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We exploit the great potential offered by Bayesian neural networks (BNNs) to directly decipher the
internal composition of neutron stars (NSs) based on their macroscopic properties. By analyzing a set of
simulated observations, namely NS radius and tidal deformability, we leverage BNNs as effective tools for
inferring the proton fraction and sound speed within NS interiors. To achieve this, several BNNs models
were developed upon a dataset of ∼25 K nuclear equation of state within a relativistic mean-field
framework, obtained through Bayesian inference that adheres to minimal low-density constraints. Unlike
conventional neural networks, BNNs possess an exceptional quality: they provide a prediction uncertainty
measure. To simulate the inherent imperfections present in real-world observations, we have generated four
distinct training and testing datasets that replicate specific observational uncertainties. Our initial results
demonstrate that BNNs successfully recover the composition with reasonable levels of uncertainty.
Furthermore, using mock data prepared with the DD2, a different class of relativistic mean-field model
utilized during training, the BNN model effectively retrieves the proton fraction and speed of sound for
neutron star matter.
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I. INTRODUCTION

The extreme matter conditions inside neutron stars (NSs)
are impossible to recreate in terrestrial laboratories, making
the equation of state (EOS) of dense and asymmetric
nuclear matter (realized inside NSs) an interesting and
still unknown quantity. Modeling NS matter is restricted by
constraints coming from the observations of massive NSs:
PSR J1614-2230 [1–3] with M ¼ 1.908� 0.016M⊙, PSR
J0348–0432 with M ¼ 2.01� 0.04M⊙ [4], PSR J0740þ
6620 with M ¼ 2.08� 0.07M⊙ [5], and J1810þ 1714
with M ¼ 2.13� 0.04M⊙ [6]. Additionally, theoretical
calculations, such as chiral effective field theory (χEFT),
are applicable only at very low densities, while pertur-
bative quantum chromodynamics is reliable for extremely
high densities. Recently, multimessenger astrophysics
has become an exciting field, allowing to understand
NSs physics by connecting information carried by
different sources, such as gravitational waves, photons,
and neutrinos. The detection by LIGO/Virgo collabo-
ration of compact binary coalescence events, such as
GW170817 [7] and GW190425 [8], allowed us to further
constrain the EOS of NS matter. Recent results from
Neutron star Interior Composition ExploreR (NICER) on

the PSR J0030þ 045 pulsar mass [9,10] and PSR J0740þ
6620 radius [11–13] were relevant in restricting the
possible neutron stars physics. Future expected observa-
tions from experiments such as the enhanced x-ray timing
and polarimetry mission (eXTP) [14,15], the (STROBE-X)
[16], and Square Kilometer Array [17] telescope will allow
for the determination of NSs radii and masses with a few %
uncertainty.
Numerous statistical methods have been extensively

explored to determine the most probable EOS based on
observational data of NSs. These methods include Bayesian
inference [18,19] and Gaussian processes [20]. However,
even if the EOS is known with high precision, the challenge
remains in constraining the composition of neutron star
matter. Previous studies have highlighted the impossibility
of recovering nuclear matter properties solely from the
β-equilibrium EOS without knowledge of the compositions
(or symmetry energy at high densities) [21–23] or without
information about the EOS of symmetric nuclear matter in
conjunction with compositions [24]. However, these stud-
ies were either limited to metamodels or based on restricted
models. Motivated by this, we aim to construct an artificial
neural network that directly maps NS observational proper-
ties to EOS composition using a large set of EOS derived
from the relativistic mean field (RMF) approach.
Deep learning is another field that has become a

buzzword in trying to solve the dense matter EOS prob-
lems, and all kinds of physics problems [25–44].
The inference problem of determining the EOS from
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observational data can be roughly divided into two main
categories: the reconstructing of the EOS, pressure or speed
of sound, from either mass radius or tidal deformability,
[25–32,34,35,37,40,41,44], or focus directly on the nuclear
matter saturation properties [33,36,38,39,42,43]. As an
example, Fujimoto et al. [25–27] explored a framework
based on neural networks (NNs) where an observational set
of NS mass, radius, and respective variances was used as
input and the speed of sound squared as output. A similar
perspective was followed in [30]. The works [33,36] fall
into the second category: determining specific saturation
properties of nuclear matter, in this case, the density
dependence of the nuclear symmetry energy, directly from
observational NS data.
However, the majority of these NNs based models face a

considerable drawback, namely, the lack of uncertainty
quantification. Questions such as how confident is a model
about its predictions? is the main focus of the present work,
in which the uncertainty modeling is explored by imple-
menting a very appealing approach called Bayesian neural
networks (BNNs), [45]. BNNs have already started being
used in different fields of physics [46,47], and have been
shown useful in uncertainty quantification. Our goal is
to implement an inference framework that gives a pre-
diction uncertainty to any model prediction. We analyze the
density dependence of the proton fraction and speed of
sound inside NS matter. For that, several synthetic datasets
made of “mock” observational data will be constructed and
the impact of adding information on the tidal deformability
into the model predictions will be analyzed. Let us make
clear an important distinction between our work and the
majority of studies: instead of applying a widely used
approach of parametrizing the EOS, e.g., with polytropes,
we used a specific family of nuclear models to construct a
set of possible EOS. Despite their flexibility in exploring
the entire region of possible EOS, the generic agnostic
parametrizations of the EOS are unable to model and track
the different degrees of freedom inside NSs. The use of a
microscopic model has the crucial advantage of accessing
the density dependence of all degrees of freedom and thus
unable us to analyze the proton fraction.
The paper is organized as follows. A basic introduction

to BNNs is presented in Sec. II. The family of nuclear
models chosen is presented in Sec. III and also the Bayesian
inference framework employed to construct the EOS
dataset. The generation of the synthetic observation data-
sets is explained in Sec. IV. The model results for the proton
fraction and speed of sound are discussed in Sec. V, and
lastly, the conclusions are drawn in Sec. VII.

II. BAYESIAN NEURAL NETWORKS

Despite the great success of (feedforward) neural net-
works (NNs) in different fields of science, they come
with some drawbacks that require special attention. NNs
are susceptible to overfitting and are unable to access the

uncertainty of its predictions, which may lead to over-
confident predictions. Bayesian neural networks (BNNs)
is a Bayesian approach framework that introduces
stochastic weights to NNs making them uncertainty-aware
models [48].
NNs are capable of representing arbitrary functions and

are composed, in their simplest architecture, of a sequence
of blocks where a linear transformation is followed by a
nonlinear operation (activation functions). To simplify the
notation, let us denote a NN by y ¼ fθðxÞ, where θ ¼
ðW; bÞ represent all NN weights. The vectors W and b
denote, respectively, the connections (weights) and bias of
all linear transformations of the network, which define
completely the NN model. Training the NN consists in
determining the numerical procedure (back-propagation
algorithm) of finding the θ� that minimizes a chosen cost
function on the training data. This traditional approach of
estimating a single model defined by θ� ignores all other
possible parametrizations θ.
BNNs simulate multiple possible NNs models by intro-

ducing stochastic weights. These networks operate by first
choosing a functional model, i.e., a network architecture,
and then the stochastic model, i.e., the probability distri-
butions for the weights. Bayesian inference is then required
to train the network by defining the likelihood function
of the observed data, PðDjθÞ, and the prior probability
distribution over the model parameters, PðθÞ. It is then
possible to employ Bayes theorem and obtain the posterior
probability distribution, i.e., the probability of the model
parameters given the data:

PðθjDÞ ¼ PðDjθÞPðθÞ
PðDÞ ; ð1Þ

where PðDÞ ¼ R
θ0 PðDjθ0ÞPðθ0Þdθ0 is the evidence. Having

a distribution on the weights, the BNNs predictions become
a Bayesian model average: the probability distribution of
some unknown y� given an input x� is

Pðy�jx�; DÞ ¼
Z
θ
Pðy�jx�; θÞPðθjDÞdθ: ð2Þ

Pðy�jx�; θÞ is considered to be the likelihood of our data,
the distribution that comes out of the network and captures
the noise present in our data, and PðθjDÞ is the posterior
distribution of our weights, that brings up the uncertainty
on the model. Another advantage of using these networks
is that they capture two types of uncertainty, aleatoric
uncertainty, uncertainty on the data, and epistemic uncer-
tainty, uncertainty on the model estimation defined as
Pðy�jx�; θÞ and PðθjDÞ, respectively. However, solving
Eq. (2) is a very complex task because the posterior PðθjDÞ
depends on the evidence PðDÞ ¼ R

θ0 PðDjθ0ÞPðθ0Þdθ0,
which is a nonanalytic expression that requires marginal-
izing over all model parameters. Fortunately, there are
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multiple ways of tracking it by using either Markov chain
Monte Carlo or variational inference (more information can
be found in [48]). We are going to implement the variational
inference method that is presented in the following.

A. Varitional inference formalism

The variational inference method aims to approximate
a variational posterior qϕðθÞ to the real posterior PðθjDÞ
by using the Kullback-Leibler (KL) divergence. The KL
divergence is a measure of dissimilarity between two
probability distributions. It approaches zero when the
variational posterior and the true posterior are identical
and is positive otherwise. Fundamentally, we want to find
the variational posterior that corresponds to the minimum
value of the KL divergence between the variational pos-
terior and the true posterior:

qϕ� ¼ argmin
qϕ

KLðqϕðθÞjjPðθjDÞÞ; ð3Þ

where the KL divergence is defined by

KLðqϕðθÞjjPðθjDÞÞ ¼ EqϕðθÞ

�
log

�
qϕðθÞ
PðθjDÞ

��
; ð4Þ

¼
Z
θ
qϕðθÞ log

�
qϕðθÞ
PðθjDÞ

�
dθ: ð5Þ

In order for the dependence on the true posterior to
disappear, the last equation can be rewritten, with the help
of Bayes rule Eq. (1), as

KLðqϕðθÞjjPðθjDÞÞ ¼
Z
θ
qϕðθÞ log

�
qϕðθÞPðDÞ
PðDjθÞPðθÞ

�
dθ;

¼ KLðqϕðθÞjjPðθÞÞ
− EqϕðθÞðlogPðDjθÞÞ þ logPðDÞ;

¼ FðD;ϕÞ þ logPðDÞ; ð6Þ

where FðD;ϕÞ ¼ KLðqϕðθÞjjPðθÞÞ − EqϕðθÞðlogPðDjθÞÞ
is called the variational free energy. We end up with

KLðqϕðθÞjjPðθjDÞÞ ¼ FðD;ϕÞ þ logPðDÞ: ð7Þ

As the last term, logPðDÞ, does not depend on the
variational posterior and his parameters, which we are
optimizing, minimizing KLðqϕðθÞjjPðθjDÞÞwith respect to
ϕ is the same as minimizing FðD;ϕÞ. Evidence Lower
Bound (ELBO) is another important quantity, which stands
for evidence lower bound, and it is defined as the negative
free energy, i.e., ELBO ¼ −FðD;ϕÞ. Equation (7) can then
be rewritten as

KLðqϕðθÞjjPðθjDÞÞ ¼ −ELBOþ logPðDÞ; ð8Þ

or

ELBO ¼ −KLðqϕðθÞjjPðθjDÞÞ þ logPðDÞ: ð9Þ

ELBO is called the lower bound of the evidence because
ELBO ≤ logPðDÞ. In other words, KLðqϕðθÞjjPðθjDÞÞ is
minimized by maximizing the evidence lower bound.
In the end, our optimization objective resumes to

qϕ� ¼ argmin
qϕ

KLðqϕðθÞjjPðθjDÞÞ;

¼ argmax
qϕ

ELBO ¼ argmin
qϕ

FðD; θÞ;

¼ argmin
qϕ

½KLðqϕðθÞjjPðθÞÞ − EqϕðθÞðlogPðDjθÞÞ�:

The above general formalism is applied to our specific
case, where we have chosen a multivariate Gaussian for
the variational posterior, qϕðθÞ ¼ N ðμq;ΣqÞ, and a multi-
variate Gaussian with diagonal covariance matrix for the
prior, PðθÞ ¼ N ð0; IÞ.1 The final loss function we are
trying to minimize uses Monte Carlo sampling to obtain
the expected values, where θðnÞ is being sampled from the
variational posterior, qϕðθÞ, and for our specific model,
also the exact value of the KL divergence between two
Gaussian’s with covariance matrix is used,

FðD;ϕÞ ¼ 1

2Ds
½ð− log detðΣqÞÞ − kþ trðΣqÞ þ ðμqÞTðμqÞ�

−
1

B

XB
i¼1

1

N

XN
n¼1

logPðyijxi; θðnÞÞ; ð10Þ

where B is the number of points of the mini-batch, Ds
is the number of points of the training dataset, k is the
dimension of the identity matrix of the prior and N is the
number of samples we take of the variational posterior
(we used N ¼ 104). One aspect that stands out in these
networks is how back-propagation works. Without going
into much detail, the back-propagation updates μq and Σq

for each of the networks’ parameters (more information can
be found in [49]). Once the network is trained and the best
mean μq and covariance matrix Σq are obtained for the
distribution of the parameters, Eq. (2) becomes solvable
and predictions are obtained using Monte Carlo estimations

Pðy�jx�; DÞ ¼
Z
θ
Pðy�jx�; θÞqϕðθÞdθ; ð11Þ

¼ 1

N

XN
n¼1

Pðy�jx�; θðnÞÞ; θðnÞ ∼ qϕðθÞ: ð12Þ

1The choice of different probabilistic distributions and its
impact on the inference results is left for future studies.
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The mean μ̂ and variance σ̂2 vectors of the predicting
distribution Pðy�jx�; DÞ can be calculated, for a fixed x�, by
applying the law of total expectation and total variance.
From

E½y�jx�; D� ¼ EqϕðθÞ½E½y�jx�; θ�� ð13Þ

and

Var½y�jx�;D� ¼ EqϕðθÞ½Var½y�jx�;θ��−VarqϕðθÞ½E½y�jx�; θ��;
ð14Þ

we obtain

μ̂ ¼ 1

N

XN
n¼1

μ̂θn ð15Þ

and

σ̂2 ¼ 1

N

XN
n¼1

σ̂2θn|fflfflfflfflffl{zfflfflfflfflffl}
Aleatoric uncertainty

þ 1

N

XN
n¼1

ðμ̂θn − μ̂Þ ⊙ ðμ̂θn − μ̂Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Epistemic uncertainty

; ð16Þ

where ⊙ denotes element-wise multiplication. The pre-
dicted variance captures both epistemic and aleatoric
uncertainties [50].

III. NUCLEAR MODELS

A field theoretical approach is adopted to calculate a
dataset of nuclear EOSs. The approach incorporates
self-interactions and mixed meson terms within a RMF
description. Awide and reasonable region of the parameter
space is considered, providing an accurate representation of
presently known nuclear properties. Including nonlinear
terms is crucial for determining the density dependence
of the EOS. In this treatment, the nucleons interact through
the exchange of scalar-isoscalar mesons (σ), vector-
isoscalar mesons (ω), and vector-isovector mesons (ρ).
The Lagrangian governing the baryonic degrees of freedom
can be expressed as follows: L ¼ LN þ LM þ LNL with

LN ¼ Ψ̄½γμði∂μ − gωωμ − gϱt · ϱμÞ − ðm − gσσÞ�Ψ;

LM ¼ 1

2
½∂μσ∂μσ −m2

σσ
2� − 1

4
FðωÞ
μν FðωÞμν þ 1

2
m2

ωωμω
μ

−
1

4
FðϱÞ
μν · FðϱÞμν þ 1

2
m2

ϱϱμ · ϱμ;

LNL ¼ −
1

3
bmg3σðσÞ3 −

1

4
cg4σðσÞ4 þ

ξ

4!
g4ωðωμω

μÞ2

þ Λωg2ϱϱμ · ϱμg2ωωμω
μ;

where the field Ψ denotes the Dirac spinor that describes
the nucleon doublet (neutron and proton) with a bare mass

m, γμ are the Dirac matrices, and t is the isospin operator.
The vector meson tensors are defined as Fðω;ϱÞμν ¼
∂
μAðω;ϱÞν − ∂

νAðω;ϱÞμ. The couplings of the nucleons to
the meson fields σ, ω, and ϱ are denoted by gσ, gω, and
gϱ, respectively. The meson masses are given by mσ, mω,
andmϱ. More information on the specifics of the model can
be found in [19] and references therein. The parameters
gσ , gω, gρ, b, c, ξ, and Λω are systematically sampled
within a Bayesian framework, adhering to minimal con-
straints imposed by several nuclear saturation properties.
Furthermore, these parameters are subject to the conditions
of the neutron star maximum mass exceeding 2M⊙, as
well as the EOS for low-density pure neutron matter, which
is meticulously generated through a precise N3LO calcu-
lation in chiral effective field theory. A detailed discussion
on these aspects will be presented in the subsequent
subsection.

A. The Bayesian setup

Based on observed or fitted data, a prior belief
(expressed as a prior distribution) is updated using
Bayesian inference. The posterior distribution is derived
according to Bayes’ theorem [51]. In order to establish a
Bayesian parameter optimization system, four key compo-
nents must be defined: the prior, the likelihood function, the
fit data, and the sampler.

1. The prior

A broad range of nuclear matter saturation properties is
carefully considered in the prior domain of the adopted
RMF model. As a result of Latin hypercube sampling, we
determine the prior range in our Bayesian setup. Uniform
priors are chosen for each parameter, as described in
Table I.

2. The fit data

The fit data, presented in Table II, include the nuclear
saturation density ρ0, the binding energy per nucleon ϵ0, the

TABLE I. We use a uniform prior range for the parameters of
the RMF models. Specifically, B and C are b × 103 and c × 103,
respectively. Distribution minimums and maximums are indi-
cated by “min” and “max,” respectively.

No Parameters
Set 0

Min Max

1 gσ 6.5 15.5
2 gω 6.5 15.5
3 gϱ 6.5 16.5
4 B 0.5 9.0
5 C −5.0 5.0
6 ξ 0.0 0.04
7 Λω 0 0.12
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incompressibility coefficient K0, and the symmetry energy
Jsym;0, all evaluated at ρ0. Additionally, we incorporate the
pressure of pure neutron matter (PNM) at densities of 0.08,
0.12, and 0.16 fm−3 from N3LO calculations in χEFT [52],
accounting for 2 × N3LO data uncertainty. Furthermore,
the likelihood also includes the requirement of the neutron
star maximum mass exceeding 2.0M⊙ with uniform
probability.

3. The log-likelihood

We optimize a log-likelihood function as a cost function
for the given fit data in Table II. Equation (17) represents
the log-likelihood function, taking into account the uncer-
tainties σj associated with each data point j of constraints.
The maximum mass of neutron stars is treated differently,
using step function probability,

LogðLÞ ∝ −
X
j

��
dj −mjðθÞ

σj

�
2

þ Logð2πσ2jÞ
�
: ð17Þ

To populate the seven-dimensional posterior, we employ
the nested sampling algorithm [58], specifically the
PyMultinest sampler [59,60], which is well suited for low-
dimensional problems. The EOS dataset for subsequent
analyses will be generated using the full posterior, which
contains 25287 EOS.

IV. DATASET

Our goal is to train BNNs models to predict the speed
of sound and proton fraction of NS matter from a given
set of NS mock observations. To understand the effect
of different NS properties on the prediction uncertainty,

we generate different datasets using the 25287 EOS that
were obtained through the Bayesian analysis formalism
(see Sec. III A).

A. Structure

Our BNN model, PðYjX; θÞ, attributes a probability
distribution to Y (output space) given a set of NS mock
observations X (input space), where Y denotes the different
NS matter properties under study, i.e., the speed of sound
v2s ðnÞ and proton fraction ypðnÞ. We have chosen to
characterize each element of Y at 15 fixed baryonic
densities nk, e.g., ypðnÞ ¼ ½ypðn1Þ; ypðn2Þ;…; ypðn15Þ�.
The density points are equally spaced between n1 ¼
0.15 fm−3 and n15 ¼ 1.0 fm−3, nk ¼ f0.15; 0.21; 0.27;…;
1.0g fm−3. The number of points (NY ¼ 15) was selected
as a trade-off between computational training time and
the interpolation accuracy, i.e., low residuals between the
interpolation and the real values. We illustrate this discre-
tization process of the output space elements for the proton
fraction in Fig. 1.
Regarding the structure of the input space X, two

different element structures are studied: (i) X ¼ ½M1;…;
M5; R1;…; R5� corresponding to five MiðRiÞ simulated
observations and (ii) X ¼ ½M1;…;M5; R1;…; R5;M0

1;…;
M0

5;Λ1;…;Λ5� corresponding to five MiðRiÞ and five
ΛjðM0

jÞ simulated observations. In summary, the output
elements Yi of our datasets are specified by 15-dimensional
vectors and the input space elements Xi by 10-dimensional
or 20-dimensional vectors, depending on the dataset type
under study. The statistical procedure for generating the
different synthetic observational datasets is presented in the
following.

B. Generation

The first step of the generation of the datasets consists in
randomly splitting the total number of EOS into train and
test sets in a proportion of 80%/20%, i.e., the train set
contains 22758 EOS while the test has 2529 EOS. Second,

TABLE II. The Bayesian inference imposes constraints on
various quantities to generate sets of models. These constraints
include the binding energy per nucleon ϵ0, incompressibility K0,
and symmetry energy Jsym;0 at the nuclear saturation density ρ0,
each with a 1σ uncertainty. Additionally, the pressure of PNM is
considered at densities of 0.08, 0.12, and 0.16 fm−3, obtained
from a χEFT calculation [52]. The likelihood incorporates a 2 ×
N3LO uncertainty for the PNM pressure, noting that it increases
with density. Furthermore, the maximum mass of neutron stars is
constrained to be above 2M⊙.

Constraints

Quantity Value/Band References

NMP [MeV] ρ0 0.153� 0.005 [53]
ϵ0 −16.1� 0.2 [54]
K0 230� 40 [55,56]

Jsym;0 32.5� 1.8 [57]
PNM [MeV fm−3] PðρÞ 2 × N3LO [52]

dP=dρ > 0
NS mass [M⊙] Mmax > 2.0 [5]

FIG. 1. Illustration of Y ¼ ypðnÞ for two EOSs: each EOS is
represented in our datasets by the 15 points ypðnkÞ.
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we generate two types of datasets that share the Yi structure
but with different Xi structures:

Xi ¼ ½M1;…;M5; R1;…; R5�;
X0
i ¼ ½M1;…;M5; R1;…; R5;M0

1;…;M0
5;Λ1;…;Λ5�:

These different structures allows us to compare and access
how informative is the tidal deformability on the model
predictions. The statistical generating procedure is com-
posed of the following steps. For each EOS, we randomly

select five NS mass values, Mð0Þ
i , from a uniform distri-

bution between 1.0M⊙ and Mmax. Then, the radius Ri is
sampled from a Gaussian distribution centred at the TOV

solution, denoted as RðMð0Þ
i Þ, and with a standard deviation

of σR. Finally, we sample the final NS mass from a

Gaussian distribution centered at Mð0Þ
i and a standard

deviation of σM. The above process can be summarized
in the following equations:

Mð0Þ
i ∼ U½1;Mmax� ðin units of M⊙Þ; ð18Þ

Ri ∼N ðRðMð0Þ
i Þ; σ2RÞ; ð19Þ

Mi ∼N ðMð0Þ
i ; σ2MÞ; i ¼ 1;…; 5: ð20Þ

The final generated elements consists of Xi ¼ ½M1;…;
M5; R1;…; R5�, and each one is a possible realization
(observation) that characterizes the MðRÞ diagram of the
specific EOS. This procedure is similar to the one used
in [25], where a Gaussian noise was applied to 15 values
from MðRÞ curve, and then shifted from the original mass

radius curve: Mi ¼ Mð0Þ
i þN ð0; σ2MÞ and Ri ¼ RðMð0Þ

i Þþ
N ð0; σ2RÞ, for i ¼ 1;…; 15. The second kind of datasets
includes the tidal deformability and has the additional
steps

M0
j ∼ U½1;Mmax� ðin units of M⊙Þ; ð21Þ

Λj ∼N ðΛðM0
jÞ; σ2ΛðM0

jÞÞ j ¼ 1;…; 5; ð22Þ

where ΛðM0
jÞ is given by the ΛðMÞ relation of the specific

EOS and σΛðM0
jÞ describes an overall dispersion around the

mean value. Samples values with Λ < 0 were discarded.
The functional form σΛðM0

jÞ should reflect our expectation
on the mock observational uncertainty as a function of
the NS mass. In the present work, we considered σΛðM0

jÞ ¼
constant × σ̂ðM0

jÞ, where σ̂ðM0
jÞ is the standard deviation of

ΛðMÞ determined from dataset of EOSs. The generated
point is Xi¼½M1;…;M5;R1;…;R5;M0

1;…;M0
5;Λ1;…;Λ5�

(a similar approach can be found in [37]). In the above
procedures, there is an additional parameter, which we
denote by ns, that specifies the number of mock

observations for each EOS, i.e., the number of times the
above procedures are applied to each EOS. For instance,
choosing ns ¼ 20 would mean running the above proce-
dures 20 times for each EOS (20 observations), and thus
obtaining fX1;X2;…;X20g.
Applying the above formalism to both the train and test

sets, we have generated a total of four datasets whose
properties are displayed in Table III. Sets 1 and 2 only
contain information about the NS radii (input space X is
10-dimensional) while sets 3 and 4 also include the tidal
deformability (input space X is 20-dimensional). The
analysis of sets 1 and 2 allows to understand how a
decrease in the spread of the mock observations around
the TOV solution affects the predictions and uncertainties.
In the same manner, sets 3 and 4 aim to understand possible
effects on the model predictions arising from an increase of
simulated observations scattering around the mean value
on the tidal deformability. We use 60 mock observations,
ns ¼ 60, on the training sets for each EOS while ns ¼ 1
was employed for the test sets. This key difference tries to
simulate a real case scenario in which we only have access
to a single mock observation of the true EOS. Here, by
single mock observation, we mean ns ¼ 1 that corresponds
to five MiðRiÞ mock observations (sets 1 and 2) or five
MiðRiÞ mock observations and five ΛjðMjÞ mock obser-
vations (sets 3 and 4). To illustrate the dataset generation,
Fig. 2 displays the 60 mock observations for two distinct

TABLE III. Generation parameters for each dataset. σ̂ðMjÞ
denotes the standard deviation of ΛðMÞ calculated on the train set.
Dataset σM [M⊙] σR [km] σΛðMjÞ
1 0.05 0.15 � � �
2 0.1 0.3 � � �
3 0.1 0.3 0.5σ̂ðMjÞ
4 0.1 0.3 2σ̂ðMjÞ

FIG. 2. The ns ¼ 60 mock observations generated for two
EOSs in dataset 1 (left) and dataset 2 (right). The gray area
represents the extremes of our EOS dataset. The two EOSs
coincide with the ones used in Fig. 1.
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EOSs that belong to the generated datasets (dataset 1 and 2
on the right and left figures, respectively). Note that, for
each EOS, there are 300 points in the MðRÞ diagram, i.e.,
consisting of 60 EOS simulated observations for five NS
mock observations each. It is clear the increase of σR from
dataset 1 to 2, highlighting the differences between the two
datasets. Furthermore, we provide Fig. 3 to depict the tidal
deformability values for datasets 3 and 4.

C. Training procedure

To assess the response of BNNs to varying input noises
and output targets, we have conducted experiments involv-
ing the training of diverse functional and stochastic models
(as explained in Sec. II). These BNN models were trained
using distinct datasets generated as outlined in Sec. IV B.
During the training stage, a subset of the training data was
randomly selected as validation step, i.e., the training data
was split into 80% actually for training and 20% for
validation. Moreover, the input data X was standardized.
Defining the functional models involves adjusting the

number of neurons, layers, and activation functions.
Table IV shows the best functional models for each dataset
mentioned in Table III. For the hidden layers, we explore
hyperbolic tangent, softplus, and sigmoid activation func-
tions, while utilizing a linear activation function for the
output layer. As the input vector sizes differ (10 for sets 1
and 2, and 20 for sets 3 and 4), we employ more neurons

per layer for larger input spaces. This is due to the increased
complexity demanded by a greater number of parameters.
Specifically, we use 15 and 10 neurons for sets 1 and 2, and
20 and 25 neurons for sets 3 and 4, respectively. The output
layer consistently contains 30 neurons, with 15 represent-
ing the mean and 15 representing the standard deviation
of the output probability distribution function. It is worth
noting that we deliberately excluded the use of correlation
in the output layer due to the inferior performance observed
when attempting to incorporate it. As a result, the output
layer is solely focused on capturing the mean and standard
deviation information of the output distribution. The
architecture employed in this study involved utilizing
two to three hidden layers. The number of neurons within
each hidden layer remained consistent, but it varied
depending on the size of the input vector, as explained
earlier. During the hyper-parameter search process, we
systematically explored four different architectures for each
output. However, we narrowed our focus to datasets 1 and
3, as we specifically aimed to identify the most suitable
architecture for the two different input sizes. The best
outcomes are obtained by employing sigmoid as the
activation function in the hidden layers, ensuring minimal
loss and preventing divergence. Across all eight dataset
configurations, i.e., two outputs (v2s and yp) and four
datasets, see Table III, it was found that the optimal number
of hidden layers is two. For sets 1 and 2, the best
performance was achieved with 15 neurons in each hidden
layer, while for sets 3 and 4, 25 neurons were utilized in
each hidden layer. Detailed information on these configu-
rations can be found in Table IV for the two output
variables. During training, we employ a learning rate of
0.001 and utilize the ADAM optimizer [61] with the
AMSgrad improvement [62]. The models are trained for
4000 epochs, with a minibatch size of 768.
Regarding the stochastic model, we adopt a Gaussian

prior with mean zero and standard deviation of one as
mentioned in Sec. II A. While this prior choice lacks a
specific theoretical justification, it serves as a reasonable
default prior, as discussed in [48]. Future research could
delve further into investigating the impact of prior param-
eters, similar to the approach taken in Ref. [46].
Additionally, we select a multivariate normal distribution
as the variational posterior as explained in Sec. II A,
initialized with mean 0 and a diagonal covariance matrix,
where the standard deviation is equal to logð1þ exp 0Þ ¼
0.693. Furthermore, we opt for a deterministic output layer
instead of a probabilistic one, as it has demonstrated
improved results in our experiments. This decision is
motivated by the fact that the deterministic output layer
aligns better with the specific requirements of our model
architecture and the nature of the problem we are address-
ing. All BNNs models were coded using TensorFlow library
[63], more specifically we use Keras [64], an high-level API
of the TensorFlow.

FIG. 3. The ns ¼ 60mock observations generated in theΛ −M
diagram for two EOSs in dataset 3 (left) and dataset 4 (right). The
gray area represents the extremes of our EOS dataset. The two
EOSs coincide with the ones used in Fig. 1.

TABLE IV. Structures of the final BNN models. The v2sðnÞ and
ypðnÞ models have the same structure.

Layers Activation
Neurons

Datasets 1 & 2 Datasets 3 & 4

Input N/A 10 20
Hidden Layer 1 Sigmoid 15 25
Hidden Layer 2 Sigmoid 15 25
Output Linear 30 30
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V. RESULTS: NEUTRON STAR MATTER
PROPERTIES

In the following, we discuss the results for the speed of
sound squared v2sðnÞ and proton fraction ypðnÞ. To analyze
how the observational uncertainty in R and Λ affects the
model confidence, we are going to compare the results from
the different models of Table IV, which were trained on the
different datasets presented in Table III. For the sake of
simplicity, whenever we want to distinguish the different
eight BNN models, we will, hereafter, refer to their training
(data)sets, 1 to 4, and predicting quantity, v2sðnÞ or ypðnÞ.
For instance, when we say the results of dataset 2 for ypðnÞ,
we mean the BNN model trained on dataset 2 that has the
proton fraction as the target quantity.

A. Speed of sound

Let us start by illustrating the different BNNs predictions
for the speed of sound squared on a randomly selected EOS
from the test set. The results are displayed in Fig. 4, where
the top panel shows sets 1 (blue) and 2 (orange) models
while the bottom figure shows sets 3 (purple) and 4 (green).
Model predictions are computed using Eq. (2), from which
we show the mean values (solid lines) and 2σ regions (color
regions). The upper plot clearly shows that the prediction
uncertainty, characterized by the distribution’s standard
deviation σ, is smaller on set 1 than on set 2, and most
importantly, the predicted mean values are close to the real
values. The same pattern is seen in the lower figure: set 3
model (purple) has a lower prediction variance than set 4.
While a deeper understanding of the overall behavior
requires that we analyze the whole test set, Fig. 4 already
indicates that the BNNs models are able to capture the
characteristics of the different datasets (see Table III): the
increased dispersion of the NS mock observations around
the true values translate into a larger uncertainty when
inferring the corresponding EOS properties.
To investigate how the models predictions behave over

the entire test set, we define the normalized residuals’
predictions as ΓðnkÞ ¼ ðv2sðnkÞ − v2sðnkÞtrueÞ=σðnkÞ and the
dispersion by ΣðnkÞ ¼ σðnkÞ at each of the prediction
densities, i.e., k ¼ 1;…; 15. A summary statistics of both
quantities over all EOS of the test set is shown in Fig. 5.
The distribution of ΓðnÞ (top panel), for all four datasets,
has 50% of the values near zero, indicating that the median
of the prediction values is unbiased. Furthermore, at the
2.3% and 97.7% of the cumulative percentage, we can see
that the distribution lies between −2σ and 2σ, respectively,
indicating that the prediction mean deviates from the true
value less than 2σ 95.4% of the times. The fact that the
distribution properties of ΓðnÞ are similar across all datasets
and independent of the density reveals that the BNNs
models are correctly modeling the dispersion of the
predictions considering the corresponding mean residuals
at each density value. The value of ΣðnÞ (bottom panel)

grows with increasing density reflecting the training set
statistics: the EOS dataset was generated by Bayesian
inference where saturation properties were imposed, lead-
ing to a wider uncertainty at higher densities while low
density regions are strongly constrained. From the ΣðnÞ
plot, we see that the whole distribution of the BNN model
trained on set 1 (blue line) shifts to lower values, specifi-
cally on 2.3% and 50% of the values, showing that there is a
considerable decrease in uncertainty when the dispersion
of NS mock observations is reduced by a factor of 2,
from ðσM ¼ 0.1M⊙;σR ¼ 0.3 kmÞ to ðσM ¼ 0.05M⊙; σR ¼
0.15 kmÞ (see Table III).

FIG. 4. The BNNs predictions for v2sðnÞ using one EOS of the
test. The models trained on datasets 1 (blue) and 2 (orange) are in
the upper figure while datasets 3 (purple) and 4 (green) models
are in the lower figure. The prediction mean values (solid lines)
and 2σ confidence intervals are shown. The true values are shown
in black dots and the range of v2sðnÞ from the train set is indicated
by the gray region.
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To estimate the overall performance of the different
BNNs models, we show the coverage probability of each
model in Fig. 6. The coverage probability quantifies how
the model is perceiving the distribution of the data, by
determining if the percentage of values contained in 1σ of
the output distribution, i.e., the number of values in a
specific interval divided by the total number of values,
corresponds to 68% of the number of values we are using
for the test set. The same analogy is repeated for 2σ (95%)
and 3σ (99.7%), this was implemented for each of the 15
values of the output independently, obtaining the respective
coverage probabilities relative to the output densities, and
then we estimated the mean of this 15 coverage proba-
bilities represented in Fig. 6 for the four sets. The overall
results show that the model is correctly estimating the
distribution of the data, since the bars are very close to the

three percentages, a little fluctuation can be seen in the
68%, where the four sets are overestimating the uncertainty
of the results, meaning, we have a percentage of data bigger
than 68% in 1σ of the model, so the σ of the model should
be smaller, this can be seen even more for set 3.
To quantify how the increase in the mock observational

scattering of ðR;ΛÞ affects the model prediction uncertain-
ties, let us define the following quantity

η½a; b�ðnkÞ ¼
1

T

�XT
i¼1

σbi ðnkÞ − σai ðnkÞ
σai ðnkÞ

�
× 100; ð23Þ

where T is the total number of EOS in the test set, and
k ¼ 1;…; 15. This quantity defines the percentage uncer-
tainty deviation between models b and a at density nk.
Figure 7 shows the results, where we plotted four different

FIG. 5. Median (solid line), 95.4% confidence interval (dashed
and dotted lines), and extreme values (region) for ΓðnkÞ ¼
ðv2sðnkÞ − v2sðnkÞtrueÞ=σðnkÞ (top) and ΣðnkÞ ¼ σðnkÞ (bottom)
for each dataset.

FIG. 6. Coverage probability calculated on the test set of the
v2sðnÞ BNNs models.

FIG. 7. Prediction uncertainty deviation η½a; b� between the
v2sðnÞ BNN models a and b (see text for details).
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comparisons. The first conclusion, looking at the result for
η½2; 1� (cyan), is that the prediction uncertainty increased
when we consider the BNN model of dataset 1 compared
with the one from dataset 2. Furthermore, the η½2; 1�
reached the maximum value of 20% at n4 ¼ 0.33 fm−3.
In other words, when the (synthetic) observational data
scattering doubles, from ðσM ¼ 0.05M⊙; σR ¼ 0.15 kmÞ to
ðσM ¼ 0.1M⊙; σR ¼ 0.3 kmÞ, the uncertainty increases of
the order 5–20%, having the largest value at the densities
where the NS radius, RðMÞ, and v2sðnÞ have the highest
correlation (see the Appendix for details and Ref. [65]).
The region of larger sensitivity to the uncertainty of the
mock observational data coincides with the density interval
where the speed of sound increases steadily, and, in many
agnostic approaches attains a maximum followed by a
decrease or flattening at larger densities [66–68]. The
nucleonic EOS that has been used to train the model also
shows similar behavior for the speed of sound [19]. This
behavior of the speed of sound for densities below three
times saturation density is dictated by the two solar mass
constraints.
The second important conclusion is the impact of adding

the Λ information on the inference properties. This point is
clear when analyzing the dependence and values of η½3; 2�
(the difference between datasets 2 and 3 is that the latter
contains information on the tidal deformability, see
Table III). The negative values reflect the fact that the
prediction uncertainty decreases when the tidal information
is added to the training procedure—the tidal deformability
is informative of the v2sðnÞ of neutron star matter. The
maximum value of the uncertainty decrease is 7%, occur-
ring at n6 ¼ 0.45 fm−3. Similarly, when considering η½4; 2�
(blue), it also exhibits negative values throughout, indicat-
ing a decrease in uncertainty compared to dataset 2.
However, beyond the seventh density, the two values
become very close to each other, suggesting that no
additional information is being perceived by including
more dispersion on the tidal deformability. Looking at
η½4; 3� and comparing it with η½2; 1�, we see that for the first
density, they differ very little, but from there on η½2; 1� is
approximately always more than five times bigger. Noting
an important consideration here, the proportion of input
values being altered: datasets 3 and 4 involve changing
only the uncertainty of five quantities out of the 20 input
values, i.e., changing a quarter of our input vector, while in
datasets 1 and 2 we have changed all the input values. So
we could anticipate an at least fourfold increase in η for
datasets 1 and 2, however, this percentage is the majority
of times even bigger. This implies that the dispersion of
the mass-radius pairs has a more significant impact on the
model compared to the mass-tidal deformability pairs. By
acknowledging this difference in the proportion of modi-
fied input values, we gain insight into how the model’s
understanding and response to dispersion changes are
influenced.

B. Proton fraction

Let us now analyze the model’s predictions for the
proton fraction ypðnÞ. Using a specific EOS from the test
dataset (for illustration purposes), we show in Fig. 8 the
models’ prediction for each dataset: 1 (blue) and 2 (orange)
on the upper panel and 3 (purple) and 4 (green) in the lower
panel. The range of ypðnÞ from the train set is indicated by
the gray region and the dashed gray line displays the 99.9%
percentage of data/probability line. The train statistics is
important to point out that the upper region between the
99.9% probability and maximum boundary lines is caused
by the presence of just one extreme EOS.
The conclusion drawn from Fig. 8 is similar to the v2sðnÞ

results (see Fig. 4): it is evident that dataset 1 exhibits

FIG. 8. The BNNs predictions for ypðnÞ using one EOS of the
test. The models trained on datasets 1 (blue) and 2 (orange) are in
the upper figure while datasets 3 (purple) and 4 (green) models
are in the lower figure. The predicted mean values (solid lines)
and 2σ confidence intervals are shown. The true values are shown
in black dots.
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the narrowest prediction uncertainty, whereas dataset 2
demonstrates a considerable increase in uncertainty; the
prediction uncertainties are similar for datasets 3 and 4.
Definite conclusions require some statistics over a set of
EOS, and, for that purpose, we are going to analyze the
whole test set once again.
Figure 9 shows the following quantities over the four

datasets: the model residuals δðnkÞ ¼ ypðnkÞ − ypðnkÞtrue
(left), the standard deviation ΣðnkÞ ¼ σðnkÞ (center),
and the normalized model residuals ΓðnkÞ ¼ ðypðnkÞ−
ypðnkÞtrueÞ=σðnkÞ (right). We calculate these quantities,
at each density nk, for each of the 2529 EOS from the
test set. We see that the model has a broader residual spread
around 0.4–0.5 fm−3 that is counterbalanced by larger
standard deviation values in this region—this is a direct
conclusion when looking at the normalized model residuals
steadiness. In other words, the model correctly captures and
models the data statistics: the BNN models capture larger
prediction uncertainties in regions where ypðnÞ has a larger
dispersion, as expected. The overall quality of the models
prediction is seen in the density independence of the ΓðnÞ
(right panel) statistics, the models residuals are 95.4% of
the times between 2σ. The insight of the train set statistics,
in Fig. 10, entails interpretability for δðnÞ and particularly
ΣðnÞ behavior, since it becomes clearer that σðnÞ of the
train set has a nonmonotonic behavior, reaching a maxi-
mum value around 0.5 fm−3 decreasing for lower/larger
densities. The coverage probability for the ypðnÞ models
are similar to the ones obtained for v2sðnÞ (see Fig. 6) and
thus the models are correctly estimating the distribution of
the test set data.
The dataset comparison for η½a; b�ðnÞ [see Eq. (23)] is

displayed in Fig. 11. First, we observe that η½2; 1� exhibits a
behavior similar to v2s . However, it reaches its maximum
value earlier at n3. Interestingly, this is precisely where
RðMÞ and ypðnÞ demonstrate the highest correlation, as
explained in the Appendix. When comparing η½2; 1� with
η½4; 3�, the behavior is consistent with the one observed
in the speed of sound, albeit this time is even more

FIG. 9. Median (solid line) and the 95.4% confidence interval (dashed and dotted lines) for δðnkÞ ¼ ypðnkÞ − ypðnkÞtrue (left),
ΣðnkÞ ¼ σðnkÞ (center), and ΓðnkÞ ¼ ðypðnkÞ − ypðnkÞtrueÞ=σðnkÞ (right).

FIG. 10. Some statistics of ypðnÞ calculated from the train dataset.

FIG. 11. Prediction uncertainty deviation η½a; b� between the
ypðnÞ BNN models a and b (see text for details).
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outstanding, which comes back again to the correlation,
that is almost zero for ΛðMÞ and ypðnÞ. Based on this
observation, we can speculate that Λ does not contribute
with significant information to the model, especially since
this time the ratio between η½4; 3� and η½2; 1� deviates even
further from the expected one-quarter proportion, that
comes from the change in the input vector, than it did
on the v2s . Increasing the model’s complexity without
adding substantial information can lead to increased con-
fusion and greater uncertainty, as evident in η½3; 2� and
η½4; 2�. These two cases exhibit positive values of η,
indicating higher uncertainty for sets 3 and 4 when
compared with set 2.

C. BNNs epistemic and aleatoric uncertainties

Let us briefly analyze how the prediction uncertainty of
BNNs is modeled and its different components. We are
going to focus on the ypðnÞ BNN models. However, all the
features discussed below are also seen for the v2sðnÞmodels.
We have seen in Eq. (16) of Sec. II that the prediction
variance σ̂2 is a combination of two terms,

σ̂2 ¼ σ̂2alea þ σ̂2epist;

where the aleatoric uncertainty σ̂2alea measures the mean
variance of the models’ ensemble, while the epistemic
uncertainty σ̂2epist measures the spread of the models around
the ensemble mean μ̂. The epistemic uncertainty arises
from limited information or data and is encoded on the
posterior probability PðθjDÞ, i.e., the model distribution.
On the other hand, aleatoric uncertainty is due to the
inherent randomness of the dataset and is encoded into the
data likelihood Pðy�jx�; θÞ. While the epistemic uncertainty
decreases when more data is available, the aleatoric
uncertainty value does not depend on the amount of data
has it is a property of the generating data process.
To analyze the proportions of both uncertainty types on

the total prediction variance, we calculate the epistemic
percentage as fepist ¼ ðσ̂2epist=σ̂2Þ × 100%. Using the BNNs
models for ypðnÞ, we show in the left panel of Fig. 12 the
mean (dashed lines) and 68% confidence interval region
(colored regions) of fepist across the entire test (2 and 3)
sets. Additionally, the right panel shows fepist using BNN
models trained on set 1 but with different numbers of mock
observations: ns ¼ 20 and ns ¼ 60 (the value used in this
work). The following conclusions can be drawn: (i) the
prediction variance σ̂2 is composed mainly of aleatoric
uncertainty (left panel), around 95%, and it is due to the
already high number of mock observations ns ¼ 60; (ii) the
right panel shows that decreasing the number of mock
observations ns, and thus the total number of training
points, increases the epistemic uncertainty. The epistemic
uncertainty converges to zero when the data points go to
infinity; and (iii) left panel also shows that fepist is smaller

for set 2 (orange) than set 3 (purple) because the input
dimensions increase from 10 to 20, which is reflected
on the posterior PðθjDÞ. Lastly, let us argue why the
epistemic uncertainty is larger at densities 0.2–0.4 fm−3.
When constructing the predicting ensemble, Pðy�jx�; DÞ ¼
1
N

P
N
n¼1 Pðy�jx�; θðnÞÞ, by sampling from the variational

posterior, θðnÞ ∼ qϕðθÞ, the density points nk with larger
correlation with ypðnÞ are much more sensitive to model
sampling than other density points where correlations are
much weaker.

VI. PREDICTION FOR THE DD2
NUCLEAR MODEL

As a final test, we applied the BNN model (trained on set
1, see Table III) to a nuclear model with different properties
from the ones used to train, in particular, obtained within
a different microscopic description of nuclear matter. We
select the DD2 model which is a generalized RMF model
with density-dependent couplings [69], which has been
calibrated to describe properties of finite nuclei. One key
difference between the DD2 and the RMF family we used
to generate the set of EOS consists of the high density
behavior of the symmetry energy. In DD2 model, the
coupling to the ρ meson that defines the isovector channel
of the EOS goes to zero at sufficiently high densities,
favoring very asymmetric matter. One of the main conse-
quences is that nucleonic direct Urca processes inside NS
are not predicted by DD2 [70,71]. Another noticeable
difference between the DD2 class of models and the class
of models used to train the BNN is the behavior of the
speed of sound with density: for DD2 like models the speed
of sound increases monotonically, although it remains
always well below c, while for the class of models used
to train BNN the speed of sound flattens or even decreases
above ∼3ρ0. These two differences will be reflected in the
performance of the BNN model.
After selecting the DD2 EOS, following the statistical

procedure described in Sec. IV, we generated one mock

FIG. 12. The pdf of fepist ¼ ðσ̂2epist=σ̂2Þ × 100% for ypðnÞ BNN
models in sets 2 and 3 (left) and for set 1 model but trained in
different training datasets with different number of mock ob-
servations ns (right).
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observation (ns ¼ 1) using the dataset 1 properties, which
is the one with lower σR and does not contain the
information about Λ. The BNN model predictions for
the speed of sound (top panel) and proton fraction (lower
panel) are shown in Fig. 13. Despite the DD2 lying outside
the training values (gray region) for the speed of sound, the
model prediction uncertainty extends beyond the training
maximum values and almost contains completely the
DD2 results. The ypðnÞ prediction is quite good, being
the prediction of the mean value close to the real one. The
DD2 proton fraction reflects the property described above
concerning its favoring large neutron-proton asymmetries
due to the behavior of the isovector channel. However, our
BNN model was able to capture this behavior. Despite the
results being quite compelling, there are some crucial
points that we would like to point out. During the above
test stage, we generated just one mock observation (ns ¼ 1)

from the DD2 MðRÞ curve to simulate a real case scenario,
where a very limited number of NS observations are
accessible. Being the sampling procedure of generating
one mock observation (ns ¼ 1), i.e., five MiðRiÞ values, a
random process, implies that different samples will origi-
nate different predictions [v2sðnÞ is much more sensitive
than ypðnÞ, since the DD2 target is completely inside the
training values region]. This is a somehow expected
behavior since we are trying to characterize the whole
MðRÞ with only five random ðM;RÞ values. While a given
sample may be sufficient to inform the general dependence
of theMðRÞ (like the one we generated), others might be as
well almost uninformative of the actual MðRÞ curve, i.e., a
sample where all five mock observations MiðRiÞ cluster
around the same M value. This is a general problem that
shows up regardless of the inference model or framework:
inferring the EOS from a very limited number of NS
observations. The BNN performance assessment for the
DD2 EOS would get more reliable as the number of points
MiðRiÞ, which compose each mock observation (five in the
present work), increase since a random sample, in that case,
would be much more informative of the true MðRÞ curve.

VII. CONCLUSIONS

We have explored BNNs, which is a probabilistic
machine learning model, to predict the proton fraction
and speed of sound of neutron star matter from a set of NS
mock observations. This method is based upon the usual
neural networks but with the crucial advantage of attrib-
uting an uncertainty measurement to its predictions. Our
EOS dataset was generated from a relativistic mean field
approach through a Bayesian framework, where constraints
from nuclear matter properties and NS observations were
applied. The choice of a specific microscopic nuclear
model, instead of a more flexible EOS parametrization,
as the ones discussed for instance in [72], is justified
because we want to analyze the possibility of inferring the
neutron star composition, specifically, the proton fraction,
from NS observations. From the set of 25287 EOS, four
different mock observational sets, simulating four different
scenarios of mock observational uncertainties, were gen-
erated. Two of them are only composed ofMðRÞ simulated
observations and the other two have also information
regarding ΛðMÞ. In the end, eight different BNNs were
trained to predict the v2sðnÞ and ypðnÞ in each of the four
datasets.
With this study, we have shown that using BNNs, the

measurements of the mass and radius of five neutron stars
allow us to recover information from the equation of state
of nuclear matter with associated uncertainty, not only for a
quantity that is more connected with the isoscalar behavior
of the EOS, the speed of sound, but also for the proton
fraction, a property that is determined by the isovector
behavior of the EOS. In several recent works, the attempt to

FIG. 13. The BNN model predictions, v2s (upper) and yp
(lower), for one mock observation (ns ¼ 1) of the DD2 EOS,
the blue area represents the 95% confidence interval, and the solid
line the mean.
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determine the proton fraction from the mass radius mea-
surements was unsuccessful [21–23]. In all these descrip-
tions a polynomial expansion of the EOS until the third
or fourth order has been considered. In [23], this was
attributed to the existence of multiple solutions. The
authors of [22] identify the correlations among higher-
order parameters as a difficulty. The BNN approach allows
the model to learn the full density dependence of the EOS
avoiding the short comes of the density expansion with a
finite number of terms. It was shown that the uncertainty
associated with the predicted quantities is particularly
sensitive to the precision of the observational data if some
kind of correlation exists between the data and the property
that is being calculated. For the speed of sound this was
reflected in a larger sensitivity for densities below three
times saturation density, where the NS radius is strongly
correlated with the speed of sound as discussed in [65]. It
was also shown that adding extra observational mock data,
in particular, the tidal deformability, could decrease the
uncertainty associated with the prediction but not always.
There was a clear improvement for the speed of sound but
not for the proton fraction. Too scattered data does not
bring an improvement on the uncertainty determination due
to the increase of the complexity of the model compared
with the quality of the data. It is important to point out that
the improvement attained with the tidal deformability data
with a smaller uncertainty worked for the speed of sound
because it shows a correlation with the tidal deformability
for densities of the order of twice saturation density similar
to the one with the radius. This correlation does not exist
between the proton fraction and the tidal deformability so
no improvement in the proton fraction prediction was
attained when introducing the tidal deformability observa-
tion. The proton fraction has shown some sensitivity at
twice saturation density to the radius uncertainty and this
can be traced back to the existing correlation of low mass
star radius with the symmetry energy slope [73], a quantity
that strongly determines the proton fraction. This correla-
tion weakens quickly with the increase of the NS mass, and
is much weaker with the tidal deformability. We have also
tested the BNN model with a mock measurement obtained
from the DD2 EOS generated with a microscopic frame-
work different from the one used to generate the EOS used
to train the BNN model. The results have confirmed the
validity of the model and its predicting power.

We have been very conservative concerning the uncer-
tainties attached to the observations. In the future, observa-
tories such as STROBE-X [16] and eXTP [14] may give us
radius measurements with uncertainties as small as 2%–5%
and this will improve the predictions as demonstrated in the
present study.
There are several potential paths for further improvement

and exploration in this work. One possibility is to extend
the analysis to include other properties of neutron stars and
investigate their relationship with observable quantities.
Another possibility for improvement as discussed in the
results obtained for the DD2 model, is increasing the
number of observable pairs used as input can enhance
the model’s performance. However, it is worth noting that
in the case of BNNs, expanding the number of pairs
introduces a greater increase in the model parameters
compared to traditional architectures, which is why we
used a lesser amount of pairs compared with previous
articles using conventional neural networks, as demon-
strated in studies like [25] and related articles. Furthermore,
for the stochastic model, it would be interesting to improve
the prior as mentioned in Sec. II A.
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APPENDIX: CORRELATION BETWEEN NS
PROPERTIES AND EOS

Figure 14 shows the Pearson correlation coefficient
between v2sðnÞ and RðMÞ (left panel) and ΛðMÞ (right
panel) for specific NS masses (colors) and the average
value, by considering M=M⊙ ∈ ½1; 2.2�. The same is
performed for the proton fraction in Fig. 15. The
Pearson correlation is calculated as Corrða; bÞ ¼
Covða; bÞ=ðσaσbÞ, where a consists of v2s and yp and b
of R and Λ. Note, however, that this correlation measure
is only sensitive to linear dependencies, and higher
order ones can be missed. These correlations have been
discussed in [65].
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