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DIAGONAL MINUS TAIL FORMS AND LASSERRE’S
SUFFICIENT CONDITIONS FOR SUMS OF SQUARES

CARLA FIDALGO AND ALEXANDER KOVAČEC

Abstract: Using our recent results on diagonal minus tail forms, we give an
easily tested sufficient condition for a polynomial f(x) =

∑
i∈I

fix
i in IR[x] =

IR[x1, . . . , xn], to be a sum of squares of polynomials (sos). We show that the class
of polynomials passing this test is wider than the class passing Lasserre’s recent
conditions. Another sufficient condition for f to be sos, like Lasserre’s piecewise
linear in the fi, is also given.

1. Introduction

In a recent paper [FK] we investigated homogeneous polynomials (or forms)
F (x) ∈ IR[x] = IR[x1, . . . , xn] of aspect F (x) = D(x) − T (x), with a di-
agonal form D(x) =

∑n
i=1 bix

2d
i and a tail T (x) =

∑
i∈I aix

i in which all

i = (i1, . . . , in) have norm |i| =
∑n

ν=1 iν = 2d, at least two nonzero entries,
and all occurring ai > 0. We called these polynomials diagonal minus tail
(dmt) forms. The main result of [FK] says that a dmt form is positive
semidefinite (psd) if and only if it is a sum of squares of polynomials (sos).
From this we derived a sufficient condition for an arbitrary form to be sos.

The aim of this paper is to strengthen this condition a little bit and to put
it in the context of Lasserre’s recent sufficient conditions [La] for a form to
be sos.

In section 2 we define the class CL of polynomials as that satisfying Lasserre’s
conditions and associate to a homogeneous polynomial f a certain dmt form,
the hat of f, f̂ . We show in theorem 2.1 that if f belongs to the class called
Chat

psd, i.e. if f̂ is psd, then f is sos. As proposition 2.2 we find that if f ∈ CL

then any of its homogenizations is in Chat
psd. In this sense ’CL ⊆ Chat

psd’. Finally

we argue invoking results of [FK] that the decision of whether f̂ (or any other
dmt form) is psd comes down to a single application of a simple minimization
procedure.
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We should mention that there exists an algorithm for deciding whether an
arbitrary form is sos devised by Powers and Woermann [PW]. The criterion
there given is recognizable as a problem rapidly solvable by semidefinite
programming, see Parrilo [Pa], and the very useful survey by Laurent [Lau].
But semidefinite programming is a sophisticated nonclassical optimization
method.

Lasserre emphasizes that till his work there was no simple sufficient condition
for a polynomial to be sos expressed directly in terms of its coefficients. It is
the aim of section 3 to join to Lasserre’s another condition, piecewise linear
in the coefficients of a polynomial, which guarantees it to be sos. Lasserre’s
proof uses the ties existing between the theory of moments and sos repre-
sentations, again see [Lau]. He also uses results with Netzer [LaN] on the
approximation of psd polynomials by sums of squares. We use very different
ideas which most readers will consider more elementary.

Note: We discovered the connections of [FK] with [La] shortly after [FK] was
submitted for prepublication. For submission to a journal, the present paper
and [FK] will be merged into one.

2. The classes CL and Chat
psd.

Let IR[x; deg ≤ 2d] and IR[x; deg = 2d] denote the real vectorspaces of polyno-
mials over IR of degree≤ 2d and of homogeneous polynomials over IR of degree
2d, respectively. For fixed d define the universe of n-tuples Ω = {i ∈ ZZ

n
≥0 :

|i| ≤ 2d and at least two nonzero entries }. Let Γ = {i ∈ Ω : i ∈ 2ZZ
n
≥0}, and

let Γc be the complement of Γ in Ω.

Then Γ = {i ∈ 2ZZ
n
≥0 : |i| ≤ 2d, i 6∈ {2de1, . . . , 2den}} is the set of even lattice

points of 1-norm≤ 2d that are not essential in the sense of Lasserre. Lasserre
does not exclude the 2dei in his definition of Γ but for our development it is
convenient; and for the definition of the class CL below it is easily seen to be
irrelevant.

We define the class CL of real polynomials f(x) =
∑

i fix
i as those satisfying

the conditions of theorem 3 of [La]; that is: f ∈ IR[x; deg ≤ 2d] is in class CL

iff
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f0 −
∑

i∈Γc

|fi| +
∑

i∈Γ

min{0, fi} ≥ 0,

min
i=1,...,n

f2de
i
−
∑

i∈Γc

|fi|
|i|
2d

+
∑

i∈Γ

min{0, fi}
|i|
2d

≥ 0.

Note that a polynomial in CL with f0 = 0 or some f2dei
= 0 is necessarily

a nonnegative combination of monomials xi with even lattice points i, i.e.
i ∈ Γ∪ {2de1, ...., 2den}, and therefore obviously a sum of squares. So, when
directly applied, homogeneous polynomials pass Lasserre’s test only in cases
that are clear by themselves. This fact does not mean that Lasserre’s criterion
is useless for homogeneous polynomials; for by an easy lemma, see e.g. [Lau,
Lemma 3.3], a polynomial is sos iff its (de)homogenization is sos. Lasserre
showed:

Theorem L. If f ∈ IR[x; deg ≤ 2d] ∩ CL, then f is sos.

At the other hand we can derive from our main result on dmt forms the
following slight strengthening of corollary 2.9 of [FK].

Theorem 2.1 Let f(x) =
∑

fix
i be a (homogeneous) polynomial in IR[x; deg =

2d], and define the hat of f by

f̂(x) =
n∑

i=1

f2de
i
x2d

i −
∑

i∈Γc

|fi|xi +
∑

i∈Γ

min{0, fi}xi.

If f̂ is psd then f is sos.

Proof. For the purpose of this proof all i we refer can and will be supposed
(to be in Ω) and to satisfy |i| = 2d. With this understanding define

Γ− = {i ∈ Γ : fi < 0}, Γ+ = {i ∈ Γ : fi > 0}.
Then, since f is homogeneous of degree 2d, we can write

f̂(x) =
n∑

i=1

f2de
i
x2d

i −
∑

i∈Γc∪Γ
−

|fi|xi.
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This exhibits f̂ as a dmt form. Assume now it is psd. We know by the proof
of theorem 2.7 of [FK] that there are psd diagonal forms D(x), and Di(x) for
each i ∈ Γc ∪ Γ−, so that

Ei(x) = Di(x) − |fi|xi is psd, and f̂ = D +
∑

i∈Γc∪Γ
−

Ei.

If f is indecomposable, so is f̂ and all the Ei are as well. Then by theorem

2.3 of [FK] E ′
i(x) = Di(x) + fix

i is sos. Note that the diagonal parts of f̂
and f are equal. So this diagonal part is

n∑

i=1

f2de
i
x2d

i = D(x) +
∑

i∈Γc∪Γ
−

Di(x).

This now yields

f(x) =
n∑

i=1

f2de
i
x2d

i +
∑

i∈Γc∪Γ
−

fix
i +
∑

i∈Γ+

fix
i

= D(x) +
∑

i∈Γc∪Γ
−

E ′
i(x) +

∑

i∈Γ+

fix
i.

By our observations on D, E ′
i, and since the definition of Γ+ implies that the

last summand is sos, f(x) is sos. For decomposable forms, the proof can now
be completed as in [FK]. �

We noted that the hat of a homogeneous polynomial f is a diagonal minus
tail form. It can be defined as the polynomial obtained by

- deleting all terms fix
i for which i ∈ Γ+;

- changing all positive terms pertaining to non-even i to their negative coun-
terpart.

So taking the hat is a closure operation:
ˆ̂
f = f̂ .

We define the class Chat
psd = {f : f is a form of even degree whose hat is psd}.

As to the relation between the classes CL and Chat
psd we have the following.

Proposition 2.2. Let f ∈ IR[x; deg ≤ 2d]∩CL, and let fh ∈ IR[x, xn+1; deg =
2d] be its homogenization. Then fh lies in Chat

psd.
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Proof. With Γ as in Lasserre’s conditions, we can write

f(x) = f0 +
n∑

i=1

f2de
i
x2d

i +
∑

i∈Γc

fix
i +
∑

i∈Γ
−

fix
i +
∑

i∈Γ+

fix
i.

Writing f2de
n+1

:= f0, the homogenization of this polynomial is

fh(x, xn+1) =
n+1∑

i=1

f2de
i
x2d

i +
∑

i∈Γc

fix
ix

2d−|i|
n+1 +

∑

i∈Γ
−

fix
ix

2d−|i|
n+1 +

∑

i∈Γ+

fix
ix

2d−|i|
n+1 .

Now observe that i ∈ ZZ
n is an even lattice point if and only if (i, 2d − |i|) ∈

ZZ
n+1 is even. It follows that the hat of fh is

f̂h(x, xn+1) =
n+1∑

i=1

f2de
i
x2d

i −
∑

i∈Γc

|fi|xix
2d−|i|
n+1 +

∑

i∈Γ

min{0, fi}xix
2d−|i|
n+1 .

The dehomogenization of this polynomial is obtained by putting xn+1 = 1,
yielding

f̂h(x, 1) = f0 +
n∑

i=1

f2de
i
x2d

i −
∑

i∈Γc

|fi|xi +
∑

i∈Γ

min{0, fi}xi.

Recalling that the original polynomial is to satisfy Lasserre’s conditions, we

see that f̂h(x, 1) satisfies Lasserre’s conditions, simply because | − |fi|| = |fi|
and min{0, min{0, fi}} = min{0, fi}.
Therefore f̂h(x, 1) is sos, hence psd; and so f̂h(x, xn+1) will be psd. Precisely
this was to be proved. �

This result shows that every polynomial that passes Lasserre’s condition for
sos-ness, will after homogenization pass our test as well and therefore be sos.
Note, however, that we have used Lasserre’s own result in this proof and
not invoked theorem 2.1, although the sharpness of theorem 2.1 leads one to
believe that sos-ness of polynomials in CL should be derivable from it.

Of course Lasserre’s condition is very simple and our’s would be of academic
interest only, if it would be complicate to handle. But this is not the case.
First note the dmt-ness of the hat of a polynomial assures that each of its
indecomposable components is dmt: see [FK] lemma 2.1b. The indecompos-
able components of a dmt form and their dimensions are of course easy to
find. Next, the proof of [FK] lemma 2.4 can be adapted to show that ev-
ery local minimum of an indecomposable dmt form of dimension n ≥ 2 and
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viewed as a function f : ∆n−1 → IR must lie in int (∆n−1). This means that
standard minimization methods to look for a local minimum of f on ∆n−1

will halt at a point in int (∆n−1). Finally, we have the following lemma.

Lemma 2.3. Let f be an indecomposable dmt form of dimension n. Then
for every local minimum in u ∈ int (∆n−1) there holds i or ii:
i. f(u) < 0.
ii. f(u) ≥ 0 and u is global minimum for f |∆n−1.
In case ii, f is psd.

Proof. Let u be a local minimum with f(u) ≥ 0. The proof of lemma 2.6 in
[FK], does only depend on the fact that f(u) ≥ 0 (and not on the hypothesis
enunciated there that f be psd). It gives us a Lagrange multiplier λ ≤ 0. This
multiplier together with that u be a local minimum of f such that f(u) ≥ 0
is used in the proof of theorem 2.7 in [FK] in order to represent f as a sum
of elementary psd dmt forms. (Again, that proof does not make use of the
full strength of the hypothesis that f be psd.) It follows that f is psd. Now
corollary 2.8 of that paper gives that f has u as its global minimum. �

By this lemma either the value of f at a local minimum in ∆n−1 is negative
and f thus certainly not psd; or the value is nonnegative, the local minimum
in fact global and thus we can be sure that the function is psd. So testing
whether a homogeneous polynomial belongs to class Chat

psd should be considered
easy.

3. A piecewise linear condition for being sos

Here we use the criterion of theorem 2.1 to add to Lasserre’s sufficient con-
dition for sos-ness a further one which as his’ is piecewise linear in the coef-
ficients of f.
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Lemma 3.1. The minimum and maximum values on ∆n−1 of a diagonal
form

∑n
i=1 bix

2d
i with all bi > 0, and a term xi1

1 · · · xin
n with |i| = 2d, are given

by

min{
n∑

i=1

bix
2d
i : x ∈ ∆n−1} =

(
n∑

i=1

b
1/(1−2d)
i

)1−2d

,

and

max{xi1
1 · · · xin

n : x ∈ ∆n−1} = (2d)−2dii11 · · · iinn .

Proof. Put F (x) =
∑n

i=1 bix
2d
i . Since bd(∆) is compact, and all bi > 0, there

exists a point x̂ ∈ bd(∆) so that 0 < F (x̂) = minF |bd(∆). From now on one
can reason as in the third part of the proof of lemma 2.4 of [FK] to see that
the minimum of the function ∆n−1 ∋ x 7→ F (x) is assumed in the interior of
∆n−1. This justifies the use of the Lagrange multiplier method in a standard
way to obtain the rest of the claim concerning F. We omit the details.

For the form F (x) = xi we observe that clearly F (x) ≥ 0 on ∆n−1 and
distinguish two cases:

Case: For all ν = 1, . . . , n, iν ≥ 1. Then it is clear that F |bd(∆n−1) ≡ 0, and
hence the maximum of F |∆n−1 will be assumed (only) in int (∆n−1). Using
this, the multiplier method yields the claimed result.

Case: There is a ν such that iν = 0. Then some of the xi, say x1, ..., xk do
not occur in F. We can assume F (x) = xi1

1 xi2
2 . . . xik

k with i1, . . . , ik ≥ 1. In
this case the maximum of the function F is precisely the maximum of the F
restricted to the face xk+1 = . . . = xn = 0 of the simplex ∆n−1. This is again
a simplex and the multiplier method again applies as in the previous case. �

We can now prove the second main result.

Theorem 3.2. Let f(x) =
∑

fix
i ∈ IR[x; deg = 2d]. If

min
i=1,...,n

f2de
i
− 1

n
(

n

2d
)2d
∑

i∈Γc

|fi|ii +
1

n
(

n

2d
)2d
∑

i∈Γ

min{0, fi} ii ≥ 0,

then f is sos.
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Proof. For the hat of f we have by the first part of the lemma 3.1 the estimate

min
x∈∆n−1

f̂(x) = min
x∈∆n−1

(
n∑

i=1

f2de
i
x2d

i −
∑

i∈Γc

|fi|xi +
∑

i∈Γ

min{0, fi}xi)

≥ min
x∈∆n−1

(

n∑

i=1

f2de
i
x2d

i ) −
∑

i∈Γc

|fi| max
x∈∆n−1

(xi) +
∑

i∈Γ

min{0, fi} max
x∈∆n−1

(xi).

=

(
n∑

i=1

(f2de
i
)

1

1−2d

)1−2d

−
∑

i∈Γc

. . . +
∑

i∈Γ

. . . .

Now the first summand is easily seen to be increasing in each of the f2de
i
.

Therefore it is≥ n1−2d min
i=1,...,n

f2de
i
. Using this and the second part of lemma

3.1, the theorem follows via theorem 2.1. �

We close with examples showing that the two piecewise linear criteria given by
Lasserre and the theorem above complement each other. None is universally
stronger than the other.

By theorem 2.3 in [FK] the form 1
2 x6 + y6 + z6 − f · xy2z3 is sos as long as

|f | ≤
√

6.

Indeed with f = 8/9, the polynomial must pass the test of theorem 3.2,
but its dehomogenization w.r.t. x, 1

2 + y6 + z6 − 8
9 y2z3 does not satisfy

Lasserre’s test. Conversely, taking f = 1, but dehomogenizing w.r.t. z, we
get the polynomial 1

2 x6+y6+1−xy2. This polynomial satisfies Lassere’s test,
while its homogeneous counterpart does not satisfy the criterion of theorem
3.2.

References
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