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Abstract: Nowadays, Unmanned Aerial Systems (UASs) provide an efficient and relatively affordable
remote sensing technology for assessing vegetation attributes and status across agricultural areas
through wide-area imagery collected with cameras installed on board. This reduces the cost and
time of crop monitoring at the field scale in comparison to conventional field surveys. In general,
by using remote sensing-based approaches, information on crop conditions is obtained through the
calculation and mapping of multispectral vegetation indices. However, some farmers are unable to
afford the cost of multispectral images, while the use of RGB images could be a viable approach for
monitoring the rice crop quickly and cost-effectively. Nevertheless, the suitability of RGB indices for
this specific purpose is not yet well established and needs further investigation. The aim of this work
is to explore the use of UAS-based RGB vegetation indices to monitor the rice crop. The study was
conducted in a paddy area located in the Lis Valley (Central Portugal). The results revealed that the
RGB indices, Visible Atmospherically Resistant Index (VARI) and Triangular Greenness Index (TGI)
can be useful tools for rice crop monitoring in the absence of multispectral images, particularly in the
late vegetative phase.

Keywords: remote sensing; precision agriculture; paddy fields; UAV; multispectral; RGB indices

1. Introduction

Rice (Oryza sativa L.) is one of the most important grain crops worldwide; it serves
as a food staple for more than half of the world’s population [1,2] and is one of the most
important sources of the rural population’s livelihood and income. However, a lack of
technical efficiency often has a negative impact on rice productivity, which can affect
agricultural incomes [3]. One main difficulty is the deficient monitoring tools and data
available that have been limiting the full understanding of the relationships between
hydrological conditions and agronomic management decisions and crop yields, which is
key to optimizing profits and the sustainability of the agricultural sector. Currently, remote
sensing (RS) is being widely used for crop growth monitoring. RS methodologies show
important advantages: they are non-destructive, time- and cost-efficient, and they allow
us to monitor vegetation conditions over broader spatial extents. Recent RS technological
improvements have been appraised in many studies that report the high efficiency and
accuracy of RS products for this end [4–7]. RS techniques rely mainly on the relationship
between plants’ (and canopies’) optical properties and bio-physiological parameters [8,9],
with a focus on water and nutrients’ use efficiency [10,11].
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RS typically uses multispectral (MS) sensors to conduct observations of terrestrial
surfaces and targeted objects [12,13]; these sensors are usually mounted on aerial systems
(e.g., Unmanned Aerial Systems, UASs) and satellites (e.g., Sentinel-2). Satellite RS pro-
vides cost-effective MS and multi-temporal data, as well as wide spatial coverage. However,
although the spatial resolution of open satellite images and data has been increasing (e.g.,
Sentinel-2), their resolution does not yet sufficiently satisfy the needs of precision agri-
culture. Precision agriculture aims to establish crop inputs in agronomic management
according to within-field requirements to increase profitability while protecting the envi-
ronment, and RS proves particularly valuable in pinpointing areas that require additional
treatment with water, chemicals, pesticides, and herbicides. Moreover, satellite data avail-
ability could be affected by infrequent revisit times and cloud cover. On the other hand,
recent advances in micro-technologies have significantly advanced the use of UASs for
acquiring environmental data remotely [14]. UASs typically fly at low altitudes, offer-
ing the possibility to complement systems that operate at high altitudes while providing
complementary sources of higher resolution information [15]. UAS sensors offer unique
opportunities to bridge the existing gap between proximal field observations and air- and
space-borne RS by providing high-spatial detail over relatively large areas cost-effectively,
while allowing enhanced temporal data retrieval [14,16]. UAS-based imagery contributes
valuably to increasing our knowledge about surface processes and land cover dynamics
and is presently providing innovative approaches and solutions for crop management
and monitoring in agricultural fields, among other applications [14,17]. Through available
high-resolution MS images from UASs, managers and specialists in agriculture gain access
to better quality information on field and crop conditions, which is key to improving man-
agement decisions and formulating precision farming solutions [18]. In fact, one of the most
economically important sectors for the application of UASs is precision agriculture [19].

Nonetheless, the widespread integration of remote sensing into precision agriculture
depends on factors such as affordability, accessibility, and the resolution of the imagery.
MS sensors are relatively more expensive and inaccessible in low-income countries, where
the agricultural sector is dominant, than in countries with more favorable economic and
technological conditions. This limitation hinders the use of UASs-based RS tools by farmers
in those countries. On the other hand, the widespread availability of UASs equipped
with common real-image cameras (i.e., RGB cameras, which use the Red, Green and Blue
channels), and the fact that high-resolution RGB cameras are presently more reasonably
priced than in the past, make them overall more affordable than MS cameras. This has
recently started to be seen as an opportunity for vegetation and crop monitoring [19–21].
The price range for MS cameras and RGB cameras suitable for precision agriculture can vary
widely based on factors like brand, specifications, and additional features. MS cameras can
cost, on average, $2000 for entry-level models and $15,000 or more for high-end cameras.
Entry-level RGB cameras can vary in price, with an average cost of around $1000, while high-
end RGB cameras can be priced at $7000 or more. Prices are approximate and can vary based
on factors such as camera resolution, sensor quality, additional features like integrated
Global Positioning System (GPS), and whether the camera is sold as part of a complete
drone or as a standalone unit. Additionally, different manufacturers may offer cameras
with varying price points within entry-level, mid-range and high-end models. For example,
studies report prices for MS commercial cameras and RGB cameras of approximately
$3500 USD [22] and less than $1100 USD [23], respectively.

In particular, several indices based on the color spectrum (i.e., only the visible range of
the spectrum) have been proposed and applied, namely vegetation indices (VIs). However,
while some findings demonstrate that UAS-based RGB imagery could be a viable approach
for accurate crop monitoring [24], other studies advocate that the standard RGB channels
might not always provide credible crop health indicators [25]. Among the several recent
studies that have focused on the potential use of UAS-based RGB VIs for crop monitor-
ing [26–29], one study used images collected with an UAS equipped with an ordinary
non-metric digital RGB camera [28]. It reported the capability to distinguish different crops’
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conditions using two RGB VIs, based on experimental tests conducted in two agricultural
fields sowed with wheat and rap. In another study, Andrade et al. (2019) [27] tested the
use of an RGB sensor coupled to a UAS platform for monitoring corn crops at different
growth stages. Thus, results from different studies suggest that RGB VIs might constitute
alternatives to MS VIs for crop monitoring, based on imagery collected using low-cost RGB
sensors onboard UAS platforms. However, more insightful studies on using RGB VIs are
needed to further explore their suitability to replace or/and complement the commonly
used MS VIs, particularly covering a broader range of crop cultivation conditions.

Although the number of studies using UASs in precision agriculture applications
has exponentially increased in the last decade [14,30], few studies have been dedicated to
investigating the use of VIs obtained from UAS MS images and RGB images for agricultural
information collection [23,31], especially for paddy fields [32–34]. Studies dedicated to rice
production areas located in the Mediterranean basin are also lacking. These areas have
specific climatic conditions, e.g., [35–37], that differ from those found in other important
rice production areas. Their vulnerability to climate change and environmental hazards
demands that agricultural production in these areas receives special attention, particularly
rice farming. In fact, since rice cultivation can be carried out under different irrigation
practices (continuous flooding, alternate wet and dry, drip irrigation), field conditions
and the growth behavior of the rice plants might differ considerably. It is thus crucial
to understand how different VIs behave under various environmental and agronomic
conditions, notably their ability to identify spatial variability at the field plot scale. This
applies to MS and RGB VIs, the latter being considered a relatively more affordable tool to
monitor rice farming, among other potential applications for vegetation and environmental
observations. As mentioned above, knowledge on these topics needs to be consolidated.

Thus, the main objectives of this study were to (i) examine the capability of VIs
calculated from UAS RGB images for assessing rice field conditions, (ii) compare outputs
obtained from UAS imagery acquired using MS channels and RGB channels, and (iii) help
disseminate opportunities related to conducting effective and useful smart agriculture in
paddy fields supported by UAS’ data and provide additional information on RGB VIs
to future potential UAS imagery users. For this purpose, a suite of UAS-based MS and
RGB VIs was explored using observations carried out in a paddy area located in the Lis
Valley (Central Portugal). The assessment of the indices was conducted using data collected
during the late vegetative phase of the rice crop cultivation period, which is particularly
crucial for crop growth and yield assessment; any damage to the rice crop that occurs
during this stage will likely affect yield productivity.

2. Material and Methods
2.1. Study Area

This experimental study focused on rice cultivation in the Lis Valley Irrigation District
(LVID) (Figure 1). LVID is a state initiative situated in the municipalities of Leiria and
Marinha Grande, in the Center of Portugal, in proximity to the Atlantic Coast. It serves an
agricultural area of about 2130 ha, with approximately 1490 ha of this area being irrigated.
The main crops include forage corn, forage grass, horticultural crops, orchards, and rice,
which is grown on an area of around 140 ha [38,39]. The rice produced has a long grain
and belongs to the variety Ariete, subspecies Oryza sativa L. spp. japonica; commercially, it
is known as “Carolino” rice.
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temperatures [40]. During the summer, the climate is primarily influenced by the Medi-
terranean Sea and characterized by high temperatures, sunshine, and very little precipita-
tion. During the winter, the climate is influenced by the Atlantic Ocean, with most of the 
precipitation in this season originating from frontal systems [41]. The mean annual pre-
cipitation in the Lis catchment (≈850 km2) is around 855 mm, but it decreases from the 
headwaters of the catchment towards the coastal region. Annual precipitation occurs 
mostly from September to December [42,43]. 

The soils are predominantly of alluvial origin and have high agricultural value; how-
ever, in some areas, they are poorly drained, facing waterlogging and salinization risks, 
particularly in the downstream areas where rice is cultivated in traditional rice paddies. 

On average, the rice crop season in this region is from May to October, when harvest-
ing takes place. The crop season lasts approximately 140–150 days [44]; for this type of 
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Figure 1. Study Area: (a) Location of the study area, in the Center of Portugal, near the Atlantic coast:
the shaded blue identifies de Lis River catchment; (b) Location of the Lis Valley Irrigation District,
LVID; (c) Location of the four selected rice fields in the LVID.

According to the Köppen–Geiger climate classification, the climate in the study area
is Csb. Summers are temperate with low precipitation, and winters are rainy with mild
temperatures [40]. During the summer, the climate is primarily influenced by the Mediter-
ranean Sea and characterized by high temperatures, sunshine, and very little precipitation.
During the winter, the climate is influenced by the Atlantic Ocean, with most of the precipi-
tation in this season originating from frontal systems [41]. The mean annual precipitation
in the Lis catchment (≈850 km2) is around 855 mm, but it decreases from the headwaters
of the catchment towards the coastal region. Annual precipitation occurs mostly from
September to December [42,43].

The soils are predominantly of alluvial origin and have high agricultural value; how-
ever, in some areas, they are poorly drained, facing waterlogging and salinization risks,
particularly in the downstream areas where rice is cultivated in traditional rice paddies.

On average, the rice crop season in this region is from May to October, when harvesting
takes place. The crop season lasts approximately 140–150 days [44]; for this type of long
cultivation cycle [45], the vegetative phase typically lasts between 75 and 85 days for
direct-seeded rice. Direct wet seeding is applied, and the conventional irrigation practice is
the continuous flooding of the rice fields. During the cultivation season, approximately
two months after sowing, the rice plants reach maximum vigor (the plant growing peak
occurs between July and August), which then gradually decreases until harvest time [46].
Regarding rice irrigation, crop fields are flooded at the time of sowing, and the flooding
is typically interrupted 2–3 weeks before harvest. However, the depth of the water layer
ponded on the soil surface varies during the rice cultivation period, depending on the crop
growth stage and the irrigation practice [44].

For this study, which focused on data from 2020, four contiguous rice cultivation
plots were selected (Figure 1c): plot 1, 1.86 ha; plot 2, 1.65 ha; plot 3, 1.79 ha; and plot 4,
2.34 ha (coordinates: 39◦52′15.29′′ N, 8◦52′54.23′′ W; altitude: ≈10 m a.s.l.). The plots were
located on the right bank of the Lis River, in the downstream part of the LVID. In 2020, the
agronomic practices in these plots were similar regarding sowing dates (mid-May) and
the application of conventional practices [47], namely continuous flooding irrigation and
agronomic practices such as fertilization and other field management decisions. The soil
presented 7% sand, 37% silt and 56% clay, with an average root zone depth of approximately
40 cm [47].
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2.2. UAS Data Acquisition and Processing

In this study, the presence and condition of the rice plants found in the selected cultiva-
tion plots (Section 2.1) were explored using UAS remote sensing-based products. The data
were collected using a DJI Matrice 600 drone (DJI, Shenzhen, China) (Figure 2a) equipped
with a 1.2-megapixel MicaSense Red Edge—M MS sensor (MicaSense, Inc., Seattle, WA,
USA) (Figure 2b), with a resolution of 1280 × 960 pixels This MS sensor covered the fol-
lowing relevant spectral wavelength bands: Blue (center wavelength: 475 nm; bandwidth:
32 nm), Green (center wavelength: 560 nm; bandwidth: 27 nm), Red (center wavelength:
668 nm; bandwidth: 16 nm), Red-edge (center wavelength: 717 nm; bandwidth: 12 nm),
and NIR (Near Infrared; center wavelength: 840 nm; bandwidth: 57 nm). Based on the
information provided by the manufacturer, the lens focal length is 5.4 mm, with a 46 degree
field of view.
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(b) MicaSense RedEdge—M multispectral sensor.

Radiometric calibration of the MS camera prior to the flight was ensured by scanning
the MicaSense Calibrated Reflectance Panel and using procedures recommended by the
manufacturer. MicaSense cameras are considered particularly sensitive and useful for
comparing VIs, as discussed below, since each of the five bands used to calculate the indices
have a narrow MS bandwidth [48].

The data analyzed in this work were collected during a UAS flight conducted on 9 July
2020, under conditions of minimal wind (less than 1 m/s) and clear sky. The DJI Matrice
600 drone was operated autonomously, following a pre-set flight plan consisting of a simple
grid with a 25 m distance between flight lines. The flight plan included 75% overlap and
70% sidelap. With the drone flying at a height of 110 m above the ground, a ground sample
distance of approximately 8 cm/pixel was obtained. The drone’s speed was set to 7.5 m/s.
The camera was pointed nadir.

Radiometric correction was performed using the Camera, Sun Irradiance and Sun An-
gle option, utilizing a downwelling light sensor unit, as well as a GPS/inertial measurement
unit [49]. The MicaSense RedEdge—M GPS provided an accuracy in the range of 2 to 3 m
horizontally [50]. The UAS image data, including orthorectification, atmospheric correction
and the generation of the VIs maps, were processed using the commercial software package
Pix4DFields (version 1.9) from Pix4D (Pix4D S.A., Prilly, Switzerland). Pix4D has helped
improve the application of small UASs for mapping by providing a structure-from-motion
software package. The correction method included in Pix4D has been found to be capa-
ble of generating reflectance maps of reasonable/good quality [51–53], although flight
circumstances influence the performance of calibration methods.

2.3. Vegetation Indices Calculation

This study explored two classes of VIs calculated from RS data collected using a UAS:
RGB and MS indices. The RGB VIs, obtained from the MicaSense RedEdge—M sensor
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observations, were the Visible Atmospherically Resistant Index (VARI) [54] and Triangular
Greenness Index (TGI) [55]. VARI is used for estimating leaf coverage [56] and TGI was
developed to monitor leaf chlorophyll (Chl) content [57]. Few studies compare the utiliza-
tion of selected RGB indices with the most common spectral indices to prove their use for
common agricultural rice application [58–60]. The selected MS VIs were the Normalized
Difference Vegetation Index (NDVI) [61], Blue Normalized Difference Vegetation Index
(BNDVI) [62], Green Normalized Difference Vegetation Index (GNDVI) [63], Normalized
Difference Red-Edge (NDRE) [64] and Modified Chlorophyll Absorption in Reflectance
Index 1 (MCARI1) [65]. All these MS VIs rely on the NIR band; when combined with other
bands, they use the characteristic shape of the green vegetation spectrum by combining
the low reflectance in the visible wavelengths with the high reflectance of the NIR wave-
lengths [48]. Among the selected MS indices, the NDVI is the most widely applied for
assessing leaf coverage and plant health. In particular, the MCARI1 is used to estimate Chl
concentration including variations in the Leaf Area Index.

The calculation of the pixels’ VIs values was provided by the Pix4D software [49],
using the equations shown in Table 1. The TGI and MCARI1 equations in Table 1 are
based on the models proposed by Hunt et al. (2011) [55] and Haboudane et al. (2004) [65],
respectively; in particular, they are normalized to the maximum value of the reflectance in
the used bands.

Table 1. Vegetation indices (VI) and corresponding calculation equations based on the reflectance
data (Red, Green, Blue, NIR, RedEdge) for the MicaSense RedEdge—M bands, as considered by the
Pix4D software.

Type of Index VI Equation

RGB
VARI

Green − Red
Green + Red − Blue

TGI
Green − (0.39 × Red) − (0.61 × Blue)

(maximum value of Red, Green and Blue)

Multispectral

NDVI
NIR − Red
NIR + Red

BNDVI
NIR − Blue
NIR + Blue

GNDVI
NIR − Green
NIR + Green

NDRE
NIR − RedEdge
NIR + RedEdge

MCARI1
1.2 × (2.5 × (NIR−Red) − 1.3 × (NIR − Green))

(maximum value of Red, Green and NIR)

All the selected indices highlight the greenness with higher values. The normalized
indices NDVI, BNDVI, GNDVI and NDRE take values in the interval [−1, +1]; positive
values signal vegetation; and values approaching +1 indicate conditions of maximum plant
vigor. Typically, values near zero reveal bare soil and negative values reveal water surfaces.
For VARI and TGI, positive values signal the presence of greenness, whereas usually, VARI
negative values indicate soil objects [66] and TGI negative values are associated with plants’
low Chl content [67].

In general, the interpretation of spectral indices’ signals needs to be conducted on a
case-by-case basis [68–70].

2.4. Vegetation Indices Analysis

The analysis of the collected data on rice field conditions, which aimed to explore the
capability of RGB VIs to monitor the rice crop in comparison to the most widely spread
application of MS VIs for that same purpose, included the following approaches: (i) data
obtained for the four selected plots were analyzed separately; (ii) basic descriptive statistics
were obtained for the selected data, extracted using the zonal statistics plugin in QGIS
software [71]; (iii) the empirical frequency distributions obtained for the VIs’ pixel data were
investigated; (iv) cross-correlations between the seven VIs, which included five MS indices
and two RGB indices, were studied based on 15% of the pixel data, randomly chosen, and
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the calculation of the Pearson correlation coefficient; and (v) linear relationships between the
MS and RGB VIs were explored, and the statistical significance of the regression coefficients
was evaluated using the t-test.

3. Results and Discussion
3.1. Rice Monitoring at the Field Plot Scale

Figure 3 shows NDVI, BNDVI, GNDVI, NDRE, MCARI1, VARI, and TGI (Figure 3a–g)
maps of the selected rice plots, during the late vegetative phase of the crop (on average,
56 days after sowing, for an estimated vegetative phase of about 84 days). These maps
were created from MS and visible bands’ data collected on 9 July 2020, using a UAS
(Section 2.2). For all indices shown in Figure 3, a red, green, and yellow color palette was
used. However, the maps are not directly comparable, as indicated by the legends, which
show the correspondence between the colors and the indices’ values. It is important to
note that (i) the range of values for the different indices is typically not the same; and
(ii) MCARI1, VARI, and TGI are non-normalized indices and were not designed to take
values in the interval [−1, +1] like NDVI, BNDVI, GNDVI and NDRE. In particular, TGI
values spanned the narrowest value range.
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The maps in Figure 3 reveal differences in the way the rice crop in each field is captured
by each of the VIs. Since the data were collected during the late vegetative phase of the
rice growth period, it could be expected that the presence of young, healthy rice exhibiting
vigorous photosynthesis produced strong reflection in the NIR band and absorption in
the visible wavelength bands [72]. This is expected to be more strongly indicated by the
indices that reveal higher capability to identify the plants’ Chl content. However, it was
noticed that the lower pixel values taken by the VIs at the field scale, which typically reveal
the plants’ low vigor, are found in the rice fields’ areas/spots that present larger ground
level variations, due to irregular land levelling. In this respect, ground-level differences
are more pronounced in plots 3 and 4 and could reach about 0.60 m. The unevenness of
the ground level within the fields was revealed by the topographic map produced from
the field survey. Thus, the smaller depth of the ponded irrigation water in these sub-areas,
in relation to the water depth established elsewhere by the irrigation of the fields, and the
aerobic conditions that could likely affect these areas between water applications, might
have negatively impacted the plants’ development, including their growth and vigor [73].

3.2. Basic Descriptive Statistics

Table 2 presents descriptive statistics for the UAS-based VIs’ pixel values calculated in
this study for each rice plot. The BNDVI, NDVI and GNDVI exhibited the highest mean
values in each plot. In particular, the magnitude of the BNDVI and NDVI was similar, with
BNDVI attaining the largest values. While differences between the selected normalized VIs
are expected, especially for rice [37], their magnitudes are not directly comparable with
the mean values displayed by the non-normalized indices. For example, MCARI1, which
had the lowest mean values among the MS indices in this case, was found suitable for
estimating Chl content variation by Zhang et al. (2021) [74]. They noted that, in the rice
vegetative phase, the leaf Chl content within the rice canopy is higher in the lower leaves
situated near the soil surface than in the upper leaves, and that such a fact could be well
captured by this index.

Table 2. Descriptive statistics for the MS and RGB vegetation indices’ pixel values calculated for
the selected rice plots based on UAS remote sensing data. n is the sample size. CV is the coefficient
of variation.

Rice Plot Index Min Max Range Mean CV

Plot 1
(n = 311,507)

NDVI 0.23 0.90 0.68 0.71 0.13
BNDVI 0.40 0.91 0.51 0.78 0.07
GNDVI 0.15 0.74 0.59 0.55 0.10
NDRE 0.09 0.48 0.38 0.29 0.15

MCARI1 0.05 0.38 0.33 0.17 0.26
VARI −0.38 0.71 1.09 0.39 0.34
TGI −0.04 0.14 0.18 0.06 0.20

Plot 2
(n = 306,347)

NDVI 0.33 0.92 0.59 0.82 0.08
BNDVI 0.37 0.92 0.55 0.82 0.05
GNDVI 0.31 0.77 0.46 0.64 0.07
NDRE 0.14 0.52 0.38 0.38 0.10

MCARI1 0.06 0.33 0.27 0.20 0.19
VARI −0.14 0.83 0.97 0.53 0.21
TGI 0.01 0.09 0.08 0.06 0.14

Plot 3
(n = 322,544)

NDVI 0.34 0.94 0.59 0.77 0.12
BNDVI 0.49 0.93 0.44 0.81 0.07
GNDVI 0.32 0.79 0.47 0.61 0.10
NDRE 0.17 0.54 0.37 0.36 0.13

MCARI1 0.05 0.37 0.32 0.16 0.25
VARI −0.08 0.78 0.86 0.44 0.36
TGI 0.01 0.12 0.11 0.05 0.20



Agriculture 2023, 13, 1916 9 of 18

Table 2. Cont.

Rice Plot Index Min Max Range Mean CV

Plot 4
(n = 436,216)

NDVI 0.34 0.93 0.59 0.84 0.06
BNDVI 0.51 0.93 0.42 0.86 0.04
GNDVI 0.33 0.79 0.46 0.66 0.06
NDRE 0.17 0.56 0.38 0.40 0.09

MCARI1 0.07 0.34 0.27 0.21 0.16
VARI −0.08 0.81 0.90 0.56 0.19
TGI 0.01 0.10 0.09 0.06 0.12

Regarding the detection of heterogeneity at the field scale, particularly through the
assessment of dispersion in the pixel datasets, it was the MCARI1 that revealed the highest
coefficient of variation (CV) values among the MS indices (Table 2), ranging from 0.16 to
0.26. However, it was VARI (an RGB index) that even exhibited the highest CV values
(ranging from 0.19 to 0.36) compared to the MCARI1 CVs, for all plots. This suggests that
VARI has a strong capability to respond to the lack of homogeneity in the rice fields. The
mean values of VARI fell between those of GNDVI and NDRE, which were higher than
the values calculated for NDVI and BNDVI. BNDVI, on the other hand, presented the
lowest CV values (ranging from 0.04 to 0.07), indicating that this index might have the
lowest ability to identify variations in rice growing conditions at the field scale among the
selected indices, at least in this growing phase. Generally, the normalized MS indices had
CV values lower than 15%. As for the other RGB index, TGI exhibited a CV higher than the
CV calculated for the MS indices, except MCARI1. However, this difference in CV values
could be influenced by the relative lower magnitude of TGI compared to the other indices,
as CV values tend to be high at very low values and low at high values.

It is worth noting that the target of the two RGB indices, VARI and TGI, is different.
VARI was developed to monitor the fractional area covered by vegetation [75], whereas TGI
was developed to monitor leaf Chl content [76]. Particularly, in terms of within-field varia-
tions, TGI behaved similarly to MCARI1 (e.g., [55]), despite the different spectral bands
involved in their calculation, although the CV values calculated for MCARI1 were some-
what higher. This difference in CV values was consistently maintained for all four plots.

Overall, plot 4 consistently showed the lowest CV values for all the indices, while
plots 1 and 3 consistently exhibited the highest CV values. Plot 4 also had the highest mean
values for all selected indices (both MS and RGB indices) among the four plots.

3.3. Empirical Frequency Distributions of Pixel-Value Data

The empirical frequency distributions of the VIs’ pixel data were inspected. Histograms
for selected MS and RGB VIs are displayed in Figure 4 (NDVI and VARI) and Figure 5
(MCARI1 and TGI) for the four field plots, with sample sizes provided in Table 2. These
histograms reveal differences in the magnitude and value–range of these indices, which
are not directly comparable due to their distinct formulation. However, Figures 4 and 5
demonstrate similarities and disparities in the shapes of the frequency distributions for
these MS and RGB VIs pixel values within each field plot, offering a more comprehensive
understanding of the data beyond just the mean values.

In Figure 6, box and whisker plots are presented for the empirical frequency distribu-
tions of MS VI (NDVI and MCARI1) and RGB VI (VARI and TGI) pixel values. These plots
show the mean, median, lower and upper quartiles, and range of the distributions, provid-
ing a clearer depiction of central tendencies as well as information about the dispersion
around these central values for the four rice plots. This approach offers a more detailed
view of the data’s characteristics compared to examining means alone.
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The box and whisker plots presented in Figure 6 highlight several observations in
comparison to NDVI, which is typically regarded as a good indicator of the fraction and
status of the vegetation within rice plots: (i) the VARI index suggests greater within-field
variation, although it is important to note that this comparison involves a normalized and
a non-normalized index; (ii) the response signals of MCARI1 and TGI indicate that their
ability to detect small differences in leaf Chl content is comparable, and their performance
relative to NDVI appears to be superior, despite their narrower value ranges compared
to NDVI. However, in this comparison between the response signals of MS and RGB
indices, what is most relevant is the consistency in their behavior, which is suggested by
the results in this case. Further discussions on the relationships between selected indices
are provided below.
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3.4. Cross-Correlation Analysis

Figure 7 shows the cross-correlation coefficients (i.e., Pearson correlation coefficients,
denoted as “r”) for the selected VIs in relation to each of the studied rice plots during the
late vegetative phase of rice growth. Given that NDVI is the most commonly used and well-
known vegetation index, it is of particular interest to understand how this index correlates
with the other VIs used in this study. The analysis revealed that the correlation between
NDVI and the other MS VIs was very strong, with an average correlation coefficient of
r = 0.92 ± 0.05. This was especially true for BNDVI and GNDVI, which showed extremely
high correlations (r = 0.97 ± 0.02 and 0.94 ± 0.03, respectively). Such strong correlations
have also been reported by other authors (e.g., [29]). Among the normalized indices,
NDRE exhibited a stronger correlation with GNDVI (r = 0.95 ± 0.02) than with NDVI
(r = 0.85 ± 0.05) or BNDVI (r = 0.84 ± 0.06).
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Regarding the two RGB VIs, the results indicated a very strong correlation between
NDVI and VARI (r = 0.97 ± 0.01), and a strong correlation between NDVI and TGI
(r = 0.75 ± 0.09). The correlation between BNDVI and VARI (r = 0.90 ± 0.05) was stronger
than between GNDVI and VARI (r = 0.85 ± 0.07), but weaker than between NDVI and
VARI. Additionally, the correlation between NDRE and VARI (r = 0.77 ± 0.09) was stronger
than that between NDRE and TGI (r = 0.47 ± 0.16). Notably, a strong correlation was
observed between MCARI1 and VARI (r = 0.90± 0.06) as well as between MCARI1 and TGI
(r = 0.88 ± 0.03), which is consistent with findings from previous studies [76,77], although
those studies were not specific for rice.

The analysis also revealed that the RS signal captured for plot 4 differed from the
signal captured for the other three plots, resulting in consistently higher mean values for
the VIs and lower Pearson correlation coefficients in the cross-correlation analysis for all
indices. While this could suggest that the rice development in plot 4 was more advanced
compared to the other plots, it was not possible to confirm this with independent data.

3.5. MS and RGB Indices Relationships

The previous section highlighted the presence of positive relationships between MS
and RGB VIs. Furthermore, the RGB VIs exhibited strong correlations with MS VIs
(Figure 7), especially with NDVI, BNDVI and MCARI1, with the correlation being more
robust for VARI compared to TGI. Additionally, the data collected on 9 July 2020 indicated
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that linear models could describe the relationship between MS VIs and RGB VIs under
the surveyed conditions. Figures 8 and 9 illustrate the data, their positive relationships,
the corresponding linear models and the coefficients of determination for the relationship
between NDVI and VARI, as well as between MCARI1 and TGI. All results are statistically
significant (p-value < 0.001). A cursory assessment of these correlations would classify
them as very strong in the first case (NDVI and VARI) and strong in the other case (MCARI1
and TGI).
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Figure 9. Relationship between MS and RGB vegetation indices, MCARI1 and TGI, calculated for
the rice field plot 1 (a), plot 2 (b), plot 3 (c) and plot 4 (d). The linear regression models and the
corresponding coefficients of determination are given.

The results suggest that the RGB indices VARI and TGI, calculated from data collected
via a cost-effective aerial drone equipped with a RGB camera, can provide valuable in-
formation at high-spatial resolution regarding the rice crop conditions at the field scale.
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This preliminary assessment is based on the observed relationships between these indices
and several MS VIs, including the widely used NDVI. These findings indicate the feasi-
bility of utilizing real-image cameras (RGB cameras) as a cost-effective alternative to MS
cameras for monitoring rice paddies, using RGB VIs as tools that could enhance paddy
fields management. This conclusion is drawn from data collected during the late vegetative
stage of the rice cultivation cycle, and further investigation is needed to assess other rice
development stages and growth conditions for a more comprehensive understanding. To
strengthen the utility of RGB indices for rice crop monitoring, it would be beneficial to
acquire data related to growth parameters such as biomass, nitrogen content, or chlorophyll
content. Additionally, when selecting a VI, considerations should also encompass (i) the
specific parameter to be estimated, (ii) the expected range of this parameter, and (iii) prior
knowledge of the variations in external factors affecting the spectral reflectance of the
canopy [76].

4. Conclusions

Whereas the literature reveals many studies employing UAS-based MS VIs in rice farm-
ing, the use of RGB VIs has been poorly explored, and studies dedicated to rice farming in
Europe, namely in the Mediterranean area, are also scarce. This study explores UAS-based
RGB imagery of rice fields with a focus on the crop status and on this geographical region.

The main outcomes of this study are:

(i). High-resolution UAS sensors and photogrammetric techniques that are commonly
applied to collect MS imagery have the capability to generate data for creating VIs’
maps that provide useful information for agriculture, namely for rice farming.

(ii). RGB VIs, namely VARI and TGI, which can be calculated from visible RGB bands
only, could provide valuable assistance for monitoring and managing rice field plots.

(iii). The access to VIs’ mapping of rice fields (such as VARI and TGI mapping) through
the use of digital cameras mounted on UASs, which are able to collect RS imagery
at a lower cost than MS cameras, may constitute an opportunity to a larger number
of farmers to use RS products to monitor paddy fields in a quick and cost-effective
manner and, therefore, improve rice crop management, towards an increasingly
sustainable rice agriculture and protection of the environment.

Overall, similarly to other studies, this study confirmed that UAS technology and the
MS and RGB imagery and products that it provides could be suitable and convenient tools
for agricultural monitoring. The main contribution of this study is that it is focused on
the rice crop at the field scale, whereas only a few studies evaluated RGB indices for rice
growth management; thus, it improves the viability of paddy precision farming through
the use of low-cost sensors, namely in Mediterranean areas, but also in other soil, climatic
and hydrologic conditions. However, suitable technical knowledge and local support
should be provided to farmers to guarantee that the implementation of these technologies
is meaningful, so that production is optimized for better profitability and environmental
sustainability is pursued. Further studies are needed that embrace a wider range of field
and rice crop growth stage conditions, namely field surveys for validation of the spectral
signal and information obtained at different stages of the rice cultivation cycle. The impact
of the spatial resolution of the data needs to be assessed. These studies would provide
better insight regarding the UAS flight conditions and cameras used, and the usefulness
of UAS-based VARI, TGI and other RGB VIs for assessing rice cultivation conditions,
in general.
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