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Abstract: Gene variation linked to physiological functions is recognised to affect elite athletic per-
formance by modulating training and competition-enabling behaviour. The fatty acid amide hydro-
lase (FAAH) has been investigated as a good candidate for drug targeting, and recently, its single-
nucleotide polymorphism (SNP) rs324420 was reported to be associated with athletic performance.
Given the implications, the biological pathways of this genetic polymorphism linked to elite athletic
performance, considering sport type, psychological traits and sports injuries, need to be dissected.
Thus, a narrative review of the literature concerning the biological mechanisms of this SNP was
undertaken. In addition to its role in athletic performance, FAAH rs324420 is also involved in im-
portant mechanisms underlying human psychopathologies, including substance abuse and neural
dysfunctions. However, cumulative evidence concerning the C385A variant is inconsistent. Therefore,
validation studies considering homogeneous sports modalities are required to better define the
role of this SNP in elite athletic performance and its impact on stress coping, pain regulation and
inflammation control.

Keywords: elite athlete; FAAH; gene; polymorphism; sport; performance; success

1. Introduction

An elite athlete can be defined as a highly specialised person in a given sport discipline,
possessing exceptional physiological, psychological, physical and environmental (including
family, coach, medical and clinical staff) characteristics, allied with an outstanding sports
performance [1]. Strong physical and mental preparation with the combination of an
adequate training regime, healthy nutrition and close clinical supervision of the athletes’
health are mandatory for elite sport success. In this setting, genetic architecture also plays a
major role in athletic performances [2–7].
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During the past decade, active research on sports genetics has been engaged
with various physiological functions linked to cardiovascular, respiratory, nervous
and muscle-skeletal systems and their influence on athlete phenotype [1,8]. However,
genetic studies on mental abilities affecting resilience, leadership and anxiety and
stress management in training and competitions, as well as pain regulation and sports
injuries, are scarce [2–4,9]. In fact, genes encoding proteins that modulate the operating
of the brain’s emotional centre, located in the hypothalamic-pituitary-adrenal (HPA)
axis, particularly those related to the production of a stress response, need to be further
investigated in the context of sports performance [1]. One of the genes is fatty acid
amide hydrolase (FAAH).

FAAH encodes for a key marker of the amygdala-prefrontal cortex circuit that sup-
ports emotion regulation. This protein has been mostly studied in rodent models and
more recently in humans. Due to its major catabolic activity for the endocannabinoid
anandamide (AEA), testing of FAAH inhibitors is important for drug development for di-
verse diseases, including depression, anxiety, aggressive behaviour, borderline personality
disorder, substance use disorders and inflammatory bowel disease [10–13]. Interestingly, in
the last five years, the single-nucleotide polymorphism (SNP) FAAH rs324420 (also named
as c.385C > A or Pro129Thr) has been linked with elite athletic performance in regulating
anxiety-like behaviour and influencing persistence and leadership, despite conflicting
findings [2,5,6,14].

Given the potential biological impact of this SNP on pain and inflammation regu-
lation, its roles in sports performance and sports medicine should be further dissected.
Therefore, this narrative review aims to discuss: (1) the endocannabinoid system (ECS)
and the biological pathways of FAAH rs324420, (2) the geographic distribution of this SNP,
(3) its impact on elite sports performance, (4) its other psychobiological associations and
(5) its implications for sports medicine. To do so, a search of the published literature that
investigates the association between FAAH rs324420 and elite athletes was conducted by
screening the PubMed platform. Data collection included scientific articles, books and book
chapters published until 23 August 2023. The sole descriptor (i.e., keyword) that was used
to search for the articles was “FAAH rs324420”. Both review and original articles were
considered, totalling 60 publications. From these, findings of only 54 scientific publications
were associated with the FAAH rs324420 at different levels. The associations between
this polymorphism and different traits were investigated by diverse studies, which are
summarised in Figure 1.

Supplemental publications were included by cross-referencing the reference lists
of the retrieved articles. After data collection, the results were analysed through
comprehensive reading and structured in accordance with the themes discussed in this
article. A total of 131 publications involving human participants and written in one
of five languages (Portuguese, English, Spanish, French or Italian) were included in
this review.
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Figure 1. Scientific publications selected in PubMed reporting associated (n = 54) and not associ-
ated (n = 6) traits linked to psychobiological pathways of fatty acid amide hydrolase (FAAH) rs324420.
Genetic variants of this polymorphism have been associated with the increased (↑) or decreased (↓)
risk of experiencing various pathologies, disorders and/or behaviours, such as: (1) suffering acute
respiratory distress syndrome [15]; (2) consuming alcohol and/or smoking [11,16–21]; (3) experienc-
ing anxiety and/or stress [22–25]; (4) achieving better athletic performances [6,26–28]; (5) suffering
substance dependences in adults, including cannabis [12,29–33], cocaine [34], marijuana [35–38]
and methamphetamine use [39]; (6) practicing a healthier dietary intake and/or body composi-
tion [40–43]; (7) suffering neurological disorders, such as epilepsy [26]; (8) dealing better with
fear extinction [44–48]; (9) suffering irritable bowel syndrome [13,49,50]; (10) being obese [51–53];
(11) experiencing opioid-related effects in children [54–56]; (12) suffering myocardial infarction [57];
(13) feeling less pain [58–60]; (14) having personality disorders [10,42]; and (15) feeling satiation more
easily [61]. On the other hand, a few studies have not found associations between FAAH rs324420
variants and body composition in children and adolescents [62], cannabis dependence [29], functional
dyspepsia [63], insulin response [64], irritable bowel syndrome [65] and obesity [66].
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2. The Endocannabinoid System and the Biological Pathways of FAAH rs324420
2.1. The Endocannabinoid System Signalling

One of the most promising biological systems involved in emotion control is the
ECS. It is a highly complex signalling system mostly involved in body homeostasis due
to its direct action on the central nervous system (CNS) [67]. Specifically, this system acts
on immune response modulation [68], motor activity, fear and anxiety regulation [69,70],
cardiorespiratory system control [71], stress responses [72], memory process [73] and
pain perception [74] by the activation of several molecular targets by the AEA or the
2-AG, resulting in a variety of biological actions, as shown in Figure 2. Regarding its
composition, ECS encompasses endocannabinoids (eCBs) that are neuromodulators of
the CNS, the two most-studied being AEA and 2-arachidonoidglycerol (2-AG). These
two act as endogenous ligands for two cannabinoid receptors, namely CB1 and CB2, and
as proteins responsible for their biosynthesis, metabolism and release [75]. The eCBs
can also function as immunomodulators, such as the AEA, which protects neurons from
inflammatory damage during CNS inflammation [67].
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Figure 2. Effects of the endocannabinoid system in central nervous and peripheral systems (adapted
from Wang, Dey and Maccarrone) [74]. The activation of several molecular targets by the endo-
cannabinoid anandamide or the 2-arachidonoidglycerol results in a variety of biological actions,
affecting practically all central and peripheral systems in animals, as shown.

The functioning of ECS depends on the interaction between the synthesis, release and
inactivation of its endogenous agonists, the eCBs. Both AEA and 2-AG are synthesised via
a phospholipid-dependent mechanism, released and taken up by cells via passive diffusion
across the plasmatic membrane [67]. After their synthesis, they do not concentrate into
synaptic vesicles and are primarily degraded by intracellular enzymatic hydrolysis by the
FAAH, in the matter of AEA and by the monoacylglycerol lipase (MAGL) and FAAH, in
the case of 2-AG [67]. In turn, AEA operates on CB1 receptors (R), which are largely found
in the CNS, and CB2 receptors, which are predominantly found in the peripheral nervous
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system and involved in immunological response [66,76]. The CB1R is a G protein-coupled
receptor integrated in presynaptic terminals on GABAergic and glutamatergic neurons
and is thus integrated in the retrograde signalling of neurotransmission. It is significantly
expressed in brain areas involved in emotional behaviour control and memory-related
plasticity, namely the prefrontal cortex, amygdala and hippocampal formation [77].

2.2. FAAH Protein Functioning and FAAH Gene Variation

FAAH is a serine hydrolase that has been associated with the inactivation of the eCBs,
which consists of transporting them back to the cell. This transport is contrary to the normal
transport of other neurotransmitters, meaning without a difference in the sodium gradient
(Na+). It is thought that it can occur using lipid transporter proteins by mechanisms of
facilitated diffusion and in favour of the concentration gradient [78]. Once inside the cell,
the AEA is hydrolysed by the enzyme FAAH.

This enzyme is encoded by the FAAH gene, which is positioned on the short arm (p) of
chromosome 1 at position 33 (1p33). As mentioned, it is considered an intracellular enzyme
that can hydrolyse AEA and other bioactive amides. It is also responsible for controlling the
brain concentrations of these compounds, having a strategic location in the brain, although
its presence has been verified in other tissues, for example, the liver, lungs, kidneys, spleen
and testis. In the brain, namely in the hippocampus, cortex and cerebellum, this enzyme is
located close to membranes of postsynaptic nerve terminals, where the CB1R are present.
Therefore, its location indicates that FAAH plays an active role in AEA inactivation, which
takes place in postsynaptic neurons [79].

2.3. FAAH rs324420 Polymorphism

There are sequence variations in different regions of FAAH [30,35,44,80–83], rs324420
being the most-studied SNP of this gene concerning different phenotypes and functions or
disorders, such as obesity [84], mental diseases [85] or biopsychosocial disorder [86]. This
polymorphism consists of the substitution of the nucleotide Cytosine (C) by an Adenine (A)
at nucleotide position 385, translating into an amino acid exchange of a Proline (Pro) for a
Threonine (Thr) in the codon 129, designated FAAH C385A (Pro129Thr; rs324420) (National
Center for Biotechnology Information) [34]. This SNP has a minor allele frequency (MAF)
of >5% [30]. The A allele, which is the minor, is known to reduce FAAH cellular activity and
expression due to increased sensitivity to proteolytic degradation. Consequently, compared
to C allele individuals, AA genotype carriers have almost 50% decreased FAAH activity,
which translates into increased signalling and concentrations of AEA [23,87]. The A allele
has been related to an increased risk for borderline personality disorder [10], substance use
disorders [11,19], cannabis, methamphetamine, and cocaine dependence [27,28,33,34,38]
and overweight/obesity [88,89]. However, contradictory results have been observed in
cannabis users [12] and regarding athletes’ nutritional status [5,6].

3. Geographic Distribution of FAAH rs324420 Alleles

As mentioned, the rs324420 A allele has been associated with a lower expression of
FAAH levels [89]. Its prevalence rates range from 36.8% and 35.2% in the African and the
American populations, respectively, to 21.1%, 19.5% and 17.6% in the European, South and
East Asian populations, respectively [90,91] (Figure 3). Given the recent findings involving
Southwestern European athletes [5,6], it is important to note that the frequency of this allele
in the Iberic peninsula is even lower (16.4%).
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Figure 3. Geographic distribution of allelic frequencies of the fatty acid amide hydrolase (FAAH)
rs324420 [90]. * Minor allele.

4. FAAH rs324420 Polymorphism and Elite Athletic Performance

The FAAH rs324420 polymorphism has been associated with pain tolerance and in-
flammation [92], both with strong implications for the athlete’s well-being and performance,
especially among those competing at high-intensity and/or invasion/contact sports with
a high frequency of injuries and/or traumas. However, the biological role of the C385A
variant in sports performance is not yet a matter of consensus.

4.1. Biological Evidence in Elite Athletic Performance

First, evidence suggested a detrimental effect of the 385A allele (A allele), as it
seemed to be more prevalent among sedentary people than in elite athletes [2,14]. A
case-control study including 413 Polish Caucasian elite power and endurance athletes
(aged 23.5 ± 4.7 years, of which 36.3% were females) and 451 Caucasian sedentary con-
trols (aged 23.0 ± 3.1 years with 51.9% females) revealed that the polymorphism AA
genotype was more common among controls than athletes and that elite sports perfor-
mance was negatively affected by the AA genotype (AA versus (vs.) CC + AC; odds ratio
(OR) = 0.44; 95% Cl, 0.24–0.81; p = 0.0084) [14]. Identical results were reported later in
621 elite athletes (183 of power, 212 of endurance and 226 combat sports) and 451 con-
trols [2], where the AA genotype was underrepresented in both power (AA vs. CC +
AC; OR = 0.36, 95% CI = 0.15–0.86, p = 0.017) and endurance athletes (AA vs. CC + AC;
OR = 0.42, 95% CI = 0.20–0.90, p = 0.022) in comparison with controls. Furthermore, when
the two groups of athletes were examined together, the effect on athletic status was even
more pronounced (in the recessive model: OR = 0.40, 95% CI = 0.22–0.72, p = 0.002),
indicating a negative impact on athletic performance [14].

Recently, a cross-sectional study conducted with 116 of the world’s best rink-hockey
players (aged 28.2 ± 8.7 years), of which 15.5% were females (25.3 ± 7.9 years old) and
84.4% were males (28.8 ± 8.7 years old), found that the FAAH rs324420 and the presence of
severe sports injuries were independent predictors of elite sports performance [5]. The A
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allele appeared to have a positive effect among elite players, as the carriers were three times
as likely to be super athletes than those with the CC genotype (AA/AC vs. CC; adjusted
OR = 2.88; 95% Cl, 1.06–7.80; p = 0.038), possibly due to better stress coping and higher pain
tolerance. A later cohort study of 228 elite volleyball players (aged 26.7 ± 8.1 years old,
29.0%females) observed that carriers of the 385A allele were two times more likely to be
super athletes than athletes demonstrating the CC genotype (adjusted OR = 2.00; 95% Cl,
1.04–3.82; p = 0.037) [6].

Given the inconsistent results regarding the C385A variant, validation studies con-
sidering other homogeneous sports modalities in addition to rink-hockey and volleyball,
larger cohort samples and both male and female representation are crucial to investigate
the specific role of this SNP in athletic performance. In addition, the athletes’ ethnicity
may also influence the prevalence of FAAH rs324420 genotypes. Therefore, including
homogeneous groups of athletes in this regard may enhance the research impact. For
instance, the two first studies were conducted with athletes being exclusively of Polish
Caucasian origin, whereas the two more recent studies mostly involved Portuguese people,
with almost one-third being of other nationalities (Spanish, Argentinian, Italian, French,
Servian, American, Canadian, Brazilian, Chilean, Mozambican, Angolan and Australian)
(Table 1).

Table 1. Distribution of FAAH rs324420 genotypes among research studies involving elite athletes.

Authors Population Athletes’ Profile
Genotypes, n (%)

AA AC CC

Silva et al. [6]
75.1% Portuguese and 24.9% Others Elite volleyball players

(n = 219) 11 (5.0) 74 (33.8) 134 (61.2)

75.8% Portuguese and 24.2% Others Female (n = 66) 3 (5.0) 20 (33.3) 37 (61.7)
74.8% Portuguese and 25.2% Others Male (n = 162) 8 (5.0) 54 (34.0) 97 (61.0)

Silva et al. [5]
82.8% Portuguese and 17.2% Others Elite rink-hockey

players (n = 116) 4 (3.4) 34 (29.3) 78 (67.2)

All Portuguese Female (n = 18) 1 (5.6) 6 (33.3) 11 (61.1)
79.6% Portuguese and 20.4% Others Male (n = 98) 3 (3.1) 28 (28.6) 67 (68.4)

Peplonska et al. [2] All Caucasians of Polish origin

Elite athletes (n = 621,
29.3% females) 27 (4.3) 259 (41.7) 335 (54.0)

Power (n = 183) 6 (3.3) 79 (43.2) 98 (53.5)
Endurance (n = 212) 8 (3.8) 84 (39.6) 120 (56.6)
Combat (n = 226) 13 (5.8) 96 (42.4) 117 (51.8)

Peplonska et al. [14] All Caucasians of Polish origin

Elite athletes (n = 413,
36.3% females) 16 (3.9) 169 (40.9) 228 (55.2)

Power (n = 188) 6 (3.2) 80 (42.6) 102 (54.2)
Endurance (n = 225) 10 (4.4) 89 (39.6) 126 (56.0)

4.2. Biological Pathways, Elite Athletic Performance and Sport Medicine

In addition to their demands regarding training routines and the need for high achieve-
ments in international and national competitions, athletes also face very stressful environ-
ments daily [89]. Their stress response can be influenced by the mechanism of action of
FAAH through the ECS, which is corroborated by the recently observed impact of FAAH
rs324420 on elite athletic performance [93,94].

Stress is described as the body’s reaction to an internal or external stimulus to prepare
for potential injuries and/or diseases. Physical and psychological stress causes a series of
responses that produce immediate threat management followed by a return to homeostasis.
The first brain responses are released in a few seconds of the stimulus [89]. This mechanism
involves several neurotransmitters, including serotonin, noradrenaline, the fast-acting
stress hormone adrenaline, GABA and glutamate. Endocrine reactions begin minutes to
hours after the stressful stimulus, driven by stimulation of the HPA axis and culminating
in the production of adrenal glucocorticoids. Preclinical results clearly suggest the concept
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that stress alters eCB signalling and that this is a fundamental mechanism through which
stress alters synaptic plasticity in diverse brain areas [89].

Under stress conditions (Figure 4, adapted from Silva et al.) [6], FAAH is triggered
to breakdown the AEA, raising neuronal excitability in the amygdala, a critical anxiety-
mediating part of the brain [2]. In contrast, inhibiting FAAH reduces anxiety-like be-
haviour [89] and may provide an antidepressant effect by stimulating the CB1 receptor [95].
As a result of a higher susceptibility to FAAH degradation [2], the SNP A allele may be
associated with faster habituation of amygdala responsiveness to danger/threat, lower
anxiety-like behaviour and greater fear-extinction learning. This is critical for elite athletes,
who need to present personality attributes related to stress response and effective mental
discipline to deal with uncertain events more rapidly, boost their motivation for sports
competition and decrease the risk of sports injuries [14,78,89].
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Figure 4. The endocannabinoid system plays a key role in controlling how highly skilled athletes
react to stress. Under normal circumstances, the endocannabinoid system modulates synaptic
function by inhibiting the release of the neurotransmitter glutamate via N-arachidonoylethanolamine
(AEA). However, under severe stress, the corticotropin-releasing hormone (CRH) and its receptor
(corticotropin-releasing hormone receptor 1-CRHR1) can be activated, increasing (↑) the basolateral
amygdala’s fatty acid amide hydrolase (FAAH) activity. As a result, AEA levels drop (↓) and lose
their ability to control glutamate release. Consequently, enhanced anxiety-like behaviour is caused
by increased neuronal excitability in the basolateral amygdala (adapted by Silva et al.) [6]. CB1R:
cannabinoid type 1 receptor; Gq: family G protein; mGluR5: metabotropic glutamate receptor 5;
2-AG: 2-arachidonoyl glycerol; DAGLα: diacylglycerol lipase-α; PTP1B: protein tyrosine phosphatase
1B; NMDAR: NMDA receptor; LMO4: LIM domain only 4.

5. FAAH rs324420 Polymorphism and Other Psychobiological Associations
5.1. FAAH rs324420 Polymorphism, Stress, Anxiety and Fear Extinction

The exposure to repeated stressful situations results in the habituation of the HPA
axis activation and the behavioural stress response. The ability to habituate to repeated
exposure to a non-threatening stimulus is protective because it avoids the repercussions
of prolonged stress [5,6]. The potential of eCB-mediated synaptic plasticity to facilitate
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habituation may be one of the most important roles of this mechanism in the setting of
human psychopathology [89].

Stress and glucocorticoids both raise 2-AG levels in the hypothalamus, hippocampus,
prefrontal cortex and raphe nuclei. When a plasma membrane-associated glucocorticoid
receptor in the hypothalamus is activated, 2-AG levels rise rapidly, inhibiting glutamate
release [96]. The mechanism by which glucocorticoids increase 2-AG levels in the prefrontal
cortex is still unknown, although this increase is known to inhibit GABA release [97].
Activation of CB1R signalling is essential for glucocorticoid-mediated feedback inhibition
of the HPA axis [98]. Therefore, the eCB system enhances the activation of resilience
elements during and/or after stress exposure [99].

As mentioned before, acute stress modifies the concentrations of the two primary eCBs,
AEA and 2-AG, in the brain, altering CB1R signalling [5,6,89]. Acute stress reduces AEA
concentrations in the amygdala and prefrontal cortex; these changes are accompanied by an
increase in FAAH activity and are mediated by CRH effects that modify FAAH activity [100].
Reduced AEA concentrations in the amygdala allow activation of the HPA axis, while
FAAH inhibition lowers the glucocorticoid response [101]. A study conducted with 661
total participants (19.6 ± 1.2 years old), 121 of whom had at least one Diagnostic and
Statistical Manual of Mental Disorders-IV diagnosis, concluded that individuals with high
AEA inhibitory tone (FAAH 385A allele carriers) and high corticotropin-releasing hormone
(CRH) signalling (corticotropin-releasing hormone receptor type 1 (CRHR1) rs110402 A
allele homozygotes) had the least temporal habituation of the basolateral amygdala, a
neuroimaging associated with fear extinction [24]. Stress-induced CRH signalling via
CRHR1 in the basolateral amygdala increases FAAH activity [102]. In turn, increased
activity of this catabolic enzyme leads to the reduction of AEA and a deprivation of
inhibitory tone, which is required for lowering anxiety and sustaining fear extinction [78].

When compared to CC homozygotes, healthy individuals carrying the FAAH rs324420
A allele demonstrated enhanced fear extinction learning [44] and lower anxiety
levels [78,103–105]. This impact was more pronounced in AA homozygotes, who had
a simpler degradable FAAH enzyme, resulting in higher AEA among carriers [106]. In
a sample of 55 healthy male adults, including 17 AC genotype carriers and 34 CC ho-
mozygotes, brain activation upon an unextinguished versus extinguished stimulus was
greater in AC genotype carriers than in CC homozygotes in core neural elements related
to extinction recall. They also displayed higher AEA levels and lower anxiety levels
(p < 0.05) [22]. However, controversial results have been found. In a study with 928 Hun-
garian (all Caucasians) subjects (31.3 ± 10.5 years old; 69.8% females), FAAH C385A A
allele carriers who experienced childhood adversities demonstrated higher levels of anxiety
than CC carriers (p = 0.0023) [23]. These findings may be due to a decreased CB1R receptor
expression during neurodevelopment in the human brain caused by childhood traumas
influencing affective phenotypes, namely the FAAH C385A polymorphism [23].

5.2. FAAH rs324420 Polymorphism, Pain and Inflammation

In response to stress and injuries, ECS has been studied as a key target related to
endogenous analgesia [107]. However, very few studies have explained the relationship
of FAAH rs324420 with pain [60]. The FAAH influences eCB concentrations in peripheral
and central neurological systems, including immunological cells. It is involved in noci-
ception, inflammatory reactions and a variety of other processes [108–111]. Inhibiting
FAAH’s enzymatic activity extends the action of AEA and hence improves eCB-mediated
antinociception [60,107].

The amino acid mutation P129T (SNP rs324420) lowers FAAH protein expression via
a posttranslational system that has not been sufficiently explained. As a result, the SNP
rs324420 is the most likely candidate to be the causative variable underlying the connection
with sensitivity to cold pain [107]. In a study with women aged 18 to 75 years (900 were
tested for cold pain and 1000 for sensitivity to heat pain) and who underwent surgery for
breast cancer, patients were divided by the FAAH rs324420 genotype (72 for A/A, 380 for
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A/C and 471 for C/C) [108]. A significant association between the SNP and cold pain
sensitivity was found, with greater association in subjects homozygous for the minor allele
(AA genotype), who reported less sensitivity to cold pain (β = −1.48; 95% CI −2.14 to −0.8)
than other groups [60].

Given the association of the A allele of the FAAH rs324420 with lower FAAH activity,
21 highs (with significantly greater pain reduction than lows), 66 low hypnotizable subjects
(lows) and 172 controls were genotyped [58]. The A allele frequency increased from lows
to controls and from controls to highs (best fitting curve: logarithmic model, F = 621.93,
R2 = 0.998, p = 0.026). Therefore, the role of the FAAH polymorphism in high analgesia
should not be ruled out, as eCB minor variations can be magnified by eCB interactions with
other neurotransmitters [58], as also demonstrated by other researchers [59].

The baseline amount of AEA release in the brain is modest, and neuronal secretion
requires a trigger [79]. A powerful stimulus activates the stress response, which can be
mediated by the ECS and endogenous opioids and induce stress-analgesia [112]. It seems
that the AEA combined with an FAAH inhibitor can generate considerable antinociception.
As a result, subjects having a mutation that is expected to reduce FAAH function and so
prolong the AEA effect reported lower pain intensities and tolerance to cold pain [60].

5.3. FAAH rs324420 Polymorphism and Neural Dysfunctions

The FAAH rs324420 polymorphism has also been related to other neural dysfunctions,
such as epilepsy and attention deficit hyperactivity disorder (ADHD). It has been suggested
that an altered eCB system can have a neuroprotective effect by activating CB1 receptors by
eCBs and selective CB1 agonists, but blocked CB1 receptors by specific antagonists may
improve epileptogenesis and lead to diverse neurological conditions such as epilepsy [113]
and ADHD [114].

Epilepsy is one of the most prevalent neurological disorders (between 7.60 per 1000) [115]
that can be manifested as idiopathic generalised epilepsy and focal epilepsy [116], and it is
mainly produced by gene changes and environmental influence. ADHD has a 2–7% global
prevalence [117], with candidate gene pathways being influenced by some types of medication
administrated for ADHD treatment [118].

As mentioned before, the FAAH C385A is responsible for an enlarged vulnerability
of the FAAH enzyme to proteolytic degradation [76], which increases eCB, preventing the
neurotoxicity caused by seizures [119]. Although the literature has investigated the protec-
tive effect of FAAH inhibitors in the brain area, a recent study conducted with a group of
250 epilepsy individuals, 157 cases with ADHD and 386 healthy controls [26] demonstrated
that reduced levels of FAAH enzyme produced by this polymorphism increased generalised
epilepsy risk by approximately two times (FAAH C384A genotype, OR = 1.755, 95% CI
1.124–2.742, p = 0.013, and allele, OR 1.462, 95% CI 1.006–2.124, p = 0.046). This may be due
to potential differences in ligand/receptor ratios of the eCB system [120], as generalised
epilepsy affects the broad brain region. In contrast, this SNP was not linked with the risk
of ADHD.

The FAAH rs324420 variant has also been linked to substance use disorders, specifically
cannabis dependence, and that altered FAAH activity has been shown to influence alcohol
use [20,27], although findings are still complex and controversial [18]. A case-control study
with 531 Greek participants (251 alcohol-dependent cases, mean age of 43.5 ± 11.5 yrs.,
60 females and 91 males, and 280 controls, mean age of 42.8 ± 14.3 years, 92 females and
188 males) investigated the SNP in patients with Alcohol Use Disorder (AUD) [18]. The
authors observed that the A allele was associated with an increased risk of AUD (OR = 0.55,
95% CI 0.41–0.73, p < 0.0001). This could serve as a potential biomarker for AUD suscepti-
bility. Another study observed an increased risk of the slow FAAH activity group (C/A
or A/A) with binge drinking (OR = 2.16, 95% CI 1.36–3.42 at 20 yrs. old, and OR = 1.61,
95% CI 1.10–2.36 at 30 yrs. old), drinking initiation (OR = 1.39, 95% CI 1.09–1.77) and
escalation (OR = 2.24, 95% CI 1.05–4.76) and cigarette smoking initiation (OR = 1.20, 95%
CI 1.04–1.39), but not with early smoking milestones [17]. A Greek study with 531 par-
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ticipants (251 alcohol-dependent subjects and 280 healthy participants) observed an in-
creased risk of AUD among those carrying the SNP A allele (OR = 0.55, CI 0.41–0.73,
p < 0.0001) [18]. Regarding alcohol dependence, Sloan et al. [20] observed that, in compari-
son to people with the CC genotype, American European adults with the A allele exhibited
a higher frequency of compulsive drinking behaviours. Also, adolescents carrying AC
and AA genotypes showed abnormal drinking attitudes and increased AUD scores [11].
However, due to the complex aetiology of AUD and diversity of genetic and environmental
factors [18], further investigation with larger sample sizes and diverse populations are
required to examine these findings.

A recent systematic review found that FAAH protein contributes to biological and
clinical aspects of AUD and that pharmaceutical targeting of this molecule could be useful
for alcohol withdrawal by reducing anxiety and resumption of alcohol intake [121]. Since
FAAH affects brain reward signalling by metabolizing AEA, it might potentially increase
addiction vulnerability [122]. As a result, the SNP rs324420 decreases FAAH catalytic
activity and alters the addictive properties of a variety of substances [20]. The relationship
between the SNP and substance use disorders [123] is consistent with previous research
that found genetic links between methamphetamine [39], marijuana [36], cannabis [27] and
cocaine [34].

6. Implications for Sport Medicine

The FAAH rs324420 may play diverse functions depending on athletes’ age, sex,
ethnicity, performance level and type of sport (e.g., athletes submitted to high mechanical
impacts may be at greater risk of sport-related injury and medical complications) [5].
Specific attention should be given to the A allele as it was associated with unique athletic
achievements [5,6].

Given that the FAAH is a good candidate gene for drug discovery in patients dealing
with inflammation and pain [124], medical staff working with sports injury prevention and
recovery, or athletes’ illnesses should advise coaches regarding identification and selection
of preventative strategies to be applied in training activities through an individualised
training programme [125]. Furthermore, ethical procedures must be respected and followed
as the imposition of genetic testing is potentially abusive [125].

While significant sex differences in rs324420 genotype frequencies have not been
found in elite athletes [5,6], it seems that oestrogens may modify emotional behaviour by
dysregulating the FAAH enzyme, increasing the ECS signalling and, as a result, decreas-
ing women’s anxiety [95]. Thus, additional research with female athletes is required to
corroborate this hypothesis.

Although scientific studies that genotyped elite athletes for the FAAH rs324420 have
mostly involved Caucasian players [2,5,6,14], current world records differ by sex and
ethnicity, with African ancestry athletes posting faster times in the 100 m, 200 m and
400 m than their Caucasian counterparts [126]. Given the evidence that players carrying
the A allele (AA or AC genotype) are two or three times more likely to be super athletes
than subjects with the CC genotype [5,6], this might be important for multidisciplinary
teams (coaches and clinical staff) responsible for planning athletes’ training sessions and
preparing them for and helping them recover from competitions, respectively.

The negative impact of sports injuries on athletes’ health and performance is un-
doubtable and can be very devasting, especially if they are recurrent. Therefore, mental
qualities are essential to cope with injuries [127–130], acquire pain tolerance [4,131] and
be resilient [2,5,6]. The limited scientific literature has shown that the FAAH rs324420
input, which codes for physiological aspects of brain regions related to psychobiological
qualities, can be a helpful tool for athletic performance [6]. In fact, severe sports injuries
and FAAH rs324420 were independent predictors of elite athletic performance, probably
due to significant differences between athletes’ sex and training, as recently reported [5].

Sport medicine specialists and technical staff should be aware that athletes with
genetically reduced FAAH activity and who are repeatedly submitted to stress (permanently
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elevated AEA) during their childhood may be vulnerable to anxiety and depression in
later life due to long-term effects on stress response possibly by the CB1R downregulation
throughout brain neurodevelopment [23].

7. Conclusions and Future Directions

The observed effect of the FAAH rs324420 is of the utmost importance for future
research in elite athletes experiencing daily stressful training and competition events and
potential sports injuries due to the mechanism of action of FAAH through the ECS applied to
stress management, pain regulation and inflammation control. In addition to the promising
character of FAAH for drug discovery in patients affected by inflammation and pain, its
rare genetic variants may also improve mental discipline and physical performance among
elite athletes. The review of the current literature presented in this article suggests that
the role of genes coding for structural and biochemical components of brain areas related
to psychological traits have been less investigated than athletes’ phenotypes related to
musculoskeletal and cardiovascular functions. Nevertheless, genetic research in the sports
context has shown modest progress since gene-based association analyses need to be more
robust in discovering several minor and cumulative gene effects. In the future, more
effective genomic-based research methodologies might speed up the discovery of genes
associated with both mental and physical athletic performance and welfare. In addition, it
will be critical to create cohorts of truly elite individuals with adequate specific physiological
data to offer the requisite resolution, to investigate the findings using multidisciplinary
methodologies and to enhance biological and clinical research on athletic ability, health
and potential risk of disease or injury. This may impact teams’ (e.g., athletes, coaches
and sports medicine staff) daily work, which can benefit from individualised training
programmes according to each athlete’s sex, body composition, nutrition, previous injuries
and environmental conditions, while helping to avoid eventual burnout and potential
sport dropout.
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