thus, the electrical conductivity of the intrinsic semiconductor is defined by the
product of the number of electrons and holes, by their respective charges and mobilities.
Positive charges move in the same direction as the one of the electric field, while negative
ones move in the opposite direction.

Another important concept for understanding the mobility of charge carriers in these
materials is the Fermi energy level [33], located in the bandgap region (Figure 1b) of the
semiconductors. The Fermi level represents the highest energy level, at absolute zero
temperature, that an electron can occupy [33]. For an intrinsic semiconductor, the Fermi
level is exactly in the center of the bandgap. Extrinsic semiconductors are characterized
by defects in the crystalline lattice (such as the absence of some atoms or their positioning
outside the original position) and/or the presence of other elements through donor or
acceptors doping (insertion of small amounts of substitutional atoms) [34].

These defects allow energy levels in the bandgap to act as traps for charge carriers that
are free in the crystalline structure, shifting the Fermi level position within the bandgap.
Thus, the doping of a semiconductor with host atoms modifies the electronic distribution
of electrons. For an extrinsic n-type semiconductor, the Fermi level shifts to a position just
below the conduction band, whereas for p-type semiconductors, this level appears just
above the top of the valence band [35] (Figure 1c, white balls represent holes and green
balls electrons).

In the case of donor dopants (n-type semiconductors), atoms with a higher number
of valence electrons are added (insertion of a group V atom into a crystal dominated by
group IV atoms, for example). In this configuration, the semiconductor acquires an excess
of electrons in relation to the number of holes. In this context, room temperature energy
is sufficient for detaching an electron from the donor intermediate level (located in the
bandgap), promoting it to the conduction band. In other words, the binding energy of
the donor impurity is lower, which causes the donor energy level to be slightly below
the conduction band of the host material. Analogously, in the case of acceptors (p-type
dopants), atoms with less valence electrons are inserted (for instance, insertion of a group
III element atom into a crystal composed essentially of group IV atoms). The absence of an
electron Is treated as a hole In the valence band [36].

This process alters the electronic density of the valence (p-type semiconductor) or
conduction (n-type) bands: consequently, the new possibly occupied energy levels cause
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the bandgap energy to shrink, with a consequent increase in the electrical conductivity
of the material. Siu’s work [36] explains that the type and quantity of added impurities
depends on the form and conditions of their growth, whether synthetically or naturally. In
resume, by introducing impurities into the metal oxide crystalline network, it is possible to
obtain an increase in the number of charge carriers and to improve the electronic properties
of the final material for photocatalysis applications.

In the literature, several semiconducting metal oxides, such as titanium dioxide (TiO2),
zinc oxide (ZnO), tin dioxide (SnO2), tungsten trioxide (WO3), niobium pentoxide (Nb2O5),
indium oxide (In2O3), cerium oxide (CeO2) and graphene oxide have been explored, at the
nanoscale level, for the development of functional photocatalysis devices [13].

The state of the art on the subject confirms that the electronic and microstructural
properties of metallic oxides-based photocatalysts devices were improved when used
at their nanocomposite level: their synthesis at this level resulted from the interaction
between two or more metal oxides or between metal oxides and other functional compo-
nents/materials such as metal nanoparticles, conductive polymers or carbon materials.
Sensors, fuel cells, supercapacitors, solar cells and photocatalysts are some of the exam-
ples of more recent technological applications for which significant enhancements were
observed and reported [37,38].

2.3. Metal Oxide-Based Photocatalysis

The term photocatalysis means to increase the kinetics of a photoreaction by the action
of a catalyst. Photocatalysis is a photochemical process, of the advanced oxidative processes
group, for the formation of free radicals, which are highly oxidizing and degrade organic
substances in water.

Photocatalysis processes can be homogeneous or heterogeneous. The heterogeneous
photocatalysis process differs from the homogeneous one, due to the former’s particularity
of using catalysts in the solid state and, consequently, radicals are generated from the
reactions between electron/hole (e−/h+) pairs with the medium, under the action of an
incident light. This radiation is necessary for the homolytic breakdown of the oxidant to
occur [39]. The first heterogeneous photocatalysis processes emerged in the 1970s, through
studies of photoelectrochemical cells, and aimed at producing fuel with low-cost materi-
als [40]. Fujishima and Honda in 1972 [40] described the oxidation of water containing TiO2
in suspension, irradiated in a photoelectrochemical cell, which promoted the generation of
hydrogen and oxygen. With the advent of nanotechnology and consequent advances in
the development of new functional and environmentally friendly semiconductor materials,
as well as of new techniques for characterizing and testing these devices, photocatalysis
processes gained prominence as a viable alternative for applications in the domain of
environmental decontamination, with high efficiency and reproducibility.

In the case of metal oxides-based systems, photocatalysis is established by a natural
or artificial light stimulus. The HO• and O2

•− species are photogenerated from the water
molecules on the metal oxide surface and promote redox reactions capable of degrading
contaminant molecules [41].

The action of a metal oxide-based photocatalyst in an aqueous medium can be summa-
rized as follows. First, the semiconductor is exposed to a light source, with enough energy
to activate it: therefore, photons with energy greater than the energy of the bandgap are
absorbed. This process causes an electron (e−) to be transferred from the valence band to
the conduction band, leaving a hole (h+) in the valence band. Electrons (e−) in CB react with
the oxygen of the adsorbed water molecules at the oxide surface, forming superoxide (O−

2 )
and/or hydroperoxide (OH−) free radicals. Simultaneously, holes (h+) generate HO free
radicals from the adsorbed water at the metal oxide surface [41]. An illustrative diagram of
this process is represented in Figure 2.
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The combined action of direct redox processes, induced by holes and photogenerated
electrons on the surface of the catalysts, and of indirect redox processes, derived from
reactive oxygen species, is responsible for pollutant degradation [13,42,43].

In short, the competition between the capacity for interfacial charge transfer and the
recombination of the e−/h+ pairs, is a determinant factor for the photocatalytic efficiency of
the materials. Basically, the action of free radicals leads to the degradation of contaminants
in the form of carbon dioxide, H2O molecules and salts of inorganic origin.

The main challenges of achieving photocatalysis with metal oxides are their high
bandgap energies needed to overcome their recombination levels of electron–hole pairs
and their chemical and structural stability. Several researchers have focused their work
on the synthesis of narrow-band photocatalysts, which can be used under visible light
irradiation. Various surface enhancement methods to achieve this include doping with
metal/non-metal ions, surface interaction with other semiconductors, or the use of hybrid
nanostructures with other functional semiconductors [44–46].

The modification of the catalyst surface to restrict charge recombination and increase
the visible light response through metal/non-metal doping has been extensively stud-
ied [47], as discussed in the previous sections. As mentioned earlier, the doping of the
semiconductor catalyst with metal ions can result in the formation of intermediate energy
levels in the bandgap region and improve the separation of charge carriers [48]. Between
other advantages, the one that involves controlling the size of crystallites and of the sur-
face area/volume ratio of the nanostructures must be referenced, once it will increase the
adsorption of pollutants on their surface [49].

In terms of photocatalytic performance and stability of the semiconductor materials,
nanocomposites based on titanium dioxide (TiO2), zinc oxide (ZnO), vanadium pentoxide
(V2O5), niobium pentoxide (Nb2O5) and tungsten trioxide (WO3) stand out [50]. Metal
oxide nanocomposites based on those oxides are widely studied for the reduction of organic
pollutants due to their non-toxicity, high resistance to photo corrosion and availability in
different crystalline forms with high photocatalytic activity [51].
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The applicability of hybrid nanocomposites based on TiO2 anatase (which can result
in materials with higher photoactivity and lower recombination rates) for removing con-
taminants has gained popularity due to their cost-effectiveness, allied with their surface
properties, including morphology, surface area and adsorption affinity, and the possibility
of absorbing visible light [52–55].

On the other hand, the recovery and reuse of these nanocomposites in new decon-
tamination processes may represent a limitation, especially regarding the separation of
nanoparticles of the reaction medium after the end of the reaction. In this sense, different
strategies have been applied to overcome these problems, such as the use of membranes
able to support these metal oxide nanocomposites [13].

Charge Transfer in MON-Based Photocatalysts by Surface Tailoring

For effective photocatalysis, the photocatalyst conclusively delivers charge carriers to
the interface of the semiconductor electrolyte [56–61]. Recently, some authors have explored
surface interactions to improve photocatalytic activity, for instance, using nanomaterials
with tailored structure that allows one to control the orientation of certain surfaces [62–64].

Simultaneously, characterization techniques allowed one to look and understand more
deeply the atomic structure of surfaces and their interaction with the environment [65,66]. In
consequence, it was possible to shape materials with metastable surface phases that possess
enhanced electronic properties, while simultaneously fine tuning their photocatalytic
reactivity. Evidence of surface orientation-dependent photocatalytic activity has been
reported in literature. For instance, using polycrystalline thin films of rutile TiO2, the
photocatalytic reduction of Ag+ ions was investigated and a stronger photocatalytic activity
of the {101}/{011} orientation of rutile TiO2 was observed [67].

Diverse mechanisms may contribute to the found surface reliance with photocatalytic
reactivity. For example, if electrons and holes get diffused along different directions, diverse
oxidation or reduction reactions will be exhibited by different surfaces of the crystalline
structure. These differences can be due to the band structure, to polarization mechanisms,
or to induced superficial electrostatic potentials caused by adsorption reactions.

Regarding band structure influence, which has its origin in the bulk properties of
the materials, it was first proposed by Giocondi et al. [68] that the differences in the
photocatalytic activity on (110) and (100) surfaces of strontium titanate (SrTiO3) was due to
the bulk band structure, which caused anisotropic diffusion of photoexcited charge carriers.
By close inspection of the band structure, the authors found that photoexcited electrons
and holes had a momentum-vector in the h100i direction: consequently, excited charge
carriers of the bulk get diffused mainly along the {100} surface, a fact used to explain the
higher photocatalytic activity of this orientation.

As reported, controlling charge transport within the bulk can give rise to enhanced
surface photocatalytic reactivity. However, as proposed for SrTiO3, the diffusion of carriers
through specific surfaces may not be just due to the band structure, but may also be the
result of dipoles formation, inducing holes and electrons that diffuse in opposite directions.

In unpolarized ferroelectric materials, containing several domains with opposite po-
larity, but of which the total net polarization vector is zero, the photocatalytic reactivity
of metallic salts was used to evaluate spatial distribution of photo-oxidation/-reduction
reactions. It was shown that products originating from those reactions decorate the domain
structure of some ferroelectric materials, such as BaTiO3, after photo stimulation [69,70]:
it was observed that while photogenerated electrons led to the reduction of Ag+ ions
with consequent distribution along the active surface of Ag clusters, photogenerated holes
conducted to the oxidation and to the subsequent decoration of the active surface with
lead oxide. Thus, electrons and holes diffusion is controlled by bulk polarization and trans-
ported along domains with opposing directions. By conducting and AFM analysis, Kalinin
et al. [71] defined domain patterns into the ferroelectric material, which subsequently was
decorated by photoreaction resulting products.
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Band bending in the near surface region can also promote direct charge transport. Pho-
toexcitation causes electrons/holes to diffuse to the surface, promoting a down-ward/up-
ward band bending near it. The generated electrical potential in the charged region en-
hances electron–hole separation with a consequent increase of the photocatalytic reactivity.
Synthesizing, band bending is due to the created surface charges, induced by adsorption
processes. Bhardwaj et al. [72], when studying the photocatalytic activity of barium stron-
tium titanate (Ba1-xSrxTiO3), found a maximum in the activity for a tetragonal-to-cubic
phase transition composition: they associated it with the anomalously high dielectric con-
stant for this transition. If for different surface orientations the band bending varied, then
strongly surface-dependent photocatalytic activities are generated.

Most photocatalytic reactions are carried in aqueous solutions. At the interface layer
between the solution and the crystal, a charged double layer is formed, consisting of
surface charges with a certain polarity, on the crystal side, and of ions with opposite
polarity in the layer of the solution closest to the surface. This originates a potential barrier
near the interface, which can be regulated by balancing the Fermi level of the immersed
photocatalyst with the one of the electrolytes. Thus, it can be stated that photocatalytic
activity depends on the potential barrier height: indeed, the height and width of the
space-charged layer, which are determined by the potential barrier height, condition the
electron–hole separation and diffusion to the surface. It must be pointed out that the
potential drop in the interfacial layer affects ion transport along the solution into the
material surface and thus, affects the photo-oxidation/-reduction of the ions at the surface.
Bullard et al. [73] studied and determined the pH value at which the surface carries no net
charge for different rutile single crystals. They measured force–distance curves employing
an atomic force microscope and used them to determine the pH values for which the curves
shifted from attractive to repulsive. Strong surface-dependent pH-values were found for
the studied activated surfaces.

In the literature, it was shown that the surface electronic properties of some photocata-
lysts based on transition metals are quite different from the ones found for the bulk. For
instance, for the rutile TiO2 (011) surface, a new metastable surface phase, not the typical
shaped 2 × 1 one, was produced (it was experimentally confirmed that, under vacuum,
one of the most common surfaces for rutile crystal, the (011) one, gets reconstructed into a
2 × 1 structure [74]). This newfound phase, which displays a much smaller bandgap than
that of bulk [75], was characterized by scanning tunneling microscopy and spectroscopy
(STM/STS) and photoemission spectroscopy. Indeed, it was found that the bandgap is
only of around 2 eV, and that the majority of the bandgap narrowing was caused by the
induction of new states on the top of the valence band of the bulk. This surface will
attract holes, and consequently, it is expected that it will turn highly active regarding
photo-oxidation reactions: as a consequence, electrons can transfer to other active surfaces,
of the same particle, and make them available for photoreduction reactions. In summary,
if the orientation of one surface can be modified by molding its bandgap, electron–hole
separation processes would be boosted, and separate oxidation and reduction reactions
would growth.

In a work by Lahiri et al. [76], the growth of a monolayer of zinc sulfide (ZnS) over
ZnO was used to enhance ZnO photocatalytic activity. Even if ZnO and ZnS both display a
wide bandgap, the presence of a ZnS monolayer induces states on top of the ZnO valence
band with a consequent upward band bending [77]: similarly, as described for the new
surface phase on TiO2 (011) [75], the formation of a similar hole-trapping layer is found
for ZnO.

The phenomenon has also been observed in quantum dots/metal oxide-based nanocom-
posites, for the removal of toxic organic pollutants. Quantum dots (QD) are known as
zero-dimensional (0-D) nanomaterials and have the peculiarity of having a very high sur-
face area/bulk ratio. Photocatalysis processes with these materials can be improved in
relation to the use of larger particles, since the electron–hole recombination is significantly
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reduced due to the short path for charge transfers from the crystal bulk interface to the
surface of the nanocomposite [64].

In summary, strategies that allow modifying surface electronic conduction character-
istics will enhance not only the materials’ bulk properties but also the creation of charge-
trapping layers at the materials surface.

3. Bibliometric Study

As a brief characterization of the research field on metal oxides nanocomposites for re-
mediation of aqueous pollutants, a data search was performed in the Scopus platform (April
2023). The search was carried out using “metal oxide”, “composite” and “photocatalysis”,
as keywords for their presence in the title, abstract or keywords of the documents. This
search resulted in 563 hits from 2012 up to the current date. The collected data were orga-
nized and analyzed in the following ways: (i) trends in publications over the years; (ii) main
journals, their Impact Factor and CiteScore; (iii) transitions in the keywords over the years;
(iv) word-cloud concept of the main aspects related to the topic. Analyses were performed
using the RStudio® (version 3.5.2) and VOSviewer (version 1.6.14) software packages.

Figure 3 shows the trend regarding the quantity of documents published from 2012 up
to the current date on metal oxides nanocomposites for remediation of aqueous pollutants.
The first six years were a period with low variation in the number of published documents
(between 14 and 31 per year).
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Figure 3. Publishing trend in the field on metal oxide nanocomposites for remediation of aqueous
pollutants observed between 2012 and April 2023.

After 2019, the number of published documents increased exponentially, reaching
119 documents last year. This growth can be linked to the need for developing water
decontamination solutions, in the face of the expanding evolution of global environmental
pollution. This behavior has been observed for research in functional nanomaterials, which
involve a series of peculiarities, such as the discovery and synthesis of new materials, the
development of more efficient characterization methods and the study of new mechanisms
and collaborative interaction between selective components, which ensure greater surface
area against contaminants [78].

This was found to take place with studies involving metal oxides and their nanocom-
posites in recent years, while looking for selective materials and synthesis techniques that
guarantee a more efficient and environmentally friendly water decontamination of organic
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pollutants. The reduction in the number of literature reports in 2023 is related to the period
under analysis, which was performed in April.

The top five journals with more published documents over the subject are listed in
Figure 4. The ranking is led by the Journal of Colloid and Interface Science (25 docu-
ments), followed by Colloids and Surfaces A: Physicochemical and Engineering Aspects
(14 documents) and by Chemosphere (12).
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Figure 4. Top five scientific journals contributing to the topic of metal oxide nanocomposites for
remediation of aqueous pollutants.

Much of the research on metal oxide nanocomposites for the remediation of aqueous
environments is distributed through numerous papers in the materials domain that deal
specifically with the synthesis of new materials, their characterization and their application
in solving current problems in society. The main journal where more reports on the use
of metal oxides for remediation of aqueous pollutants were published is also the journal
with the highest Impact Factor and CiteScore, once it connects the study of basic science of
functional materials with the discussion of new and (or) improved techniques to remedy
environmental pollution by hazardous materials, such as organics and heavy metals.

A word cloud illustration is presented in Figure 5a. It shows the most frequent
keywords that emerge in the documents that involve metal oxide nanocomposites for
remediation of aqueous pollutants. ‘Photocatalysis’ (414), ‘Metals’ (155), ‘Photocatalytic
Activity’ (146) and ‘Titanium Dioxide’ (121) were the keywords with the highest number of
results in the performed search.

Water pollutants photocatalysis shows itself as one of the most used and promising
techniques in comparison to conventional water decontamination techniques, mainly due to
its environmentally friendly use and constant development of materials with better surface
properties. In addition, it has been demonstrated that aqueous environment pH level is one
of the main factors to be considered, because the activation of surface functional groups of
potential nanocomposites highly depends on it. In the same figure, Figure 5a, it is possible
to find words, such as ‘ferric compounds’, ‘iron’, ‘iron oxide’ and ‘magnetism’, which refer
to the recent use of metal oxide nanocomposites based on ferroelectric materials, in order
to improve the efficiency of photocatalysis and adsorption processes, and consequently,
also in the separation of contaminants from water.
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Figure 5. (a) Word cloud of the main keywords that appear in documents of metal oxide nanocom-
posites for remediation of aqueous pollutants. (b) Illustration of standard water remediation flow
of activities.

High impact water pollutants, such as pharmaceuticals, pesticides, organic dyes and
heavy metals, have been widely cited in the search because they represent a large portion
of the substances used in industrial processes, thus showing that the search for suitable
clean-up methods is an open field of research. In general, the analyzed works discuss the
stages of the decontamination, highlighting the standard remediation flow of activities,
shown in Figure 5b, composed of confirmation of contamination, characterization of the
contaminant, decontamination process and recovery/reuse.

An analysis was performed of the keyword’s transitions over the last nine years,
which appear at least 10 times in the text of the found documents in the scientific databases,
which can be seen in Figure 6: it illustrates an interest shift in the research field, which
stands for the advances in the use of metal oxide nanocomposites for the remediation of
aqueous pollutants.
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oxide nanocomposites for remediation of aqueous pollutants.

The analysis shows that in the most recent years, mixed MO and carbon materials
have been highlighted for the production of MON used in photocatalysis processes. The
excellent photodegradation results obtained using these materials have been attributed
to the chemical synergy between the components in the nanocomposite, to the greater
efficiency in charge transfer and to the reactive surface areas (much larger than those
observed for pristine materials). The analysis also showed that graphitic carbon nitride
(g-C3N4) emerges as a new functional material that can interact with metal oxides and is
used to produce more efficient photocatalyst devices [78,79]. The pollutant-specific search
revealed a huge interest in remediation of dyes and wastewater in general.

In the examined searches, the study of mixed MO-based nanocomposites for remedia-
tion of aqueous pollutants was frequent. Titanium dioxide in its allotropic anatase form
(anatase TiO2, ~3.2 eV bandgap) has been the most used metal oxide for the production of
these nanocomposites, which when synthesized with other oxides or with other functional
materials, allowed one to improve photocatalysis processes [52–55]. This oxide is non-toxic
and possesses high chemical stability, excellent photoactivity and photostability, easy UV-
activation, and low cost when compared to other oxides. The anatase phase is preferable to
the rutile one (irreversible transition at 600–700 ◦C), mainly because it presents a greater
reactive surface area, for interaction with other materials [55].

Regarding the use of carbon nanostructures for the photodegradation of organics,
graphene stands out. In the last decade, graphene has gained very high attention from both
the scientific and industry communities, due to its unique physicochemical, electrical and
optical properties, all combined with its honeycomb structure.

These materials ensure high surface area and a wide variety of functional groups,
which can be used for several emerging applications, such as water decontamination.
On the other hand, their potential strongly depends on the choice of a suitable synthesis
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technique. Based on the discussed aspects, the next section highlights recent advances on
the use of mixed MO, conducting polymers and carbon materials in MON photocatalysts.

4. Recent Advances on the Use of Metal Oxide-Based Nanocomposites (MON) in
Photocatalysis of Organics
4.1. Mixed Metal Oxide-Based MON

Efforts have been applied to develop synthesizing methods that make it possible
to obtain metal oxide (MO)-based photocatalysts with controlled size, morphology and
crystalline phases. Among them, the hydrolytic sol-gel, oxidation, sputtering, epitaxy,
hydrothermal, solvothermal and sintering approaches stand out [80].

With these methods, it is possible to produce mixed MO nanocomposites composed of
two or more metal oxides which interact at the surface and/or atomic level [81]. They have
been preferentially used in technological applications, such as photocatalysts, due to the
possibility of displaying improved structural and electronic properties, when compared
to those known for their constituent oxides used individually [82]. Surface interaction
between the oxides is possible, which results in a material with crystalline phases of
the precursor semiconductors, but without the formation of solid solutions. When the
interaction takes place at the atomic level, with two or more metallic cations involved,
adding to the possibility of formation solid oxide solutions (such as perovskites, spinel,
scheelite and palmeirite), there is the chance of vacancies from the host oxide to become
occupied by dopant metal atoms [83,84]. These interactions provide superior chemical
reactivity for decontamination of aquatic environments by photocatalysis.

The interactions between the constituent metal oxides of the nanocomposite materials
have been one of the most explored approaches used in the study of enhanced photocat-
alytic properties of these nanostructures. The increase in photocatalytic activity stems from
a combination of improved photo response, charge separation efficiency and the presence of
multiple active sites on the hybrid nanostructures. Generally, these heteronanostructures of
mixed MO can vary, for example, from binary, ternary to quaternary nanostructures [85–94].

Among the studied mixed MO nanostructures, 3D hierarchical and heterogeneous ones
stand out (Figure 7). Three-dimensional hierarchical nanostructures have well-defined and
organized shapes when compared to other types of nanostructures. Nanotrees, nanoleaves
(Figure 7a), nanorods (Figure 7b) and sea urchin-like structures (Figure 7c) are some exam-
ples of these nanostructures that have been used in photocatalysis applications [85–87,89,94].

TiO2/ZnO hierarchical heteronanostructures are potential materials for photocatalysis
processes against organic dyes [95]. The sea urchin-like TiO2/ZnO nanostructures (see
Figure 7c) can be produced by hydrothermal growth of zinc oxide hexagonal nanorods
on the surface of P25 TiO2 (3:1 anatase:rutile ratio) nanoparticles: it shows high surface
area to dye photodegradation, even with white light (which does not occur with the use of
pure TiO2) [95]. The best decontamination results obtained with TiO2/ZnO hierarchical
nanostructures have been attributed to the atomic and surface interactions between the
oxides. This configuration reduces the bandgap of the combined material and, consequently,
hinders the e−/h+ recombination. Later, the authors proposed the radial growth of zinc
crystals on the poly(methacrylic acid-co-ethyl acrylate) nanofibers surface, prepared by
electrospinning and decorated with TiO2 particles: with this procedure, photocatalysts with
high surface area/volume ratio and better performance, 90% of dye degradation in aqueous
solution after 70 min of exposure to light, when compared to that obtained using the sea
urchin-like nanoparticles, were developed. In this last configuration (see Figure 7c, right),
the fibers functioned as a polymeric template to stimulate the regular distribution of oxides
and prevented particles aggregation, which significantly increased the process efficiency.
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TiO2/ZnO hierarchical heteronanostructures are potential materials for photocatalysis
processes against organic dyes [95]. The sea urchin-like TiO2/ZnO nanostructures (see
Figure 7c) can be produced by hydrothermal growth of zinc oxide hexagonal nanorods
on the surface of P25 TiO2 (3:1 anatase:rutile ratio) nanoparticles: it shows high surface
area to dye photodegradation, even with white light (which does not occur with the use of
pure TiO2) [95]. The best decontamination results obtained with TiO2/ZnO hierarchical
nanostructures have been attributed to the atomic and surface interactions between the
oxides. This configuration reduces the bandgap of the combined material and, consequently,
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hinders the e−/h+ recombination. Later, the authors proposed the radial growth of zinc
crystals on the poly(methacrylic acid-co-ethyl acrylate) nanofibers surface, prepared by
electrospinning and decorated with TiO2 particles: with this procedure, photocatalysts with
high surface area/volume ratio and better performance, 90% of dye degradation in aqueous
solution after 70 min of exposure to light, when compared to that obtained using the sea
urchin-like nanoparticles, were developed. In this last configuration (see Figure 7c, right),
the fibers functioned as a polymeric template to stimulate the regular distribution of oxides
and prevented particles aggregation, which significantly increased the process efficiency.

In this sense, Bao et al. [96] developed a novel sea urchin-like SiO2/TiO2 hierarchical
nanocomposite, which degraded 82.2% of the RhB dye under UV light, in 35 min. The
higher photocatalytic activity was attributed to the core–shell configuration of the nanocom-
posite, which ensured efficient charge transfer for the formation of selective dye-degrading
radical species.

When talking about heterogeneous (grain multiphase (Figure 7d), nanoplates
(Figure 7e), among others) MO nanostructures [81,97–100], it is necessary to understand
that the interaction between two or more metal oxides is seen as a viable alternative for
the fabrication of MON systems with looked-for properties by simpler synthesis methods
than those used for 3D hierarchical ones. The chosen synthesis method results in different
textural, optical and morphological properties of the photocatalysts, which directly influ-
ence their chemical stability and recyclability [93,101]. Chemical and physical parameters
such as precursors, solvents, pH, pressure and temperature must be considered during the
synthesis process of these nanocomposites [99].

Advances in this field of research involve the incorporation of zinc (Zn), tungsten (W),
vanadium (V), niobium (Nb), indium (In), iron (Fe), nickel (Ni) and copper (Cu) oxides
into TiO2 [102]. Zinc oxide (ZnO) is widely used in photocatalysis processes due to its
physical–chemical characteristics (biocompatible, non-toxic, chemically and mechanically
stable, insoluble in aqueous environments, ~3.1–3.3 bandgap energy, and so on), similar
to those of anatase TiO2. Nanocomposites based on TiO2 and ZnO, produced by various
methods, have shown better photocatalytic properties when compared to those obtained
for single pristine TiO2 [103–106].

Hybrid TiO2 nanoparticles have been synthesized by hydrothermal processes, with the
incorporation of zinc oxide in the atomic structure (substitution of Ti4+ by Zn2+) and on the
surface of TiO2 [107]. TiO2/ZnO grain multiphase heterogeneous nanostructures are known
to accelerate the degradation process of dyes under visible light, with a mutual chemical
process of N-deethylation and cleavage of contaminant molecules [107,108]. Electrons
transfer from the zinc oxide conduction band to the titanium dioxide conduction band is
described by the bands theory. Consequently, there is photogeneration of holes (h+) from
the TiO2 valence band to the ZnO valence band. With this configuration, and based on the
standard photocatalysis mechanisms, the separation of electrical charges is said to occur in
an improved way [107,108].

For instance, the interaction of tungsten trioxide (WO3) with TiO2, obtained through a
sintering process, increased the conductivity of the TiO2/WO3 system in comparison to the
observed for pure TiO2 [13], while doping TiO2 with niobium pentoxide (Nb2O5) [109] or
vanadium pentoxide (V2O5) [110] delays the phase transition from anatase to rutile.

In addition, Pereira et al. [13] showed that the V5+-doped TiO2/WO3 granular three-
phase nanocomposite, produced by a simple calcination process at 500 ◦C, and then sup-
ported on electrospun polymeric membrane, has a superior performance regarding the
photodegradation of RhB under visible light, in relation to the use of anatase TiO2, the
anatase TiO2/monoclinic WO3 binary system, and the same ternary mixed MO in powder
form (support-free). TiO2 doping using 5 wt% of V2O5 in a 1:1 TiO2/WO3 mixture (in
mol) considerably reduced the bandgap of the first oxide from 3.2 eV to 2.11 eV. The dye
photodegradation mechanism is illustrated in Figure 8.
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Furthermore, the immobilization of the ternary grains on the polymeric membrane
prevented the particles aggregation and promoted a high surface area of action for the
nanocomposite. The combination of these characteristics allowed the novel photocata-
lyst device to degrade up to 90% of RbB dye after 120 min of exposure to a 60W white
light source. The use of the membrane also facilitated the removal of the photocatalyst
from the reactor environment for its reuse in up to three reuse cycles, without loss of
process efficiency.

Other nanomaterials such as Cu/In/Ti [111], Ni/Co/Fe [112], G/Fe/Ti [113] and
Zn/Ni/Al [114] ternary mixed MO, also showed photocatalytic properties superior to
those of TiO2 regarding the degradation of the usual organic dyes.

Researchers have also been focusing their research on mixed MO nanostructures for
the treatment of wastewater systems contaminated with pharmaceuticals and agrochemical
products [93,102]. For example, the production and use of antibiotics and pesticides has
increased in recent years, with as a direct consequence f the inappropriate discard of these
products in the environment [93,115–120].

Plate-like Zn/Fe mixed MO nanostructures, synthesized by calcination of their precur-
sors at 300 ◦C, promoted the simultaneous removal of several high-demand pharmaceuti-
cals (ibuprofen, acetaminophen and diclofenac) by photodegradation [121]. No drugs were
detected in the solution after 12 h of exposure to the light source, in each of the six usage
cycles. The photodegradation mechanisms were discussed, and h+ reactive species were
considered as primarily responsible for the breakdown of the organic pollutant molecules.
In addition, the photocatalysis process under simulated solar irradiation was found to be
of high efficiency and low cost.

Doan et al. [115] developed a novel grain multiphase Cu2O/Fe3O4 heterogeneous
nanostructure supported on Fe metal–organic frameworks (MOFs) as an efficient photo-
catalyst for the degradation of ciprofloxacin (one of the most widely used broad-spectrum
antibiotics to treat serious infections) under visible light. The authors showed that the
immobilization of the oxides in the MOFs returned a nanocomposite with characteristics of
minimal aggregation, large surface area and porosity, which guaranteed 99.2% of degrada-
tion of the antibiotic at pH of 7, in up to 105 min of exposure to light, reusable in five cycles
of decontamination.
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More recently, the work by Ayah et al. [93] showed that, using mixed MO-based
MON, it is possible to degrade 98% of tetracycline antibiotic molecules (frequently found
in the wastewater of animal husbandry, hospitals, and pharmaceutical industries) in a
20 mg/L contaminated aqueous solution, within 105 min. The authors used mixed nanos-
tructures based on iron oxide and bismuth tungstate (Fe3O4/Bi2WO6) supported on g-C3N4
nanosheets, which ensured a bandgap of 1.3 eV, much lower than that of pristine oxides
(2.9 eV) and of g-C3N4 (2.7 eV). This configuration guaranteed six cycles of reuse of the
material, inhibited the negative impact of oxide particle agglomeration and significantly
decreased e−/h+ recombination of the photocatalysis process under visible light, highlighting
the effectiveness of HO• and O2

•− reactive oxidants generated by the tetracycline degradation.
Farrukh’s Group [117] has synthesized cerium (IV) oxide/silicon dioxide (CeO2/SiO2)

heterogeneous grains by surfactant assisted via sol-gel process for the photodegradation of
Chlorpyrifos (one of the most widely used insecticides in the world, but which can cause
many genotoxic and neurological damage, especially in children). The results showed that
the nanocomposite is capable of degrading 90% of the pesticide in 150 min using UV light.

In the search for new alternatives to circumvent this problem, Saljooqi et al. [118]
developed a mixed MO for degradation of this insecticide under visible light with superior
performance. The group showed that the Fe3O4/TiO2 nanocomposite uniformly distributed
on a porous ZnO structure is capable of degrading 95% of Chlorpyrifos, for an initial
concentration of the pollutant about eight times greater than that used in the first case, and
in a much shorter time period (50 min). The enhanced photocatalysis results were attributed
to the selective oxides heterojunction, which promoted excellent spatial separation of
charge carriers.

Kumari et al. [122] synthesized a hierarchical ZnO/CuO nanocomposite by hydrother-
mal process for the treatment of Triclopyr-contaminated water (a widespread herbicidal
agent for post-emergence control of weeds in pastures). The pesticide contained in a
10 mg/L (pH 4) contaminant aqueous solution was completely degraded after 100 min
of exposure to UV light. Mg/Al, Mg/Cerium (Ce) binary metal oxides are also seen as
potential materials for the degradation of pesticides because they offer quicker, efficient
and economically viable solutions for the photocatalysis process [123].

In general, interactions at the atomic level and at the interface between the oxides
return nanocomposites, with a higher surface area, improved photocatalysis results in
water cleaning processes [102]. Table 1 shows some of the most recent research works on
the use of mixed MO for the degradation of antibiotics and pesticides in water.

Table 1. Recent research results on the use of mixed MO-based MON photocatalysts for degradation
of antibiotics and pesticides molecules in water. Results with less than a 10% loss of efficiency with
reuse cycles were considered.

Mixed MO-Based MON Light Stimulus/
Amount of Catalyst

Pollutant/Initial Concentration/
% Degradation/Number of Cycles Reuse [Ref.]

grain bi-phase Fe3O4/Bi2WO6
supported on g-C3N4 nanosheets

Visible light/
100 mg

Tetracycline antibiotic/20 mg L−1/
98% in 105 min/6 cycles reuse

[93]

grain bi-phase Cu2O/Fe3O4
supported on Fe MOFs

Visible light/
50 mg

Ciprofloxacin antibiotic/20 mg L−1/
99.2% in 105 min/5 cycles reuse

[115]

heterogeneous nanoleaves
of Cu/Ni/Fe oxides

Visible light/
25 mg

Tetracycline antibiotic/10 mg L¯1

100% in 4 min/12 cycles reuse
[124]

grain bi-phase TiO2/ZnO
heteronanostructures

UV light/
512 mg

Tetracycline antibiotic/20 mg L−1/
82% after 165 min/6 cycles reuse

[125]

Fe3O4 nanoparticles on
Bi2O4 nanorods

Visible light/
10 mg

Ibuprofen antibiotic/500 µM/
100%, after 240 h/4 cycles reuse [126]

grain three-phase ZnO/Al2O3/TiO2
heteronanostructures

UV light/
100 mg

Ibuprofen antibiotic/60 mg L−1/
95%, after 210 min/no reuse

[127]
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Table 1. Cont.

Mixed MO-Based MON Light Stimulus/
Amount of Catalyst

Pollutant/Initial Concentration/
% Degradation/Number of Cycles Reuse [Ref.]

CuO/ZnFe2O4 nanoparticles
on BiOBr nanoplates

Visible light/
150 mg

Levofloxacin antibiotic/25 mg L−1

91% in 90 min/5 cycles reuse
[128]

flower-like Bi5O7I/Bi/Bi2WO6
decorated NiFe2O4 nanoparticles

Visible light/
75 mg

Levofloxacin antibiotic/28 mg L−1/
97.5% in 90 min/5 cycles reuse

[129]

coral-like MgO/Co3O4
spherical nanostructures

Visible light/
50 mg L−1

Levofloxacin antibiotic/10 mg L−1/
96.9% in 20 min/6 cycles reuse

[130]

grain bi-phase CuO/CdO supported
onto bentonite nanoleads

Sunlight/
400 mg L−1

Levofloxacin antibiotic/10 mg L−1/
96.1% in 30 min/3 cycles reuse

[131]

ZrO2 nanoparticles coated
on MoO3 nanoplates

Visible light/
250 mg L−1

Diclofenac sodium antibiotic/n.i./
91% in 120 min/5 cycles reuse [132]

Co3O4 nanoparticles
dispersed on MoO3 surface

Sunlight/
150 mg

Imidacloprid insecticide/15 mg L−1/
98% in 150 min/no reuse

[133]

Fe-doped anatase/brookite
TiO2 heteronanostructures

UV light/
1 g L−1

Simazine herbicide/1.73 × 10−5 M
65% in 180 min/no reuse

[134]

CeO2 nanoparticles/WO3 nanoplates
heteronanostructures

Visible light/
30 mg

Nitenpyram insecticide/n.i./
100% in 180 min/no reuse [135]

FeO/CoO nanoparticles loaded
onto the TiO2 surface

UV light/
100 mg

2,4,6-Trichlorophenol herbicide/25 mg L−1/
100% in 180 min/no reuse;

2,4-Dichlorophenoxyacetic acid herbicide/
25 mg L−1/100% in 120 min/no reuse

[136]

grain bi-phase TiO2-MoO3
heteronanostructures

Visible light/
50 mg

Carbaryl and Fenoxycarb insecticides/
60 mg L−1/100% in 60 min/no reuse [137]

Li2MnO3@ZrO2 core-shell
Heterostructures

Visible light/
1 g L−1

Atrazine herbicide/50 mg L−1/
100% in 60 min/5 cycles reuse

[138]

NiO/ZnO heterostructures
embedded in the chitosan pores

Sunlight/
30 mg

Malathion insecticide/20 mg L−1/
94% in 5 h/5 cycles reuse

[139]

n.i.—no information.

4.2. (MO/Conducting Polymer)-Based MON

Other possible ways to produce water-decontaminating materials include the inter-
action between metal oxides and conducting polymers. Conducting polymers (CPs) are
functional organic materials that stand out from other polymers because they display
electrical conductivity. Polyaniline (PANI), polypyrrole (PPy), polythiophene (PT), poly-
acetylene (PA) and poly (3,4-ethylenedioxythiophene) (PEDOT) are some examples of CPs
explored in the literature [140].

The intrinsic electrical conduction is attributed to the specific chemical structure of
these polymers, with alternating single and double bonds (which gives them the classi-
fication of conjugated polymers). These semiconductors have HOMO (highest occupied
molecular orbital) and LUMO (lowest unoccupied molecular orbital) layers, which levels
are similar to those observed for the VB and CB in metal oxides, respectively. As in organic
semiconductors, there is an energy gap between HOMO and LUMO orbitals that defines the
electronic properties of the material. When the CP molecules are photoexcited (polarons),
electrons from the HOMO layer migrate to the LUMO layer, leaving a hole in the HOMO
layer. This molecule will be called polaron-hole or polaron-electron, under oxidation or
reduction, respectively.

Conducting polymers are also known for their unique microstructural (high porous
bulk and high surface roughness, high surface area/volume ratio and a large variety
of functional surface groups), for their processability by dispersion, for their adjustable
oxidation-reduction and electrical/electronic properties by organic synthesis from their
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monomers, and for their dispersion abilities of other electronically active materials, such as
metal oxides [141]. They also distinguish themselves due to the possibility of including
natural clays, with a consequent increase of the chemical and/or structural stability of the
polymeric matrix.

In addition to the chemical functionalities of their polymeric matrix, CPs are used
as templates for the dispersion of metal oxides, in which they have shown a capacity for
preventing the aggregation of the particles. Thus, the combined action between oxides and
polymers significantly increases the surface area of action with contaminants.

The properties of the combination of CPs with metal oxide gave origin to a variety of
applications in nanotechnology, such as in the development of sensors, supercapacitors,
solar cells, organic electronic devices and new efficient photocatalysts materials for the
remediation of aqueous environments polluted by organics [142].

Regarding the photocatalysis mechanism using (MO/CP)-based MON, the conducting
polymer can act as a visible photosensitizer, exciting electrons from the HOMO to the
LUMO. In sequence, these electrons are then collected in the metal oxide CB, making
them available for the degradation processes. In addition, there is an interaction between
CP HOMO and metal oxide VB, with transfer of holes from the oxide VB to the polymer
HOMO layer. The higher density of electrons and holes available in MON are the main
causes of the better photodegradation performance of organics compared to the use of
pristine MO [143,144].

More than 80% of the research papers (returned by bibliometric analysis) on CPs
containing MON for application in photocatalysis of organics use the PANI and PPy
polymers, largely due to their being the first CPs discovered, with properties widely
disseminated in the literature and viable synthesis routes with a low production cost when
compared to newer CPs. PANI is a conducting polymer known to have a large amount
of amine and emine superficial functional groups. These groups have a strong affinity
with metal ions and can therefore be used to remove selective organics in aqueous systems.
The research field concerning the development of metal oxide–PANI nanocomposites is
open and has allowed many innovations along recent years. For example, the ZnO-PANI
nanocomposite was recently introduced as a new photocatalyst for the removal of Acid
Orange 8 dye in aqueous solutions [145]. The interaction of zinc nanostructures with PANI
let one obtain greater mechanical and thermal resistance, and to improve the adsorbent
properties of the OH functional groups concerning oxide and amine groups of polyaniline
(available in large quantities and with high dispersion).

The iron oxide–PANI core–shell nanocomposite was prepared using surfactant-assisted
sol-gel and polymerization routes [146]. The nanocomposite showed very high degrada-
tion efficiency against methyl blue (99.8), eosin yellow (98.5%) and methyl red (99.6%)
organic dyes, with four recyclability cycles along 50 min. The best results were linked
to the PANI surface protection against Fe2O3 corrosion, to the low e-/h+ recombination
rates and to the nanocomposite’s broad ability to generate reactive oxidative species in
water, which accelerated the reaction of dyes degradation and substantially increased the
process efficiency.

In addition, the arrangement of a ternary system, with two selective oxides and
PANI, can considerably increase the mobility of charge carriers and, consequently, im-
prove the photocatalysis performance against organic contaminants in water [147]. TiO2-
CoFe2O4 [148], TiO2-ZnFe2O4 [149], rGO-ZnFe2O4 [150] and rGO-MnO2 [151] have been
successfully combined with PANI to obtain new photocatalysts with better performance.
Recently, the TiO2/Bi2O3/PANI ternary nanocomposite was synthesized as a novel pho-
tocatalyst material [152]. The results were very promising, with photocatalysis abilities
against RhB dye (100% degradation in 40 min) and Triclopyr pesticide (85% degradation
in 120 min). The photocatalysis process results established this (MO/CP)-based MON
configuration as a sustainable material that can be reused repeatedly.

Polypyrrole (PPy) is another conducting polymer with great potential to form func-
tional nanocomposites with metal oxides. PPy is synthesized after polymerization of the
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pyrrole and activated as a conductive polymer by means of an oxidation process. This
polymer is amorphous and has a fractal surface, which guarantees a high surface area in
relation to its volume. Its electrical conduction properties are dependent on the conditions
and reagents used in the synthesis [153,154].

TiO2-SiO2/PPy [155,156], tin dioxide (SnO2)/PPy [157,158], ZnO/PPy [159–161] have
also been used for the photocatalysis of organics in water under visible light. The results
showed that these nanocomposites have great affinity with contaminant molecules and
new sensory characteristics. The polymerization process, morphology, stability of nanopar-
ticles in solution and adsorption capacity characteristics are directly related to the better
photocatalytic results of these nanocomposites.

Recently, Biju et al. [162] developed a photocatalyst (CuO-ZnO)/PPy that enhanced
photocatalytic degradation of methane yellow (a dye widely used in the world in industries
like textiles, food, cosmetics, among others) under visible light. The incorporation of PPy
resulted in a 50% increase in performance in comparison to the use of the binary mixture of
oxides, with greater efficiency and economy. Photocatalysis was governed by the standard
mechanism previously described for MO/CP nanocomposites.

4.3. (MO/Carbon Materials)-Based MON

Other metal oxide nanocomposites with a high potential of usage in the decontami-
nation of aqueous environments are those prepared by interaction with carbon materials,
such as graphene (G), single- and multi-walled carbon nanotubes (CNT) (namely, SWCNTs
and MWCNTs, respectively), fullerenes, among others [163–165].

The interaction between metal oxides and these carbon materials permits one to synthe-
size nanocomposites with an active surface area greater than their pristine components, and
with chemical interactions due to van der Waals forces, that guarantees them the capacity
of preventing the aggregation of oxides while simultaneously increasing the photocatalysis
process efficiency [166,167].

The combined use of carbon materials and metal oxides (MO), as a composite photo-
catalyst, is known to assure facilitated charge transfer under the action of light (by different
mechanisms) and to drastically decrease the e−/h+ recombination in MON [168–170]. The
photodegradation efficiency will be directly related to the nature of the light source (UV or
visible) and with the light adsorption capacity of the pollutant.

For example, if the contaminated molecule is normally adsorbed on the photocatalyst
surface but it does not adsorb light under UV light excitation, when photon energy of the
light greater than the MO bandgap energy is supplied, primarily electrons are transferred
from the BV to the BC of the metal oxide, generating a pair e−/h+ (first charge transfer
mechanism). The photogenerated electrons in the MO are then injected into the carbon
material because of its more positive Fermi energy [168,169]: indeed, the work function
(minimum energy required to strip an electron from the material surface) of carbonaceous
species generally displays more negative potentials than the MO conduction band position,
which favors the process of electron ejection towards the carbon material [169,170]. In
other words, the increase in MO charge separation efficiency promoted by the carbon
material, combined with its excellent charge carrier mobility (which also easily sequesters
electrons from available oxygen in the solution), significantly improves the performance
of the MON-based photocatalyst. In addition, when MON excitation occurs with visible
light, primarily a charge transfer in MON occurs via photogenerated electrons from the
photoexcited state of the carbon material towards the CB of the metal oxide (second charge
transfer mechanism). In this case, the presence of additional electrons in the MO promotes
the reduction of its bandgap, with a consequent reduction in the e−/h+ recombination rate
and in a more effective photocatalytic activity under visible light. Thus, there is a higher
density of electrons in the solution that react with oxygen, available to form superoxide
radicals which are responsible for the degradation of the organic material. These charge
transfer mechanisms, respectively, (1) and (2), are illustrated in Figure 9 for a TiO2/G MON.
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and UV light action.

If the dye has a high light adsorption capacity, under UV excitation, the mechanism
is the same as described for (1) in Figure 9. With the use of visible light, the dye, besides
being a polluting molecule, also becomes a sensitizing agent for the transfer of electrons
from its excited state to the CB of the metal oxide.

In this sense, graphene (G) can act as a photoelectron acceptor in photocatalysis pro-
cesses, increasing the light absorption range (including the visible spectrum). TiO2/graphene
nanocomposites are one of the most studied (MO/G)-based MONs for application in
photocatalysis of dyes, pesticides, pharmaceuticals and sub-products of chemical
industries [171–175]. The high capacity of graphene to accept electrons decreases the TiO2
bandgap, which optimizes the photocatalytic activity of the semiconductor [176]

In addition, the interaction of graphene with the copper/tin binary MO (Cu2O/SnO2)
and with SnO2, and N-doped ZnO/graphene/ZnO sandwich composites, also results in
the appearance of additional valence bands that guarantee better photodegradation results,
when compared to those obtained using pristine oxides [177,178].

Regarding more recent applications, Bogale et al. [19] studied the photocatalytic
degradation of methylene blue (MB) dye under visible light, using a cuprous oxide
(Cu2O)/graphene nanocomposite. The hybrid materials were produced by a simple sol-gel
method using accessible materials such as graphite powder and copper nitrate.

In summary, graphene is a viable alternative to decrease the usual electron/hole
recombination in the oxides, which considerably improves the MB degradation results (94%
efficiency for the Cu2O/graphene nanocomposite against 67% for the pure oxide, after
180 min of continuous light action).

Table 2 summarizes some recent successful case studies using MO/carbon materials-
based MON for application in the remediation of contaminated water by organics, mapped
in the literature search.
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Table 2. Metal oxide/carbon materials-based MON photocatalysts for removing pollutants from
water. Results with less than 10% loss of efficiency with reuse cycles were considered.

Metal Oxide/Carbon
Material-Based MON

Light
Light Stimulus/

Amount of Catalyst

Pollutant/Initial Concentration/
Pollutant/Initial Concentration/

% Degradation/Number of
Cycles Reuse

[Ref.]

Cu2O/G
Nanostructures

Visible light/
XXX mg

MB dye/900 mg L−1/94%, after
180 min/3 cycles reuse

[19]

TiO2/G (supported on
clinoptilolite nanoplates)

Visible light
(xenon lamp)

Nitenpyram insecticide/n.i./100%,
after 80 min/no reuse [169]

TiO2 on G surface Visible light
(tungsten lamp)/30 mg

RhB dye/30 mg L−1/84% in 6 h/
2 cycles reuse

[173]

TiO2 on G surface Visible light
(xenon lamp)/10 mg

Xanthate (pollutant from the mineral
industry)/20 mg L−1/97%,

after 100 min/no reuse
[174]

TiO2/MoS2 on G surface Visible light/n.i. Tetracycline antibiotic/10 mg L−1/95%,
after 60 min/no reuse

[175]

sandwich-structured N-doped
(ZnO/G/ZnO) nanosheets

Visible light
(xenon lamp)/300 mg

MOrange dye/10 mg L−1/80%,
after 80 min/no reuse

[178]

V2O5 nanorods on G surface Visible light
(sunlight)/10 mg MB dye/n.i/100% in 90 min/no reuse [179]

WO3 nanorods on G nanosheets visible light
(xenon lamp)/20 mg

MB dye/10 mg L−1/83% in
70 min/ no reuse

[180]

G nanocluster decorated Nb2O5
Nanofibers

Visible light
(metal-halide lamp)/1 g

MOrange dye/20 mg L−1/95% in 5 h/
3 cycles reuse

[181]

single-walled CNT on
Mn3O4-TiO2 surface

Visible light
(sunlight)/1 g

MOrange dye/20 mg L−1/98% in
150 min/no reuse

[182]

WO3.ZnO.NiO on CNT Visible light
(sunlight)/50 mg

MB dye/5 ppm/66.19% in 105 min/
4 cycles reuse [26]

multi-walled CNT decorated
V-doped TiO2

Visible light
(sunlight)/500 mg

MB dye/12.8 mg L−1/65%,
after 60 min/ no reuse

[167]

TiO2 nanoribbons/multi-walled CNT
nanostructures

Visible light
(sunlight)/20 mg

MB dye/10 mg L−1/97.3%,
after 180 min/3 cycles reuse

[183]

TiO2/ZnO covered
multi-walled CNT

UV; visible
light/n.i.

RhB dye/5 mg L−1/100% in
40 min/no reuse

[184]

TiO2/CNTs/reduced graphene oxide
(rGO) nanostructures

Visible light
(xenon lamp)/10 mg

RhB dye/10 mg L−1/100%,
after 60 min/no reuse

[185]

WO3 on multi-walled CNT surface Visible light
(xenon lamp)/50 mg

Naphthalene insecticide/10 ppm/65% in
240 min/no reuse [186]

V2O5 on multi-walled CNT surface UV light/10 mg MB dye/100 ppm/96%,
after 60 min/no reuse [187]

CeO2@C60 core-shell
nanostructures

Visible light
(sunlight)/1 g

P-nitroaniline/10 ppm/100% in
75 min/7 cycles reuse [188]

TiO2 and CeO2 nanofibers
embedded in C60 nanowhiskers matrix UV light/75 mg Isopropyl alcohol (IPA)/200 ppm/

90%, after 120 min/no reuse [189]

Bi2TiO4F2-C60 hierarchical
Spheres

Visible light
(xenon lamp)/10 mg

RhB and Eosin Y/20 ppm/80% and 90%,
respectively, after 60 min/

3 cycles reuse
[190]

G—graphene; CNT—carbon nanotubes; C60—fullerene; MB—methylene blue; RhB—rhodamine B;
MOrange—methyl orange; n.i.—no information.
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Other possibilities involve enhancing the photocatalytic performance of metal ox-
ides with carbon nanotubes (CNTs). CNTs are allotropes of carbon with a cylindrical
nanostructure (like a rolled graphene sheet), single- or multi-walled, named SWCNTs and
MWCNTs, respectively.

In the literature, several MOs (such as TiO2, ZnO, CuO, WO3 and NiO) have been
successfully incorporated into CNTs surfaces to produce potential MO/carbon-based
MON photocatalysts [26,191–194]. CNTs combine adsorptive mesoporous surfaces, strong
chemical durability, and high electron storage capacity, capable of providing additional
photocatalysis performance, based on the acceptance of photogenerated electrons from the
metal oxides by the formed MO-CNT heterojunctions.

Sapkota et al. [191] synthesized a series of CuO hierarchical nanoflowers/SWCNT
heteronanostructures by simply calcining the mixture at 550 ◦C. With this low-cost and
effective synthesis route, the authors demonstrated how to attain a degradation of 96%
of the MB dye in 2 h, using visible light. Besides, the nanocomposites were used for five
cycles, without loss of photocatalytic performance or morphology.

Recently, a ZnO/CNT heteronanostructure was synthesized by recrystallization fol-
lowed by thermal decomposition, as another efficient and low-cost MON [193] for hetero-
geneous photocatalysis. This MON showed superior results regarding photodegradation
of MB in water, when compared to other results reported in the literature using the same
nanocomposite: previous works have shown dye degradation between 71 and 100%, with
UV light or artificial white light, while the authors reached total dye degradation in 120 min,
using sunlight, and for up to five cycles, which boosts the potential usage of the material
in the decontamination processes. A more recent work by Hanif and collaborators [194]
showed even better results using N-doped ZnO/CNTs nanocomposites, with degradation
saturation attained in just 25 min. In addition to the expected interaction between ZnO
and CNTs, the doping of ZnO with N decreased the MO bandgap and, thus, the transfer of
charges occurs more easily, with an increase in the kinetic constant of the photodegrada-
tion reaction.

A novel TiO2/CNT (70/30 wt%) binary heteronanostructure was successfully synthe-
sized by de la Flor et al. [195] as an effective sunlight photocatalyst for the degradation of a
group of pesticides widely used in agriculture (thiacloprid, imidacloprid and clothianidin).
With this configuration, a percentage of pesticide degradation above 80% was obtained
after 180 min of photoreaction, allowing for MON reuse for up to eight cycles.

The synthesis of MON photocatalysts using fullerenes represents the most recent
research topic among carbon materials reported here, proving to be a growing field.
Fullerenes are an allotropic phase of carbon, with a molecular arrangement in the hol-
low truncated polyhedra architecture (bucky balls form), usually with 20 (C20), 60 (C60),
70 (C70) or more carbon atoms linked by unsaturated bonds. When they display hollow
three-dimensional geometry and electronic nature structure, excellent magnetic, structural,
electronic and optical properties are exhibited. These nanostructures are excellent electron
acceptors, which can significantly improve electron transfer in MON [188,196–198].

The C60 (truncated icosahedron geometry) species stands out as one of the first
compounds of this family, widely known and most used in heterogeneous photocatal-
ysis processes [188]. Its combination with metal oxides has provided the synthesis of
nanocomposites with different architectures such as core–shell, hierarchical and support
matrix [188–190,196–198].

Zhang et al. [197] reported the easy synthesis of an efficient and reusable TiO2/fullerene
photocatalyst, by mixing TiO2 and polycarboxylic functionalized fullerene acid through
an ultrasonication/evaporation route. It was demonstrated that the introduction of C60
(0.5–3 wt% ratio) in the system enhanced the visible photocatalytic activity of the final
material, with the simultaneous participation of photogenerated hole (h+) and superoxide
radicals in the photodegradation of RhB dye. The reaction efficiency was greater than 95%,
within 150 min under Xenon lamp irradiation, using at least 1 wt% of C60.



Toxics 2023, 11, 658 25 of 34

Munawar et al. [188] successfully synthesized a cerium (IV) oxide (CeO2)@C60 core-
shell photocatalyst. The MON was able to degrade 100% of P-nitroaniline (a chemical
reagent used in the preparation of several dyes) in 75 min, under sunlight. More recently,
a fullerene-supported lanthanum oxide (La2O3-C60) nanocomposite was produced by a
simple solution method and exhibited excellent organic dye photodegradation results [198].
This MON completely degraded the MB dye molecules in water, after 30 min of photore-
action under UV light irradiation, with seven usability cycles. The authors attributed
the high photocatalysis efficiency of the nanocomposite to its lower bandgap and lower
recombination rate of charge carriers. Other efficient MO/fullerene photocatalysts found
in recent literature are shown in Table 2.

In works that address the identification of by-products of the degradation reactions,
some materials characterization techniques such as liquid chromatography coupled to
mass spectrometry (LC-MS) and LC-MS with mass/charge analyzer TOF (Time of Flight)
(LC-MS-TOF) have been shown to be effective for the identification of the intermediate
products [199,200]. However, it is important to highlight here that many research works
focus on the efficiency of the decontamination process using the photocatalyst material (ob-
taining intermediate or complete degradation of the contaminant) and do not categorically
discuss which specific by-products were formed during the reaction [201]. It is known that
during the photocatalysis process, the physicochemical properties of the catalyst (which
directly interfere with the reaction kinetics) promote the molecular selective modification
of the contaminant, resulting in different preferential degradation [202]. The state of the
art on the photodegradation of organic pollutants shows that the degradation of these
molecules with heterogeneous photocatalysis processes involves some basic pathways.
At first, the organics are adsorbed on the surface of the catalyst. The catalyst/pollutant
interaction under the action of light promotes chemical processes (such as deethylation,
demethylation, N-oxidation reactions, among others) to remove groups from the molecules
of these contaminants. The other steps involve the cleavage of selective bonds (such as
C–N and C–S), and addition reactions of −OH and =O [202–205].

In an overall analysis, the experimental validations discussed here, regarding the
efficiency of the use of new metal oxide nanocomposites (MON) in water decontamination
processes by photocatalysis, are essentially one of the first steps for the scalability of the
solutions and for the adaptation of current wastewater treatment plants. A more integrated
management of wastes is also under study (involving the various agents and related sec-
tors): it is based on the possibility of expanding environmental services used in wastewater
treatment plants and upgrading them to meet current decontamination demands [206].
Quite recently, literature reports have shown that the complexity of technological and
economic decisions that must be considered for this type of expansion process can be
better managed with the support of machine learning algorithms and circular bioeconomy
techniques [206–209].

In general, machine learning methods can provide a quantitative assessment of the
feasibility of adapting water treatment plants to new methodologies for decontamination
of water polluted by organics, as well as the energy balance and the modernization needs
of the sector. These actions aim to evaluate the economic returns generated by the new
investments, combined with urban sustainability [206,207]. In addition, the search for new
MON-based photocatalysts for wastewater treatment can contribute to a more progressive
development of a circular bioeconomy, with innovative decontamination processes, to
the emergence of intersectoral organizations, to greater interaction between research and
legislation, to new methods of performance evaluation, and to a greater discussion of
improvements aimed at society [206,208].



Toxics 2023, 11, 658 26 of 34

5. Conclusions

The fundamentals of metal oxides were presented and related to their physical and
chemical characteristics. The electronic properties of those materials were described,
allowing one to understand their application as photocatalysts in the treatment of organics-
contaminated water.

The bibliometric study proved to be an important tool to highlight the present scenario
and temporal evolution of the research topic in the last decade, as well as the main materials
that have been used in synergy with metal oxides for the development of more efficient
photocatalysts. The possibility of synthesizing nanocomposites between two or more
metal oxides, or between metal oxides and conducting polymers or carbon materials, was
highlighted as a viable, efficient, and low-cost alternative to improve the performance of
water decontamination processes by heterogeneous photocatalysis.

The discussion of recent advances on the use of metal oxide nanocomposites demon-
strated that most water decontamination processes involving these nanocomposites are
carried out with visible light. This shows that charge transfer in the final semiconductor
is facilitated by the presence of additional energy levels resulting from the interaction
at the electronic level of these materials, which directly originates lower electron/hole
recombination rates and facilitates the charge transport. These results are attributed to
the improvement of the electronic coupling and to the fast capture of excited electrons in
the metal oxide nanocomposites, when compared to the use of the pristine oxides. Their
unique properties associated with a variety of applications in environmental remediation
provide an exciting platform of research for the coming years.
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