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Abstract: This paper analyzes the Riemannian cubic polynomials’s problem from
a Hamiltonian point of view. The description of the problem on compact Lie groups
is particulary explored. The state space of the second order optimal control problem
considered is the tangent bundle of the Lie group which also has a group structure.
The dynamics of the problem is described by a presymplectic formalism associated
with the canonical symplectic form on the cotangent bundle of the tangent bundle.
Using these control geometrical tools, the equivalence between the Hamiltonian
approach developed here and the known variational one is verified. Moreover, the
equivalence allows us to deduce two invariants along the cubic polynomials which
are in involution.
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1. Introduction

Riemannian cubic polynomials (RCP) can be seen as a generalization of
cubic polynomials in Euclidean spaces to Riemannian manifolds. The cubic
polynomials on a Riemannian manifold are the smooth solutions of a fourth
order differential equation which is the Euler-Lagrange equation of a second
order variational problem. This variational problem was first introduced in
1989 (see [17]) and explored from a dynamical interpolation perspective in
1995 (see [10]). Interesting points related to this subject have been developed
in the last few years, namely a geometric theory surprisingly close to the
Riemannian theory of geodesics (see [2, 3, 4, 7, 8, 9, 16, 18, 19]). More
recently, in [3, 16, 18], the analysis of RCP from a variational point of view
was carried out for locally symmetric manifolds and some invariants along
these cubic polynomials were obtained. A qualitative analysis of RCP is
given in [3, 16], with special attention to the case of the Lie group SO(3),
where RCP corresponds to Lie quadratics on the Lie algebra. The article [3]
introduces a reduction of the RCP equation for this Lie group of rotations.
In [16] some results on asymptotics and symmetries of cubics are proved for
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the particular case of the so-called null cubic polynomials on SO(3). Finally,
[18] studies n-th generalizations of RCP.

A Hamiltonian perspective of the RCP problem was first introduced in
[8]. The present paper gives a different description of the problem on ar-
bitrary compact Lie groups. We use here a presymplectic approach to the
Pontryagin’s Maximum Principle based on some control geometric ideas of
[4, 5, 6, 14, 11]. The new contribution of this work is to use the Lie group
structure of the tangent bundle of a Lie group, which in this case is the state
space of the optimal control problem. This allows us to use classical results
from [1, 12], adapted to this tangent Lie group structure.

The paper is organized as follows.
Section 2 presents the RCP’s variational problem and the most relevant re-

sults, namely the deduction of the two known invariants for locally symmetric
manifolds. We finish the section recalling the equivalent RCP’s optimal con-
trol problem introduced in [4].

The presymplectic approach of this optimal control problem in an arbitrary
Riemannian manifold is the subject of section 3. This viewpoint was inspired
by some ideas of [14] and [11], where an intrinsic geometric approach for
a first order general optimal control problem is considered, by means of a
presymplectic description of the dynamical system. In [5] a similar geometric
approach is also considered for time-dependent optimal control problems by
using the jet bundles framework.

The last section contains the main results of the paper: the analysis of RCP
on compact Lie groups. The system under consideration will be thus defined
on the tangent bundle of a Lie group. Such a space can also be endowed
with a Lie group structure. Hence, the dynamics on this state space will
be described by the presymplectic formalism associated with the canonical
symplectic form adapted to the tangent Lie group structure. We thus provide
a Hamiltonian description equivalent to the variational one ([10]) in a similar
way to what happens in [8]. However, it is important to remark that our
Hamiltonian system and the one in [8] are different. In this context, besides
the identification of the first invariant as the Hamiltonian of the presymplectic
system, we make a geometric deduction of the two invariants.

Throughout the paper we consider an n-dimensional Riemannian manifold
M , with Riemannian metric 〈., .〉. The symmetric connection on M , which
is compatible with this metric, is denoted by ∇ and the covariant derivative
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along a curve x in M by DY/dt, where Y is a vector field along x. Moreover,
we denote the curvature tensor field by R and the covariant differential of R
by ∇R.

TM represents the tangent bundle and T 2M the second tangent bundle. If
we consider the local coordinates (xi) on M , the standard local coordinates on
TM and T 2M are denoted by (xi, yj) and (xi, yj, ul), respectively. Consider
also (xi, yj, vk, ul) and (xi, yj, pk, ql) to be the corresponding coordinates on
TTM and T ∗TM , respectively.

In the last section, M = G represents a compact Lie group.

2. Cubic polynomials on Riemannian manifolds

The aim of this section is to introduce the Riemannian cubic polynomials.
We present the variational problem which gave rise to the first studies of the
RCP and deduce, for locally symmetric manifolds, two invariant along these
particular curves. We finish the section formulating the equivalent RCP’s
optimal control problem.

2.1. Riemannian cubic polynomials’s variational problem. In order
to generalize the notion of cubic polynomials to a Riemannian manifold, the
following second order variational problem in M was formulated in [10, 17]:

min
x∈C

1

2

∫ T

0

〈

D2x

dt2
,

D2x

dt2

〉

dt,

where C is the class of C1 piecewise smooth curves x : [0, T ] → M , satisfying

x(0) = x0,
dx

dt
(0) = y0, x(T ) = xT ,

dx

dt
(T ) = yT ,

with y0 ∈ Tx0
M , yT ∈ TxT

M , x0, xT ∈ M and T ∈ R+.

Definition 1. We call Riemannian cubic polynomials on M to the smooth
curves x : [0, T ] → M solutions of the Euler-Lagrange equation of the above
problem, that is, the fourth order differential equation

D4x

dt4
+ R

(

D2x

dt2
,

dx

dt

)

dx

dt
= 0. (1)

Let x be such a solution and let us denote its velocity vector field, dx
dt

, by
V .
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Proposition 1. [3] In locally symmetric manifolds, the two following expres-
sions are invariants along the cubic polynomial:

I1 =
1

2

〈

DV

dt
,

DV

dt

〉

−

〈

D2V

dt2
, V

〉

and

I2 =

〈

D2V

dt2
,
D2V

dt2

〉

−

〈

D3V

dt3
,
DV

dt

〉

.

Proof : The invariance of the first expression follows from the integration of
the inner product of (1) with V . To prove the second one is also invariant,

we make the inner product of (1) with D2V
dt2

. In the resulting equation, ap-
ply the tensor curvature property 〈R(X, Y )Z, W 〉 = 〈R(W, Z)Y, X〉 and the
definition of the covariant differentiation of the curvature tensor to get

d

dt

[〈

D2V

dt2
,
D2V

dt2

〉

−

〈

D3V

dt3
,
DV

dt

〉]

=

〈

(∇V R)

(

DV

dt
, V

)

V,
DV

dt

〉

.

Now the result follows from the fact that ∇R ≡ 0 in locally symmetric
manifolds.

Note that I1 is invariant in any Riemannian manifold.

2.2. Riemannian cubic polynomials’s optimal control problem. The
optimal control problem corresponding to the RCP’s variational problem is
now considered. The idea was explained in [4], where we associated a second
order control system to the RCP.

In general, to formulate a second order optimal control problem, we can
consider the control system defined by a vector field Π : T 2M → TTM along
the natural projection map τ 1

2 : T 2M → TM . Hence, TM shall be the state
space and T 2M the control bundle.

T 2M
Π

//

τ1
2

##F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

TTM

π
TM

��

TM

Optimal control problem: find the C2

piecewise smooth curve γ : [0, T ] → T 2M
with fixed endpoints in the state space,
satisfying the control system

d

dt

(

τ 1
2 (γ(t))

)

= Π(γ(t)) (2)

and minimizing the functional
∫ T

0 L(γ(t))dt, where L : T 2M → R
is the cost function, with fixed T ∈ R+.
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We wil define a suitable control system to our case. Let Tπ
M

: TTM → TM
be the differential of the natural projection π

M
of TM onto M locally defined

by Tπ
M

(xi, yi, vi, ui) = (xi, vi) and consider the so called connection map
defined in what follows.

Definition 2. For each point (v, u) ∈ T(x,y)TM with (x, y) ∈ TM , let α
be the curve in TM with initial value (x, y) and initial velocity (v, u). The
connection map is the smooth map K : TTM → TM defined by

K(x, y, v, u) = K|(x,y)
(v, u) = ∇ d(π

M
◦α)(t)

dt

α(t)
|t=0

.

In local coordinates, K(xi, yi, vi, ui) = (xi, {ui+
∑n

jk=1 Γi
jky

jvk}) where Γi
jk

represent the Christoffel symbols of the connection ∇. Consider also an appli-
cation J : TM → TM , locally defined by J(xi, yi) = (xi, {

∑n
j,k=1 Γi

jky
jyk}).

Now we have the tools to describe the control system associated to the
RCP problem. With the above definitions, the control system corresponds
to (2) with a mapping Π which satisfies

Tπ ◦ (dT − Π) = 0 and K ◦ (dT − Π) = J ◦ τ 1
2 ,

where dT : T 2M → TTM represents the total time derivative which assigns
to each (x, y, u) ∈ T 2M the element (x, y, y, u) ∈ TTM . The vector field Π
is affine in the controls.

To write the cost functional we choose the function on T 2M as

L(x, y, u) =
1

2
〈K(Π(x, y, u), K(Π(x, y, u)〉 ,

for (x, y, u) ∈ T 2M , which locally gives L(xi, yi, ui) = 1
2

∑n
i,j=1 gij(x) uiuj,

where gij denote the components of the Riemannian metric.

3. Presymplectic structure - dynamics of the control prob-

lem

In this section we introduce a Hamiltonian description of our system with
T ∗TM as the co-state space. As we have done in [4], we construct a presym-
plectic structure using geometric tools from control theory for higher order
control systems along the lines of [11]. The dynamical system is presented
and a presymplectic constraint algorithm is applied.
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3.1. The dynamical system. Let us introduce now the presymplectic
structure which describes the dynamics of the control problem. Consider the
total space

T = T ∗TM ×TM T 2M

a vector bundle over TM and let pr1 : T ∗TM ×TM T 2M → T ∗TM and
pr2 : T ∗TM ×TM T 2M → T 2M be the canonical projections. A closed two
form is defined by the following pull-back:

Ω = (pr1)∗ω0, (3)

where ω0 is the canonical symplectic two-form on T ∗TM . Introduce the
Hamiltonian function

H =≪ pr1, Π ◦ pr2 ≫ −L ◦ pr2, (4)

where ≪ ., . ≫ stands for the canonical duality product of vectors and cov-
ectors on TM .

Consider then the presymplectic Hamiltonian system (T , Ω, H), whose dy-
namical vector field Γ : T → TT is the solution of the dynamical system

iΓΩ = dH. (5)

The presymplectic system gives necessary conditions for extremal trajectories
as a geometric version of those given by the maximum principle.

A curve γ in T 2M is an extremal trajectory of the optimal
control problem if there exists a lifting of γ to the total space
T which is an integral curve of a vector field defined by (5).

We are interested thus in finding out the dynamical vector field Γ solution
to the equation (5).

3.2. Geometric algorithm of presymplectic systems. We apply the
geometric algorithm of presymplectic systems to (T , Ω, H). A first constraint
submanifold is determined as

W1 = {z ∈ T : dH(z)(X) = 0, ∀X ∈ Ker Ω(z)}.

If this manifold is still not symplectic the algorithm continues. However,
for the RCP problem, W1 will be symplectic. Indeed, for the case we are
interested in, the constraint submanifold W1 is locally defined by ∂H

∂ui = 0, i =
1, ..., n. Since the vector field Π which describes the control system is affine in
controls, we obtain ∂2H

∂uj∂ui = − ∂2L
∂uj∂ui = −gij. So that, this particular optimal

control problem is regular. As a result, W1 turns out to be a symplectic
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manifold and the restriction ΩW1
of the presymplectic form Ω to W1 will be

non-degenerate. Consequently, the constraint algorithm stops after the first
stage and for each fixed endpoints there will be a unique dynamical vector
field ΓW1

solution to the equation (5) defined by

iΓW1
ΩW1 = d

(

H|W1

)

. (6)

Remark 1. An interesting problem is to investigate in this context the inte-
grability of the optimal control problem from the point of view of its symme-
tries, as it has been done for the first order case in [11, 14].

4. Riemannian cubic polynomials on compact Lie groups

We specialize the results of the sections 2 and 3 to the case where the
manifold is a connected and compact Lie group.

The section begins with some notes about relevant definitions and notations
in the context of Lie groups. After that, the RCP’s variational problem and
the RCP’s optimal control problem on connected and compact Lie groups
are analyzed. The relation between the two approaches is established.

4.1. Definitions, notations and relevant results on Lie groups. Let
us begin presenting the basic properties of Lie groups in order to fix notation.

4.1.1. Basic notations. The Lie group is represented by G, its identity is de-
noted by e and the corresponding Lie algebra, equipped with the Lie bracket
product [., .], by G. We represent by G∗ the dual space of G. Furthermore, the
elements of G are denoted by x or g and the maps G× G → G, (x, g) 7→ xg
and G → G, x 7→ x−1 are the multiplication and inversion operations for the
Lie group G, respectively. Given x, g ∈ G, let Lx : G → G and Rx : G → G
be, respectively, the left and right translations by x. The tangent of Lx at g
is denoted by (TLx)g and (TLx)

∗
g represents its transpose.

The adjoint representation of the Lie group is denoted by Ad, which gives
for each x ∈ G an algebra automorphism defined by Adx = (T (Rx−1 ◦ Lx))e.
The tangent of Ad at the identity e, known as the adjoint representation of
the Lie algebra, is denoted by ad. We have adY Z = [Y, Z] for each Y, Z ∈ G.
The co-adjoint is the map ad∗ : G → Aut(G∗) defined, for each Y ∈ G and
ξ ∈ G∗, by ad∗Y ξ = −ξ ◦ adY .
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4.1.2. Riemannian metric and connection. We can guarantee the existence of
a bi-invariant metric on G because the Lie group is assumed to be connected
and compact. This statement and the following result can be found for
instance in [15].

Theorem 1. [15] If G is a Lie group equipped with a bi-invariant metric, the
metric connection ∇ and the curvature tensor R associated with that metric
are given by

∇Y Z =
1

2
[Y, Z], (7)

R(Y, Z)W = −
1

4
[[Y, Z], W ], (8)

where Y, Z and W are left invariant vector fields. Furthermore, (7) implies

〈[Y, Z], W 〉 = 〈Y, [Z, W ]〉 . (9)

4.1.3. Left trivializations of TG and T ∗G. We shall call left trivialization of
TG to the isomorphism defined as

λ
TG

: G × G −→ TG

(x, Y ) 7−→ (x, (TLx)e(Y ))
.

On the other hand, the following vector bundle isomorphism, which is no
more than the inverse of the dual one of λTG, is called the left trivialization
of T ∗G:

λ
T∗G

: G × G∗ −→ T ∗G

(x, ξ) 7−→ (x, (TLx−1)∗x(ξ))
.

Consider an orthogonal basis {A1, ..., An} of the Lie algebra G and denote
by {A∗

1, ..., A
∗
n} its dual basis, which is a basis of the dual space G∗. The

tangent and cotangent spaces to G at x are defined, respectively, by the
following left-invariant frame and co-frame:

TxG = span {Ai(x)} such that Ai(x) = (TLx)e(Ai)

and
T ∗

xG = span {A∗
i (x)} such that A∗

i (x) = (TLx−1)∗x(A
∗
i ).

Note that, λ
TG

(x, Ai) = Ai(x) and λ
T∗G

(x, A∗
i ) = A∗

i (x) for any x ∈ G.
We now proceed with some more notations useful along the next sections.

Let Y be a curve in G defined by Y =
∑n

i=1 yiAi and ξ a curve in G∗ written
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as ξ =
∑n

i=1 piA
∗
i , where yi and pi are smooth functions of time, i = 1, . . . , n.

We have omitted the dependence in time to simplify the notation. The
following notations are assumed:

Ẏ =
n
∑

i=1

ẏiAi and ξ̇ =
n
∑

i=1

ṗiA
∗
i .

Given ξ ∈ G∗, the tangent vector identified with this co-vector by the
Riemannian metric will be denoted by Xξ ∈ G. That is, ξ(Y ) =< Xξ, Y >,
∀Y ∈ G. With the above notation, it is simple to verify that

Ẋξ = Xξ̇ , Xad∗Y ξ = adY Xξ and
d

dt
(ad∗Y ξ) = ad∗

Ẏ
ξ + ad∗Y ξ̇.

4.1.4. Left trivialization of a Hamiltonian system on T ∗G. Here we recall
some classic results on Hamiltonian systems from [1, 12]. Considering the
pull-back of the canonical symplectic structure ω on T ∗G by the left trivial-
ization λ

T∗G
, we obtain a symplectic structure on G×G∗. We represent it by

ω̃ and call this the left trivialization of the canonical symplectic form ω. By
proposition 4.4.1 in page 315 of [1], we know the following lemma.

Lemma 1. Let (x, ξ) ∈ G × G∗ and (Wx, µξ), (W ′
x, µ

′
ξ) ∈ T(x,ξ)(G × G∗) ≃

TxG × G∗. Then,

ω̃(x, ξ)((Wx, µξ), (W
′
x, µ

′
ξ)) = −µξ ((TLx−1)x(W

′
x))+

+µ′
ξ ((TLx−1)x(Wx)) + ξ([(TLx−1)x(Wx), (TLx−1)x(W

′
x)]).

Given a Hamiltonian system (T ∗G, ω, f), where f is an arbitrary Hamilton-
ian function defined in T ∗G, consider the corresponding Hamiltonian system
(

G × G∗, ω̃, f̃
)

where f̃ = f ◦λ
T∗G

is the corresponding Hamiltonian function

defined in G×G∗. The Hamiltonian vector field solution of the system is the
vector field Γf̃ on G × G∗ defined by iΓf̃

ω̃ = df̃ .

Let (x, ξ) ∈ G × G∗. In what follows, we denote by ∂f̃
∂x

the differential of

the restriction of f̃ to the set of points in G × G∗ where ξ is constant, and

by ∂f̃
∂ξ

the differential of the restriction of f̃ to the set of points in G × G∗

where x is constant. So, ∂f̃
∂x

(x, ξ) ∈ T ∗
xG and ∂f̃

∂ξ
(x, ξ) ∈ T ∗

ξ G
∗ ≃ G. Given

V : G × G∗ → T (G × G∗) a vector field on G × G∗, we can decompose the
element V (x, ξ) = (Wx, µξ) ∈ T(x,ξ) (G × G∗) ≃ TxG × G∗. In such a way,
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df̃(x, ξ) is an element of T ∗
(x,ξ)(G × G) ≃ T ∗

xG × T ∗
ξ G

∗ ≃ T ∗
xG × G and

df̃(x, ξ)(V (x, ξ)) =

(

∂f̃

∂x
(x, ξ)

)

(Wx) + µξ

(

∂f̃

∂ξ
(x, ξ)

)

. (10)

Theorem 2. Let Γf̃ be the solution vector field decomposed, for each (x, ξ) ∈

G × G∗, as Γf̃(x, ξ) = (X, µ) ∈ TxG × G∗ . Then,

X = (TLx)e

(

∂f̃

∂ξ
(x, ξ)

)

and

µ = −(TLx)
∗
e

(

∂f̃

∂x
(x, ξ)

)

− ad∗
(TL

x−1)
x
(X)

ξ.

Proof : The solution vector field satisfies the dynamical system iΓf̃
ω̃ = df̃ ,

so, for each vector field V on G × G∗ and each point (x, ξ), we have

df̃(x, ξ)(V (x, ξ)) = ω̃(x, ξ)(Γf̃(x, ξ), V (x, ξ)).

Let V (x, ξ) = (Wx, µξ), the first member of the above equality can be written
as (10). The second one can be expressed as follows using lemma 1,

ω̃(x, ξ)((X, µ), (Wx, µξ)) = −µ ((TLx−1)x(Wx))+

+µξ ((TLx−1)x(X)) + ξ([(TLx−1)x(X), (TLx−1)x(Wx)]).

Then,
(

∂f̃
∂x

(x, ξ)
)

(Wx) + µξ

(

∂f̃
∂ξ

(x, ξ)
)

= −µ ((TLx−1)x(Wx))+

+µξ ((TLx−1)x(X)) + ξ([(TLx−1)x(X), (TLx−1)x(Wx)])

for arbitrary Wx and µξ. As a consequence, we have ∂f̃
∂ξ

(x, ξ) = (TLx−1)x(X)

and ∂f̃
∂x

(x, ξ) =
(

−µ − ad∗
(TL

x−1)
x
(X)

ξ
)

◦ (TLx−1)x. So, we get the result.



CUBIC POLYNOMIALS AND OPTIMAL CONTROL ON COMPACT LIE GROUPS 11

Corollary 1. The motions of the Hamiltonian system
(

G × G∗, ω̃, f̃
)

are

described by the following differential equations






















ẋ = (TLx)e

(

∂f̃

∂ξ
(x, ξ)

)

ξ̇ = −(TLx)
∗
e

(

∂f̃

∂x
(x, ξ)

)

− ad∗∂f̃
∂ξ

(x,ξ)
ξ

.

4.2. The tangent group of G.

4.2.1. Basic notations. The tangent group G1 = TG of a Lie group G is
also a Lie group with group operations corresponding to the original ones of
G by tangent prolongations (see [13] for more details). We shall denote the
elements of G1 by x1 or g1, where π

G
(x1) = x and π

G
(g1) = g for π

G
: TG →

G the canonical projection. The identity of G1 is denoted by e1. So, the
operations are

G1 × G1 −→ G1

(x1, g1) 7−→ x1 · g1

and
G1 −→ G1

x1 7−→ x−1
1

defined by

x1 · g1 = (TRg)x(x1) + (TLx)g(g1) ∈ TxgG

and

x−1
1 = −(TLx−1)e ◦ (TRx−1)x(x1) ∈ Tx−1G.

From now on G1 will represent the Lie group TG and G1 its Lie algebra.
The left trivialization of the tangent bundle of G is now denoted by λG1

.

4.2.2. Left trivializations.

Lemma 2. [13] By means of the left trivialization λG1
, we have G1 ≃ G × G

and the group structure on G1 looks as follows

(x, Y ) · (g, Z) = (xg, Adg−1Y + Z)

(x, Y )−1 = (x−1,−AdxY ),

with (x, Y ), (g, Z) ∈ G × G.
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As a consequence of the previous Lemma, the Lie algebra G1 is isomorphic
to G × G, where the Lie product of two elements (Y, Z), (Y ′, Z ′) ∈ G × G is
given by

[(Y, Z), (Y ′, Z ′)] = ([Y, Y ′] , [Y, Z ′] − [Z, Y ′]). (11)

Moreover, G∗
1 ≃ G∗ × G∗.

Since G1 is a Lie group, we can consider the left trivialization of the tangent
bundle TG1, that is,

λ
TG1

: G1 × G1 −→ TG1

(x1, Y1) 7−→
(

x1, (TLx1
)e1

(Y1)
)

.

This trivialization gives the isomorphism TG1 ≃ G1 × G1. However, as we
have seen, G1 ≃ G × G and G1 ≃ G × G, by the left trivialization of G1.
Then, TG1 ≃ G × G × G × G. In particular, T 2G ≃ G × G × G . We can
also consider the left trivialization of T ∗G1,

λ
T∗G1

: G1 × G∗
1 −→ T ∗G1

(x1, ξ1) 7−→ (x1, (TLx1
−1)∗x1

(ξ1))
,

to get T ∗G1 ≃ G1 × G∗
1 . Now, since G1 ≃ G × G and G∗

1 ≃ G∗ × G∗, we are
able to conclude that T ∗G1 ≃ G × G × G∗ × G∗ .

The cotangent bundle of G1 will play an important rule in the next sub-
section, so we denote by λ the isomorphism from G × G × G∗ × G∗ to T ∗G1.

Remark 2. By the above properties we can introduce now the local coordi-
nates used in the rest of the paper. First introduce suitable coordinates for
points in G choosing the type 1 coordinates (xi) for a point x ∈ G. That is,
the coordinates are such that x = exp

(
∑n

i=1 xiAi

)

, where exp : G → G is
the exponential map and {Ai} is the basis considered in subsection 4.1.3 for
the Lie algebra G . We can provide local coordinates for all the manifolds we
shall be considering later:

• the coordinates for a point in G1 ≃ G×G will be represented by (xi, yj),
where xi represent the base point and yj represent the coordinates of
the element of the Lie algebra with respect to its base;

• analogously, the coordinates for TG1 ≃ G1 ×G1 ≃ G×G ×G ×G will
be (xi, yj, vk, ul) where the last two elements are the coordinates of the
points in G with respect to the Lie algebra basis;

• in particular, the coordinates for a point in T 2G ≃ G × G × G will
be (xi, yj, ul) where again yj are the coordinates for an element of the
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Lie algebra and now uk are the coordinates for the new Lie algebra
element;

• the coordinates for the manifold T ∗G1 ≃ G1 × G∗
1 ≃ G × G × G∗ × G∗

will be (xi, yj, pk, ql) where the last two elements are the coordinates of
the points in G∗ with respect to the dual basis of {Ai}.

4.2.3. Tangent map of the left translation. The following result is valid when
G is a matrix Lie group, from now on our group is considered as being of
this type.

Proposition 2. Let (x, Y ), (g, Z) ∈ G×G, the tangent map of the left trans-
lation by (x, Y ) at (g, Z), can be interpreted as

(TL(x,Y ))(g,Z)
: TgG × G −→ TxgG × G

(Wg, W ) 7−→ (TL(x,Y ))(g,Z)
(Wg, W )

with

(TL(x,Y ))(g,Z)
(Wg, W ) = ( (TLx)g(Wg) , W + [Adg−1Y, (TLg−1)g(Wg)] ).

Proof : The tangent map of L(x,Y ) at (g, Z) maps elements of T(g,Z)(G×G) ≃
TgG × G into elements of T(xg,Adg−1Y +Z)(G × G) ≃ TxgG × G. So, given

w ∈ T(g,Z)(G × G), there is an isomorphism which allows us to identify
TL(x,Y )(g,Z)

(w) with the following element of TxgG × G:

(

(Tτ
G
)

(xg,Ad
g−1Y +Z)

(TL(x,Y ))(g,Z)
(w) , (Tτ

G
)

(xg,Ad
g−1Y +Z)

(TL(x,Y ))(g,Z)
(w)
)

,

where τ
G

: G × G → G and τ
G

: G × G → G are the canonical projections.
This element can be view as

( T (τ
G
◦ L(x,Y ))(g,Z)

(w) , T (τ
G
◦ L(x,Y ))(g,Z)

(w) ).

Now considering (Wg, W ) ∈ TgG×G such that (Wg, W ) ∼ w ∈ T(g,Z)(G×G)
and applying the Leibnitz formula, we obtain the required result. Indeed, fix
(g, Z) and apply the Leibnitz formula to f = τ

G
◦L(x,Y ) and to f ′ = τ

G
◦L(x,Y )

to develop the first and second coordinate of the latter element, respectively.
In the first case and because f(g, Z) = xg, we get

Tf (g,Z)(w) = (TfZ)g(Wg) + (Tfg)Z(W ) = (TLx)g(Wg),
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since fZ = Lx and (Tfg)Z(W ) = 0. In the second one, the map f ′ is defined
by f ′(g, Z) = Adg−1Y + Z. Consequently,

T (τ
G
◦ L(x,Y ))(g,Z)

(w) = (Tf ′
g)Z

(W ) + (Tf ′
Z)g(Wg),

with (Tf ′
g)Z

(W ) = W and (Tf ′
Z)g(Wg) = d

dt

[

Adexp(−tg−1Wg)(Adg−1Y )
]

|t=0
.

This last expression is reduce to [Adg−1Y, g−1Wg]. The result follows because
on matrix Lie groups we have g−1Wg = (TLg−1)g(Wg).

Remark 3. In particular, (TL(x,Y ))(e,0)
: G × G → TxG × G is such that

(TL(x,Y ))(e,0)
(Z, W ) = ( (TLx)e(Z) , W + adY Z ).

Moreover, the transpose map (TL(x,Y ))
∗

(e,0)
: (TxG × G)∗ → (G × G)∗ is such

that, for each µ ∈ (TxG × G)∗ we have
[

(TL(x,Y ))
∗
(e,0)

(µ)
]

(Z, W ) = [(TLx)
∗
e(ξx)](Z) + ξY (W + adY Z),

where µ ∼ (ξx, ξY ) ∈ T ∗
xG × G∗.

4.3. Riemannian cubic polynomials - variational approach. Consider
the constructed orthogonal frame field Ai of G. Let V be the velocity vec-
tor field of a curve x given by V =

∑n
i=1 yiAi(x) where yi, i = 1, . . . , n, are

smooth functions of time. We have omitted the dependence in time to sim-
plify the notation. Denote

∑n
i=1 ẏiAi(x) by V̇ and, consequently, V̈ and

...
V

are
∑n

i=1 ÿiAi(x) and
∑n

i=1

...
y iAi(x), respectively.

Theorem 3. [10] A smooth curve x : [0, T ] → G is a Riemannian cubic
polynomial if and only if its velocity vector field V satisfies

...
V + [V, V̈ ] = 0. (12)

The equations (12) are the Euler-Lagrange equations (1) that define the
RCP, but now specialize to the Lie group case. This result is proved in
[10, 17], by using the fact that

DV

dt
= V̇ ,

D2V

dt2
= V̈ +

1

2
[V, V̇ ],

D3V

dt3
=

...
V + [V, V̈ ] +

1

4
[V, [V, V̇ ]]

and the properties (8) and (9). In this context, the two invariants along the
cubic polynomial, I1 and I2 from proposition 1, become

I1 =
1

2

〈

V̇ , V̇
〉

−
〈

V̈ , V
〉
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and

I2 =
〈

V̈ , V̈
〉

+
1

2

〈

[V, V̇ ], 2V̈ + [V, V̇ ]
〉

.

4.4. Optimal control problem - presymplectic approach. The presym-
plectic description of the RCP’s control problem presented in section 3 is now
adapted to the compact Lie group case.

4.4.1. Optimal control problem. Consider the RCP’s optimal control problem
on G. The state space is G1 and the control bundle T 2G. By using left
trivializations of subsection 4.2.2, the optimal control problem consists in
finding the C2 piecewise smooth curve γ = (x, Y, U) : [0, T ] → G × G × G
with fixed endpoints in state space G × G, satisfying the control system

D2x

dt2
= (TLx)e(U)

and minimizing the functional
∫ T

0 L(γ(t))dt, where T ∈ R+ is fixed and the
cost function L : G × G × G → R is defined by

L(x, Y, U) =
1

2
〈U, U〉.

Since we have an orthogonal frame field for G, the components of the metric
are such that gij = δij, i, j = 1, ..., n. Then, the cost function is defined in
local coordinates by L(xi, yi, ui) = 1

2

∑n
i=1(u

i)2. On the other hand, within
the formalism of subsection 2.2, the control system is (2) where now

G × G × G

τ1
2

''N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

Π
// G × G × G × G

π
G×G

��

G × G

with τ 1
2 and π

G×G
being the natural projections onto the first two factors. As

the connection corresponding to the bi-invariant metric on G is such that
(7) holds, the vector field Π is given locally by Π(xi, yi, ui) = (xi, yi, yi, ui),
expression that we can interpret as

Π(x, Y, U) = (x, Y, Y, U).
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4.4.2. Dynamics of the control system. We introduce now the Hamiltonian
description of our system having T ∗G1 as the co-state space. This space can
be seen as being G×G×G∗×G∗, once again by using the left trivializations.
Thus, the total space of the presymplectic system (T , Ω, H) is reduced to
the vector bundle T = G× G × G∗ × G∗ × G. The elements of this space are
represented by (x, Y, ξ, ξY , U). Moreover, the images through the canonical
projections of T into the co-state space and into the control bundle are, re-
spectively, pr1(x, Y, ξ, ξY , U) = (x, Y, ξ, ξY ) and pr2(x, Y, ξ, ξY , U) = (x, Y, U).

The presymplectic two-form Ω on T is similar to (3). We define it as being
the following pull-back of the canonical symplectic two form ω0 on T ∗G1:

Ω = (λ ◦ pr1)∗ω0.

The Hamiltonian function H : T → R is (4) which now becomes

H(x, Y, ξ, ξY , U) = ξ(Y ) + ξY (U) −
1

2
〈U, U〉,

by using the expressions obtained for Π and L in the previous subsection.
Locally,

H(xi, yi, pi, qi, u
i) =

3
∑

i=1

piy
i +

3
∑

i=1

qiu
i −

1

2

3
∑

i=1

(ui)2.

Since we have a regular optimal control problem, the solutions of the op-
timal control problem will lie in the symplectic manifold (W1, ΩW1

). As we
have seen, in the RCP problem the constraint manifold W1 is locally defined
by ∂H

∂ui = 0, which, in the present case, gives ui = qi, i = 1, ..., n. Moreover,
we can interpret this as follows.

W1 = {(x, Y, ξ, ξY , U) ∈ T : U = XξY
},

where XξY
is the tangent vector identified with the co-vector ξY . Then, W1

is a submanifold of T diffeomorphic to G × G × G∗ × G∗. In that sense, the
Hamiltonian on W1 is defined by

H|W1
(x, Y, ξ, ξY ) = ξ(Y ) +

1

2
ξY (XξY

) (13)

and the two-forms ΩW1
and ω0 have the same local expression. Indeed, ΩW1

can be identified with λ∗ω0.
We now proceed to get the Hamiltonian vector field ΓW1

defined by the
dynamical system (6). In order to apply the classic results from subsection
4.1.4 to the present higher order situation, we use the left trivializations of
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subsection 4.2.2 to realize ΓW1
as a vector field on G1 × G∗

1 . So, let Γ̃ be the

vector field on G1 × G∗
1 such that ΓW1

◦ λ−1 ◦ λ
T∗G1

= T
(

λ−1 ◦ λ
T∗G1

)

◦ Γ̃.

That is, Γ̃ is such that the following diagram is commutative:

G1 × G∗
1

λ−1◦λ
T∗G1

��

Γ̃
// T (G1 × G∗

1)

T (λ−1◦λ
T∗G1

)

��

G × G × G∗ × G∗
ΓW1

// T (G × G × G∗ × G∗)

This is the Hamiltonian vector field defined by the dynamical system

iΓ̃Ω̃ = dH̃, (14)

where H̃ and Ω̃ are, respectively, the Hamiltonian function and the sym-
plectic form realized on G1 × G∗

1 . That is, H̃ = H|W1
◦ λ−1 ◦ λ

T∗G1
and

Ω̃ =
(

λ−1 ◦ λ
T∗G1

)

∗
(ΩW1

). In that sense, the dynamical systems (6) and (14)

are equivalent.
Note that, by the identification of ΩW1

with λ∗ω0, the two form Ω̃ can be

seen as being
(

λ−1 ◦ λ
T∗G1

)

∗
(λ∗ω0). But this is just ω̃0 =

(

λ
T∗G1

)

∗
(ω0) the

left trivialization of the canonical two-form ω0.
We use corollary 1 to conclude that each integral curve (x1(t), ξ1(t)) of Γ̃

satisfies the following differential equations:























ẋ1 = (TLx1)e
G1

(

∂H̃

∂ξ1
(x1, ξ1)

)

ξ̇1 = −(TLx1
)∗e

G1

(

∂H̃

∂x1
(x1, ξ1)

)

− ad∗∂H̃
∂ξ1

(x1,ξ1)
ξ1

. (15)

The interpretation of the above differential equations allows us to describe
the dynamical system (6) in the present case. In order to simplify the nota-
tion, in what follows, Γ denotes ΓW1

and H denotes HW1
.
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Theorem 4. Consider an integral curve (x(t), Y (t), ξ(t), ξY (t)) of Γ. Then,
the following set of equations is satisfied:



































ẋ = (TLx)e

(

∂H
∂ξ

(z)
)

Ẏ = ∂H
∂ξY

(z) + adY
∂H
∂ξ

(z)

ξ̇ = −∂H
∂x

(z) ◦ (TLx)e + ad∗Y
∂H
∂Y

(z) − ad∗∂H
∂ξ

(z)
ξ − ad∗∂H

∂ξY
(z)

ξY

ξ̇Y = −∂H
∂Y

(z) − ad∗∂H
∂ξ

(z)
ξY

.

where z denotes the element (x, Y, ξ, ξY ).

Proof : Let (x1(t), ξ1(t)) ∈ G1 × G∗
1 be the integral curve of Γ̃ corresponding

to the integral curve (x(t), Y (t), ξ(t), ξY (t)) by left trivialization. Note that,

we can identify the elements ẋ1 ∈ Tx1
G1 and ∂H̃

∂ξ1
(z) ∈ G1 with new elements

ẋ1 ∼ (ẋ, Ẏ ) ∈ TxG × G and ∂H̃
∂ξ1

(z) ∼
(

∂H
∂ξ

(z), ∂H
∂ξY

(z)
)

∈ G × G, respectively.

Moreover, we have

(TLx1
)e

G1

(

∂H̃

∂ξ1
(z)

)

∼
(

TL(x,Y )

)

(e,0)

(

∂H

∂ξ
(z),

∂H

∂ξY

(z)

)

.

Now by remark 3, we develop the right element of this to get

(TLx1
)e

G1

(

∂H̃

∂ξ1
(z)

)

∼

(

(TLx)e

(

∂H

∂ξ
(z)

)

,
∂H

∂ξY

(z) + adY

∂H

∂ξ
(z)

)

.

Consequently, the first equation of (15) is interpreted as
{

ẋ = (TLx)e

(

∂H
∂ξ

(z)
)

Ẏ = ∂H
∂ξY

(z) + adY
∂H
∂ξ

(z)
.

We now proceed to get the other two required equations. Identify the

element ∂H̃
∂x1

(z) ∈ T ∗
x1

G1 with a new element
(

∂H
∂x

(z), ∂H
∂Y

(z)
)

∈ T ∗
xG × G∗.

Consider the following identifications:

(TLx1
)∗e

G1

(

∂H̃

∂x1
(z)

)

∼
(

TL(x,Y )

)∗

(e,0)

(

∂H

∂x
(z),

∂H

∂Y
(z)

)

and
ad∗∂H̃

∂ξ1
(x1,ξ1)

ξ1 ∼ ad∗(
∂H
∂ξ

(z), ∂H
∂ξY

(z)
)(ξ, ξY ).
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Now use remark 3 to obtain
(

TL(x,Y )

)∗

(e,0)

(

∂H
∂x

(z), ∂H
∂Y

(z)
)

(Z, W ) =

=
[

∂H
∂x

(z) ◦ (TLx)e

]

(Z) +
(

∂H
∂Y

(z)
)

(W + adY Z)

and the algebra structure (11), to write

ad∗(
∂H
∂ξ

(z), ∂H
∂ξY

(z)
)(ξ, ξY )(Z, W ) =

= −ξ ◦ ad∂H
∂ξ

(z)Z − ξY ◦ ad∂H
∂ξ

(z)W − ξY ◦ ad ∂H
∂ξY

(z)Z

for arbitrary (Z, W ) ∈ G × G. So, the second equation of (15) allows us to
write

ξ̇(Z) + ξ̇Y (W ) = ξ ◦ ad∂H
∂ξ

Z + ξY ◦ ad∂H
∂ξ

(z)W + ξY ◦ ad ∂H
∂ξY

(z)Z−

−
[

∂H
∂x

(z) ◦ (TLx)e

]

(Z) −
(

∂H
∂Y

(z)
)

(W + adY Z)

and the result follows.

Corollary 2. Considering the RCP Hamiltonian defined by (13), the Hamil-
tonian equations from theorem 4 are reduced to















ẋ = (TLx)eY

Ẏ = XξY

ξ̇ = 0

ξ̇Y = −ξ − ad∗Y ξY

.

Proof : According the expression of our Hamiltonian function (13), we have
∂H
∂x

(z) = 0, ∂H
∂Y

(z) = ξ, ∂H
∂ξ

(z) = Y and ∂H
∂ξY

(z) = XξY
. Now substitute these

expressions in the equations from theorem 4 to obtain






























ẋ = (TLx)e (Y )

Ẏ = XξY

ξ̇ = −ad∗XξY
ξY

ξ̇Y = −ξ − ad∗Y ξY

.

But, for Z ∈ G,
(

−ad∗XξY
ξY

)

(Z) =
(

ξY ◦ adXξY

)

(Z) =< XξY
, [XξY

, Z] >.

The last one is equal to zero, by property (9). Then, the result follows.
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4.5. Relation between the two approaches. We now establish the rela-
tion between the current Hamiltonian approach from the previous subsection
and the variational one presented in subsection 4.3. Let V , V̇ , V̈ and

...
V be the

elements introduced in the afore mentioned subsection. Recall the notation
assumed in subsection 4.1.3.

Lemma 3. Along the optimal control problem solution curve, we have

V = (TLx)e (Y )

V̇ = (TLx)e (XξY
)

V̈ = (TLx)e(−Xξ − adY XξY
)

...
V = (TLx)e (adY Xξ + adY adY XξY

) .

Proof : Use corollary 2 to prove the result. The expression of V comes di-
rectly from the first equation of the corollary since V = ẋ. Consequently,
V̇ = (TLx)e(Ẏ ) which by the second equation of the mentioned corollary

gives V̇ = (TLx)e (XξY
). Furthermore, using the last equation of the corol-

lary, we get V̈ = (TLx)e(ẊξY
) = (TLx)e(Xξ̇Y

) = (TLx)e(−Xξ − Xad∗Y ξY
)

and the result follows. Finally, to obtain the expression of
...
V write it as

...
V = (TLx)e

(

−Ẋξ − Ẋad∗Y ξY

)

. Now, observe that Ẋξ = Xξ̇ = 0. On the

other hand, Ẋad∗Y ξY
= Xad∗Y ξ̇Y

+Xad∗
Ẏ

ξY
= −Xad∗Y ξ −Xad∗Y ad∗Y ξY

+Xad∗XξY
ξY

. But

ad∗XξY
ξY vanishes by property (9) and the proof is complete.

Proposition 3. The Hamiltonian equations from corollary 2 imply the Euler-
Lagrange equations (12).

Proof : From lemma 3 we see that (TLx−1)x(
...
V + [V, V̈ ]) = 0.

According corollary 2, the solution dynamical vector field Γ is defined at
each z = (x, Y, ξ, ξY ) ∈ G × G × G∗ × G∗ by

Γ(z) = ((TLx)e (Y ) , XξY
, 0,−ξ − ad∗Y ξY ).

In order to prove that a function I defined in G × G × G∗ × G∗ is a con-
served quantity, using the Hamiltonian formalism, it is enough to prove that
Γ(I) = 0. To develop this, we adopt the following notation, similar to the
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one considered in subsection 4.1.4:

(dI)(z)(Γ(z)) =

(

∂I

∂x
(z)

)

((TLx)e (Y )) +

(

∂I

∂Y
(z)

)

(XξY
)−

−ξ

(

∂I

∂ξY

(z)

)

− ad∗Y ξY

(

∂I

∂ξY

(z)

)

.

Proposition 4. The following two expressions are invariants along the ex-
tremal trajectories of the RCP’s optimal control problem:

Î1 =
1

2
ξY (XξY

) + ξ(Y )

and

Î2 = ξ (Xξ) + (ad∗Y ξY ) (Xξ) +
1

2
(ad∗Y ad∗Y ξY ) (XξY

) .

Proof : Deduce that ∂Î1

∂x
(z) = ∂Î2

∂x
(z) = 0, ∂Î1

∂Y
(z) = ξ, ∂Î1

∂ξY
(z) = XξY

, ∂Î2

∂Y
(z) =

〈

. , adXξY
(Xξ + adY XξY

)
〉

and ∂Î2

∂ξY
(z) = −adY Xξ −adY adY XξY

. Now is sim-

ply to prove that (dÎ1)(Γ) = 0 and (dÎ2)(Γ) = 0.

The first invariant coincides with the Hamiltonian function (13), so these
two invariants are in involution.

To finish observe that the invariants from the above proposition are pre-
cisely the invariants I1 and I2 from the variational formalism presented in
subsection 4.3. Indeed, use lemma 3 and the bi-invariance of the metric
to write I1 = 1

2

〈

Xξy
, Xξy

〉

+ 〈Xξ, Y 〉 + 〈adY XξY
, Y 〉. Now, by property (9),

we have 〈adY XξY
, Y 〉 = −〈XξY

, adY Y 〉 = 0. Then, I1 = Î1. On the other
hand, once again by lemma 3 and the invariance of the metric we are able to

deduce that 1
2

〈

[V, V̇ ], 2V̈ + [V, V̇ ]
〉

= −〈Xξ, adY XξY
〉 − 1

2 〈adY XξY
, adY XξY

〉

and
〈

V̈ , V̈
〉

= 〈Xξ, Xξ + 2adY XξY
〉 + 〈adY XξY

, adY XξY
〉. Now substitute

these expressions in I2 to obtain

I2 = 〈Xξ, Xξ + adY XξY
〉 +

1

2
〈adY XξY

, adY XξY
〉 = Î2.
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