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Abstract
Motivation: Cancer is currently one of the most notorious diseases, with over 1 million deaths in the European Union alone in 2022. As each
tumor can be composed of diverse cell types with distinct genotypes, cancer cells can acquire resistance to different compounds. Moreover,
anticancer drugs can display severe side effects, compromising patient well-being. Therefore, novel strategies for identifying the optimal set of
compounds to treat each tumor have become an important research topic in recent decades.

Results: To address this challenge, we developed a novel drug response prediction algorithm called Drug Efficacy Leveraging Forked and
Specialized networks (DELFOS). Our model learns from multi-omics data from over 65 cancer cell lines, as well as structural data from over 200
compounds, for the prediction of drug sensitivity. We also evaluated the benefits of incorporating single-cell expression data to predict drug
response. DELFOS was validated using datasets with unseen cell lines or drugs and compared with other state-of-the-art algorithms, achieving a
high prediction performance on several correlation and error metrics. Overall, DELFOS can effectively leverage multi-omics data for the
prediction of drug responses in thousands of drug–cell line pairs.

Availability and implementation: The DELFOS pipeline and associated data are available at github.com/MoreiraLAB/delfos.
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1 Introduction

Tumors are highly plastic and heterogeneous entities com-
posed of many different cell types, with distinct expression
and metabolic profiles. Consequently, tumor plasticity is
linked to drug resistance, as some cancer cells may survive, di-
vide, and give rise to a resistant cell population, ultimately
leading to disease recurrence. The average discovery and de-
velopment process is estimated to take over a decade and
$2 billion for each drug (Hinkson et al. 2020). Thus, compu-
tational approaches and Artificial Intelligence technology
have recently received much attention as strategies to address
these limitations and are expected to expand even more in the
following years (Mao et al. 2021, Sun et al. 2022).

Omics data have been relevant for several research areas in
addition to disease biology, from nutrition to systems biology,
and their applications have greatly expanded in recent deca-
des owing to technological advances and improved computa-
tional tools (Misra et al. 2018). More recently, as the
technology required to generate this type of data has become
more accessible, research has shifted its focus to the integrated
analyses of different omics modalities. Together, each omics
type contributes to the depiction of the cellular environment,
similar to each color contributing to the final image of the ka-
leidoscope. Therefore, multimodal systematic analyses of
drug susceptibility in various tissues can be a significant step
toward better treatment outcomes in most disease scenarios,
from neurodegeneration (Zhou et al. 2020, Xu et al. 2021) to
cancer (McFarland et al. 2020, Aissa et al. 2021). Although
bulk sequencing methods can provide a general perspective
on drug effects in a tissue, responses generated by larger cell
subpopulations may hide the impact on other groups of cells
(Trapnell 2015, Srivatsan et al. 2020). Fortunately, techno-
logical advances have led to a paradigm shift in omics re-
search, as scientists can now obtain information at single-cell
resolution, such as Single-Cell RNA-Sequencing (scRNA-Seq)
data, to address these shortcomings.

In recent decades, many types of cancer phenotypic datasets
have been created, such as the Cancer Cell Line Encyclopedia
(CCLE) (Barretina et al. 2012) and the Genomics of Drug
Sensitivity in Cancer (GDSC) (Yang et al. 2013). As these and
other large portals and databases of cellular and pharmacoge-
nomic data have become available, many Machine Learning
(ML) algorithms have been developed in recent years for drug
response prediction (DRP) based on phenotypic cellular data
(Chen and Zhang 2021, Firoozbakht et al. 2022). These algo-
rithms allow automated learning from pharmacological data,
and then become able to predict, with varying inputs, omics
types, targets, and downstream applications, how cells will
likely respond to different drugs (Adam et al. 2020). In addi-
tion to phenotypic information, drug descriptors or molecular
fingerprints that define the structural features of drugs have
become common tools for building these models (Bazgir et al.
2020, Choi et al. 2020, Liu et al. 2020, Chawla et al. 2022,

Firoozbakht et al. 2022). Thus, recent models have elaborated
on conjugating biological data with drug structural data to
predict drug sensitivities.

Given the large amounts of different types of data available
and the need for better computational tools to assist in drug
development, we developed a novel Deep Learning (DL)
model for drug sensitivity prediction in cancer cell lines,
named Drug Efficacy Leveraging Forked Optimized and
Specialized networks (DELFOS). Specifically, our algorithm
can be used to predict the ln(IC50) of drug–cell line combina-
tions by learning from different omics types from cancer cell
lines and the structural features of drugs. We also evaluated
the influence of using scRNA-seq data, in addition to other
data types, on the prediction performance of DELFOS.

2 Materials and methods

2.1 scRNA-seq datasets

All scRNA-seq data were retrieved from publicly available
datasets. Five scRNA-seq datasets describing gene expression
in different cancer cell lines treated with 0.1%–0.2% DMSO
were collected (Table 1). All data were downloaded from the
Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/
geo/), except for the data from McFarland et al. (2020), which
were retrieved from Figshare (https://figshare.com/s/139f64
b495dea9d88c70).

All scRNA-seq data were annotated and processed using
Seurat v3 R library (Butler et al. 2018). First, all datasets were
filtered such that only the genes shared between all datasets
were selected. Next, Seurat objects for each dataset were cre-
ated using only cells expressing at least 1000 genes and fil-
tered by the percentage of expressed mitochondrial genes to
remove low-quality cells. Accordingly, cells expressing over
15% of mitochondrial genes were filtered out (Supplementary
Figs S1–S5). Datasets were then merged using genes in com-
mon and normalized according to standard Seurat parame-
ters. The 2000 genes with the highest variability in the
merged dataset were selected for further processing. Cell cycle
effects were scored according to the list of G2/M and S phase
genes by Tirosh et al. (2016) (Supplementary Fig. S6). Finally,
the data were scaled and centered using Seurat standard
parameters.

2.2 Bulk omics datasets

Five datasets of different omics data from several cancer cell
lines were retrieved from the CCLE 2019 and DepMap Public
22Q2 public releases in the DepMap Portal (https://depmap.
org/portal/ccle/), and included protein-coding gene expres-
sion, copy number variation, chromatin profiling, miRNA ex-
pression, and methylation data. Finally, drug screening data
were downloaded from the GDSC website (https://www.cancer
rxgene.org/downloads/bulk_download), containing ln(IC50)

Table 1. Summary of selected scRNA-Seq datasets.

Reference Cancer type Platform Identifier

(Sriramkumar et al. 2022) Ovarian Chromium GSE207993
(McFarland et al. 2020) Several MIXseq figshare.com/s/

139f64b495dea9d88c70
(Schnepp et al. 2020) Prostate C1 GSE140440
(Kagohara et al. 2020) HNSCC Chromium GSE137524
(Ben-David et al. 2018) Breast Chromium GSE114462
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values for drug–cell line pairs. Only the more recently available
dataset (GDSC2) was used.

2.3 Drug data and feature extraction

A list of all unique drugs of drug–cell line pairs from the
GDSC dataset was generated, and their respective Simplified
Molecular Input Line Entry System (SMILES) were retrieved
from PubChem using PubChemPy (Swain 2014).
Unfortunately, SMILES notation was not available for all
compounds. Of the 285 compounds from the GDSC2 dataset,
only 228 had available SMILES data, which were then sub-
jected to feature extraction to obtain structural information
for each drug using two different approaches. The Mordred
Python package (Moriwaki et al. 2018) was used to retrieve
1D and 2D descriptors for all the drugs, yielding over 1600
features. Similarly, the recently released DrugTax module
(Preto et al. 2022a) was used to extract features from the
SMILES, yielding 163 additional descriptors.

2.4 Dataset composition

Except for the scRNA-seq datasets, all other datasets followed
a similar preprocessing protocol to prepare them as inputs for
the model. First, 10% of the unique cell lines and drugs were
randomly selected as part of the validation datasets, hereafter
referred to as leave-cell-out and leave-drug-out datasets, re-
spectively. Once the validation cell lines and drugs were
extracted, the remaining drug–cell line pairs were further split
into training and testing datasets according to a 70–30 train-
test split. Features that displayed zero variance were removed
as they did not contribute to the prediction. All datasets were
finally standardized by first calculating the mean and stan-
dard deviation values from the training data and then trans-
forming the datasets based on such values. Because not all
datasets from CCLE had the same data available for all cells,
there was a minority of missing values that were replaced
with zeros, as previously reported (Preto et al. 2022b).
Substituting absent values with zeros may not consistently be
the optimal strategy, primarily because of potential distor-
tions in the data distribution or misinterpretations that can
arise. However, in this specific context, zeros precisely
reflected the absence of biological entities within our datasets.
This makes this approach more suitable than merely exclud-
ing significant cell line data and is more biologically accurate

than the alternative of imputing values using information
from other cell lines. These missing values represented <2%
of the values in all datasets, except for the CCLE methylation
dataset, which had only 55 of the 66 cell lines available.
Moreover, in the GDSC2 drug screening dataset, any repeated
drug–cell line pairs with the same ln(IC50) values were aver-
aged. To match these datasets with available single-cell data,
only cell lines with available scRNA-seq data were selected.

For scRNA-seq datasets, the same set of single cells from
each cell line was used for both training and testing datasets.
In this case, it was not necessary to split single cells into train-
ing and testing datasets because the target variable was not
representative of individual cells but rather of the drug–cell
line pair. Cell lines that were selected for the leave-cell-out
split, on the other hand, were set apart and their scRNA-seq
data were not used for training. Given that not all cell lines
had identical numbers of single cells, any missing values were
replaced with the median value of the expression of that gene
for that cell line to ensure that all cell lines were represented
by the same number of single cells and to avoid discarding
cell lines with fewer available data. In different runs, 10, 25,
or 50 cells from each cell line were randomly selected and
placed in a new dataset, yielding new datasets containing a
single cell of each cell line for training and evaluation. For ex-
ample, if we selected 10 single cells from each cell line, but a
given cell line had only 6 single cells available, the missing val-
ues for 4 other cells would be represented by the median ex-
pression value from the 6 single cells for each gene.

2.5 Algorithm

The proposed model, DELFOS, was developed using the
Keras interface in the TensorFlow library (Chollet 2015,
Abadi et al. 2016). The model was created with a fork-like ar-
chitecture, in which the datasets were grouped into feature
blocks (i.e. drug descriptors, bulk phenotypic data, and
scRNA-seq data). Each dataset was processed using its own
network, and the output of each network finally converged to
yield the output, as illustrated in Fig. 1. The input shape of
each dataset was proportional to the number of features in
the dataset. All hidden layers of each subnetwork had ReLU
as the activation function, except for the output layer of each
subnetwork and the overall network, which had a linear acti-
vation function. To address potential generalization issues, L1

Figure 1. Summary of the proposed architecture and input data for the proposed prediction model, DELFOS.
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and L2 regularizers for kernel, bias, and activity were added
to all layers except the output layers, and the effects of the
presence or absence of dropout layers were evaluated at dif-
ferent dropout rates. The Adam optimizer was used to update
the network weights, along with a learning rate of 0.001, us-
ing mean squared error (MSE) as the loss function. No spe-
cific number of epochs was used for any model because the
EarlyStopping callback function of Keras was employed to
optimize the training process. The ReduceLROnPlateau Keras
callback was used to tune the learning rate.

2.6 Benchmark

The optimal hyperparameter configuration for the predictor
was tuned with KerasTuner using the Hyperband algorithm
(Li et al. 2018), both when using scRNA-seq data for predic-
tion and when using the validation loss as a reference.

The DELFOS was evaluated using the following regression
metrics: MSE, mean absolute error (MAE), root-mean-square
error (RMSE), Pearson correlation coefficient (PCC),
Spearman’s rank correlation coefficient (SCC), and R2. These
metrics were also used by Chawla et al. to evaluate the perfor-
mance of eXtreme Gradient Boosting (XGBoost) (Chen and
Guestrin 2016) and another Deep Neural Network (DNN)
using Precily’s model architecture (Chawla et al., 2022) when
trained and tested using our dataset. Accordingly, our data-
sets were concatenated and normalized prior to training with
these models because their architectures were not prepared to
receive multiple inputs simultaneously, as in DELFOS.
XGBoost had its hyperparameters tuned before being imple-
mented with our datasets. Likewise, our implementation of
Precily’s architecture was subjected to hyperparameter opti-
mization with KerasTuner, using the hyperband model prior
to training using our datasets. However, the overall DNN ar-
chitecture as well as the optimization and training protocols
proposed by Chawla et al. (2022) remained intact.

3 Results

3.1 Dataset description

Once all datasets were processed and prepared to match
the features from drug data, bulk phenotypic data, and
scRNA-seq data, 66 cancer cell lines from 16 different tissues
and 228 unique drugs were used to train and evaluate model
performance (Supplementary Fig. S7). Most cell lines are lung
cancer cell lines, whereas some of the other tissues are repre-
sented by a single cell line. Uniform Manifold Approximation
and Projection analysis revealed that cells belonging to the
same cell line clustered together (Supplementary Fig. S8).
In total, 52 513 features of 13 575 drug–cell line pairs were
used (Supplementary Table S1). The training dataset included
7852 samples, the testing datasets had 3410, the leave-cell-
out dataset had 1164, and the leave-drug-out dataset had
1149.

The ln(IC50) values provided by the GDSC2 dataset, the
target variable for DELFOS, displayed an interquartile range
of 3.33 with a median of 3.57 (Supplementary Fig. S9). The
mean ln(IC50) was 3.14, which was somewhat lower than the
median given the presence of many small ln(IC50) values.
Compounds with very small average ln(IC50) values were ef-
fective in eliminating cancer cells and were considered power-
ful anticancer agents, as expected (Supplementary Table S2).
In contrast, the compounds with the highest average ln(IC50)
values were the main antioxidant agents. There were also

anticancer agents among the top 10 compounds with in-
creased average values. This is not unexpected given that
these compounds are often more effective against specific
types of cancer.

3.2 Dataset description

Before deploying an ML model, its hyperparameters must be
carefully tuned, as they may impact not only its prediction po-
tential, but also its runtime and computational requirements.
Different models of DELFOS were optimized using the
Hyperband algorithm, which trains a large number of models
with different hyperparameters for only a few epochs and, us-
ing a tournament bracket-like approach, proceeds only with
the best performing models with an increasing number of
epochs (Li et al. 2018). In both the presence and absence
of scRNA-seq data, over 250 different configurations
were tested until optimal hyperparameters were established.
The complete training hyperparameters are presented in
Supplementary Table S3. The different results for the optimal
hyperparameter configuration when using scRNA-seq data
are not unexpected, as adding more data points will greatly
affect the weights and biases by backpropagation. The hyper-
parameters of the optimized model are listed in Table 2.

3.3 Drug sensitivity prediction
3.3.1 DELFOS with no scRNA-seq data
Following hyperparameter optimization and training, the per-
formance of our models was evaluated using the leave-cell-
out and leave-drug-out datasets for ln(IC50) prediction
(Table 3). The performance results for the training datasets
are presented in Supplementary Table S4. First, our model,
which did not use scRNA-seq data, achieved high prediction
performance using the test dataset, with a PCC of 0.90, SCC
of 0.86, and an R2 of 0.80. However, metrics were relatively
high, which might be explained by the range of values of the
target variable that the model has to predict. For the leave-
cell-out dataset, the prediction performance of our model was
slightly worse than that of the test dataset, with a PCC of
0.88, an SCC of 0.83, and an R2 of 0.78. The performance

Table 2. Summary of hyperparameters used in the prediction model using

scRNA-seq data.

Optimal hyperparameter settings

Hyperparameter Value

Use single cell TRUE
Hidden layer number 11
Hidden layer size drugs 86
Hidden layer size bulk 100
Hidden layer size single cells 76
Add Dropout layers FALSE
Learning Rate 0.001
Batch Size 256

Table 3. Model performance without scRNA-seq data and with the

hyperparameters presented in Table 2.

Subset RMSE MSE MAE Pearson Spearman R2

Test 1.25 1.57 0.95 0.90 0.86 0.80
Leave-cell-out 1.24 1.53 0.92 0.88 0.83 0.78
Leave-drug-out 2.54 6.43 2.01 0.53 0.58 0.24
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for the leave-drug-out dataset was the worst among all three,
as the model was not as effective in predicting ln(IC50) for the
drug–cell line pairs when presenting the descriptors of an un-
seen drug. Accordingly, the correlation metrics were not opti-
mal, with a PCC of 0.53, SCC of 0.58, and an R2 of 0.24.
Similarly, the error metrics suggest an increased average devi-
ation between the predicted values and the ground truth.

3.3.2 DELFOS using scRNA-seq data with the same
hyperparameters
Given the slightly worse performance of the previous model
when handling unseen data, another model using scRNA-seq
but with the same set of hyperparameters was evaluated. The
performance results for the test dataset were once again very
similar to those of the previous models, both for the correla-
tion and error metrics (Table 4). Accordingly, this model dis-
played a PCC of 0.90, SCC of 0.86, and R2 of 0.81,
essentially mirroring earlier results. We also ran DELFOS
with scRNA-seq using new hyperparameter settings deter-
mined by the hyperband algorithm (Supplementary Table S5),
which achieved a similar performance (Supplementary Table
S6). Likewise, we repeated the implementation using data
from 25 or 50 single cells from each cell line instead of only
10, but similar results were obtained (Supplementary Tables
S7 and S8 and Supplementary Figs S10 and S11). Thus, these
results suggest that scRNA-seq data do not contribute to the
final prediction.

Following the test dataset, prediction performance was
evaluated using the leave-cell-out dataset. We expected an in-
crease in performance, especially when handling unseen cell
line data, given additional information. However, DELFOS
performed marginally worse than the run without scRNA-seq
data when handling data from undetected cell lines. The per-
formance was slightly inferior for both the correlation and er-
ror metrics, achieving a PCC of 0.87, an SCC of 0.80, and an
R2 of 0.76. We also evaluated how DELFOS performance
was affected by the number of cell lines belonging to a tissue,
both in the presence and absence of single-cell data,
and found no correlation between the number of cell lines
belonging to a tissue and the residuals (Supplementary
Figs S12 and S13).

Finally, the prediction performance for the leave-drug-out
dataset was similar to that of the first model for all the met-
rics. Accordingly, the values displayed subtle differences for
all metrics, with a PCC of 0.43, SCC of 0.47, and R2 of 0.19.
This was expected because the hyperparameter configuration
was identical, and the scRNA-seq data would hardly contrib-
ute to how the model handles new drug information.
Therefore, the differences, in contrast to the first scenario, are
presumably due to chance.

3.4 Benchmarking

To understand the performance of DELFOS in relation to
other state-of-the-art DRP algorithms, we compared its

performance with that of other similar models. None of these
models used scRNA-seq data for training; thus, the results of
the first run, which did not use scRNA-seq data, were chosen
for comparison. The overall characteristics of DELFOS and
the different algorithms selected for comparison are shown in
Supplementary Table S9. When evaluated using our test data-
set, DELFOS outperformed Precily and XGBoost (Table 5).

Our model also outperformed XGBoost and Precily when
evaluated using a leave-cell-out dataset. Precily’s results were
suboptimal, suggesting that the model could not effectively
predict ln(IC50) for the unseen cell lines. Similarly, DELFOS
performed better than XGBoost when presented with unseen
drug data. In contrast, Precily displayed better results than
DELFOS for PCC and SCC but not for R2. This suggests that
Precily generated predictions with stronger monotonic corre-
lations with the ground truth values, although these values
did not match the data or predictions by DELFOS.
Nonetheless, none of these models, including DELFOS, could
optimally predict ln(IC50) when unseen drug data were pre-
sented, highlighting a problem to be addressed in future DRP
approaches.

Next, we compared our performance results with those of
three other models without using our data. Given the differen-
ces in the backbone between models, as well as the available
information for their adequate implementation using our
data, we simply compared our performance results with the
highest reported metrics in the original studies of other DRP
models. Overall, DELFOS did not yield the best results among
the four models, with two Graph Neural Network-based
models, GraphDRP (Nguyen et al. 2022) and DeepCDR (Liu
et al. 2020), slightly outperforming our model in some met-
rics. However, these models did not report an R2 value, and
thus, the only conclusion that can be reached is that their pre-
dicted results are more correlated with the ground truth in
monotonic terms. In contrast, DELFOS outperformed both
NeRD (Cheng et al. 2022) and Precily on the original dataset
(Chawla et al. 2022) for all metrics.

Regarding the leave-cell-out and leave-drug-out datasets,
only a few metrics were presented in the original studies of
these models (Table 6). Except for NeRD, which also pre-
sented its SCC value, GraphDRP and DeepCDR only
reported PCC values. With respect to the available metrics for
the leave-cell-out dataset, DELFOS outperformed the other
algorithms and matched the DeepCDR performance.
However, when presented with unseen drug data, our model
outperformed the others on all metrics, although our model
was the only one to report R2. Moreover, DELFOS performed
well in relation to the other algorithms in terms of processing
time, displaying one of the fastest processing times during
model training when compared to other models running
their own datasets with default settings (Supplementary
Table S10).

Table 5. Comparison of DELFOS with other algorithms using the same

datasets for training and testing.a

Test Leave-cell-out Leave-drug-out

Name R2 PCC SCC R2 PCC SCC R2 PCC SCC

DELFOS 0.80 0.90 0.86 0.78 0.88 0.83 0.24 0.53 0.58
Precily 0.30 0.60 0.55 0.03 0.57 0.51 0.15 0.56 0.59
XGBoost 0.75 0.87 0.83 0.66 0.82 0.75 0.15 0.49 0.58

a Higher values indicate a better prediction performance in bold.

Table 4. Model performance with scRNA-seq and the hyperparameters

presented in Table 2.

Subset RMSE MSE MAE Pearson Spearman R2

Test 1.24 1.53 0.93 0.90 0.86 0.81
Leave-cell-out 1.31 1.73 0.99 0.87 0.80 0.76
Leave-drug-out 2.74 7.51 2.15 0.43 0.47 0.19
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4 Discussion

Our results indicate that DELFOS can efficiently predict
ln(IC50) values for drug–cell line pairs, even for cell lines that
have never interacted before. DELFOS matched or outper-
formed several recently published DRP algorithms trained us-
ing data from GDSC and CCLE. We expected that including
scRNA-seq data in the pipeline would improve the prediction
performance, particularly for underrepresented tissues.
However, we observed no significant benefit when incorpo-
rating these data, at least when using this approach. Owing to
high variability and noise, scRNA-seq data may yield no pat-
terns with sufficient correlation to drug response to improve
the overall prediction performance. This also suggests that the
model could receive too much cell data and become overfitted
to cell features, which can be amplified when scRNA-seq is
provided. More data are required to identify better alterna-
tives for preparing single-cell data for ML. Missing values
may also contribute to this, particularly in the CCLE methyla-
tion dataset, which displays a relatively high number of miss-
ing values. Moreover, our model suffers from low
performance when receiving data from unseen compounds.
This was also observed by other authors (Li et al. 2021,
Cheng et al. 2022, Nguyen et al. 2022), even when molecular
descriptors are not used to characterize drugs, highlighting a
problem that should be addressed in the future. Finding
proper strategies to link drug targets and pathway data as fea-
tures, as well as better ways to integrate single-cell data, could
be beneficial to the performance of future algorithms.

Although many other models are available, Precily’s model
was chosen for comparison with our model because (i) it was
very recently published and (ii) it follows a streamlined ap-
proach that had good performance in its original study
(Chawla et al. 2022). Likewise, XGBoost was also chosen for
comparison given its scalability, popularity, and overall struc-
ture, because it is a decision tree-based method rather than an
ANN-based method, and thus could provide interesting
insights. The performance of the former was much lower than
that of its original study, most likely because of the large
amount of data used in our dataset in contrast to that of the
original study. Outperforming XGBoost was also unexpected,
as it is often considered a strong option when using tabular
data, and some have even proposed an XGBoost-DL ensem-
ble as a powerful alternative (Shwartz-Ziv and Armon 2022).
Most studies do not completely report their feature extraction
and selection approaches nor provide insights into the specific
hyperparameters required for training or optimization, mak-
ing it difficult to implement other models using our data and
highlighting the need for clearer replicability guidelines in
computational biology. It is unfair for our model to simply
use the metrics of other studies as a means for comparison,

given the different input data types and feature processing
protocols between models. Likewise, it would be unfair to run
our datasets simply using other models, given that the feature
extraction process and optimization might differ. For exam-
ple, while DeepCDR (Liu et al. 2020) and GraphDRP
(Nguyen et al. 2022) reported relatively high performance in
their own studies, as shown in Table 6, these models per-
formed much worse when benchmarked for comparison with
NeRD (Cheng et al. 2022), with R2 values of 0.57 and 0.72,
respectively. Therefore, direct comparisons should be care-
fully considered.

Overall, DELFOS performed quite well compared to recent
algorithms and could leverage multi-omics data for the pre-
diction of drug responses in several cancer cell lines.
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Table 6. Comparison of the highest reported metrics between DELFOS

and other algorithms.a

Test Leave-cell-out Leave-drug-out

Name R2 PCC SCC R2 PCC SCC R2 PCC SCC

DELFOS 0.80 0.90 0.86 0.78 0.88 0.83 0.24 0.53 0.58
NeRD 0.75 0.87 0.84 0.84 0.81 0.37 0.29
Precily 0.77 0.88
GraphDRP 0.93 0.85 0.32
DeepCDR 0.92 0.90 0.89 0.50

a Higher values indicate a better prediction performance in bold.
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