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The nonradial oscillations of the neutron stars (NSs) have been suggested as an useful tool to probe the
composition of neutron star matter (NSM). With this scope in mind, we consider a large number of
equations of states (EOSs) that are consistent with nuclear matter properties and pure neutron matter
EOS based on a chiral effective field theory (chEFT) calculation for the low densities and perturbative QCD
EOS at very high densities. This ensemble of EOSs is also consistent with astronomical observations,
gravitational waves in GW170817, mass and radius measurements from Neutron star Interior Composition
Explorer (NICER). We analyze the robustness of known universal relations (URs) among the quadrupolar f
mode frequencies, masses and radii with such a large number of EOSs and we find a new UR that results
from a strong correlation between the f mode frequencies and the radii of NSs. Such a correlation is very
useful in accurately determining the radius from a measurement of f mode frequencies in the near future.
We also show that the quadrupolar f mode frequencies of NS of masses 2.0M⊙ and above lie in the range
∼2–3 kHz in this ensemble of physically realistic EOSs. A NS of mass 2M⊙ with a low f mode frequency
may indicate the existence of non-nucleonic degrees of freedom.
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I. INTRODUCTION

The neutron star (NS) observations in the multimessen-
ger astronomy have piqued a lot of interest in the field
of nuclear astrophysics and strong interaction physics. The
recent radio, x-rays, and gravitational waves (GWs) obser-
vations in the context of NSs have provided interesting
insights into the properties of matter at high density. The
core of such compact objects is believed to contain matter
at few times nuclear saturation density, ρ0 (ρ0 ≈ 0.16 fm−3)
[1–4] and provides an unique window to get an insight into
the behavior of matter at these extreme densities. On the
theoretical side, no controlled reliable calculations are there
that can be applicable to matter densities relevant for the
NS cores. The lattice quantum chromodynamics (lQCD)
simulations are challenging at these densities due to sign
problem in Monte-Carlo simulations. On the other hand,
the analytical calculations like chiral effective field theory
(chEFT) is valid only at low densities while perturbative
quantum chromodynamics (pQCD) is reliable at extremely
high densities. In recent approaches, the equation of state
(EOS)s between these two limits have been explored

by connecting these limiting cases using a piecewise
polytropic interpolation, speed of sound interpolation or
spectral interpolation [5–11].
The NS properties such as mass, radius and quadrupole

deformation of merging NSs can constrain the uncertainty
in EOS. The discovery of massive NS with masses of the
order of 2M⊙ requires the EOS to be stiff. However,
the fact that non-nucleonic degrees of freedom soften the
EOS at high density, puts a constraint on the EOS at the
intermediate densities. The observations of GWs from
binary neutron star (BNS) inspiral by Advanced LIGO
and Advanced Virgo GWs observatories have opened a
new window in the field of multimessenger astronomy and
nuclear physics. The inspiral phase of NS-NS merger
leads to tidal deformation (Λ), which is strongly sensitive
to the compactness. Since Λ is related to the EOS of the
neutron star matter (NSM), this measurement acts as
another constraint on the EOS. On the other hand,
recovering the nuclear matter properties from the EOS
of β-equilibriated matter is rather non trivial. This further
requires the knowledge of the composition (e.g., proton
fraction) of matter at high densities [12–15].
In the context of GWs, the nonradial oscillations of NS are

particularly interesting as they can carry information of the
internal composition of the stellar matter. These oscillations
in the presence of perturbations (electromagnetic or gravi-
tational) can emit GWs at the characteristic frequencies of its
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quasinormal mode (QNM). The frequencies of QNMdepend
on the internal structure of NS and it may be another probe to
get an insight regarding the composition of NSM also known
as asteroseismology. Different QNMs are distinguished by
the restoring forces that act on the fluid element when it gets
displaced from its equilibrium position. The important fluid
modes related to GWs emission include fundamental (f)
modes, pressure (p) modes and gravity (g) modes driven by
the pressure and buoyancy respectively. The frequency of p
modes is higher than that of g modes while the frequency of
f modes lies in between. The focus of the present inves-
tigation is on the quadrupolar f modes that are correlated
with the tidal deformability during the inspiral phase of NS
merger [16] and have the strongest tidal coupling among all
the oscillation modes. More importantly, these modes lie
within the sensitivity range of the current as well as
upcoming generation of the GWs detector networks [17].
In this context, QNMs have been studied with various EOS
models and some universal/quasiuniversal behaviors for the
frequency and damping time which are insensitive to the
EOS models [18–26]. This needs to be explored further
regarding the robustness of these relations for a large number
of EOSs consistent with recent observational constraints.
In this paper we propose two major points of interest.

First we estimate, within the Cowling approximation
[27,28], the f mode oscillation frequencies for NSs using
a large number of EOSs and demonstrate that observation
of f mode frequencies, apart from causality c2s ≤ 1 and
maximum mass constraints, further restrict the EOSs.
Second, we verify the robustness of few universal relation
(UR) among the quadrupolar f mode frequencies, masses
and radii studied earlier with limited EOSs. It has been
earlier found that these URs between NS properties are
strongly violated by hybrid EOSs [29–31] and certain
exotic phases [32]. We consider here a large number of
EOSs and confirm that a known UR is almost insensitive
to the EOSs, while a second one depends slightly on the
composition of the EOSs, i.e., the presence or not of non-
nucleonic degree of freedom, and, finally, we propose a
new UR.

II. SETUP

The two ensembles of EOSs that we consider here are
constructed by stitching together EOSs valid for different
segments in baryon densities. For the outer crust the Bethe-
Pethick-Sutherland (BPS) EOS is chosen [33]. Outer crust
and the core are joined using a polytropic form pðεÞ ¼
a1 þ a2εγ in order to construct the inner crust, where the
parameters a1 and a2 are determined in such a way that the
EOS for the inner crust matches with the outer crust at one
end (ρ ¼ 10−4 fm−3) and with the core at the other end
(ρ ¼ 0.04 fm−3). The polytropic index γ is taken to be
4=3 [34]. It is important to note that the differences in
NSs radii between this treatment of the inner crust EOS and
the unified inner crust description including the pasta

phases have been found to be less than 0.5 km, as discussed
in [35]. The core EOSs are considered within two different
approaches: (i) a nucleonic β− equilibritated EOS based
on a relativistic description of hadrons through their
density-dependent couplings constrained by the existing
observational, theoretical, and experimental data through a
Bayesian analysis (DDB), obtained in [35], which satisfies
pure neutron matter (PNM) constraints at low densities
obtained from next-to-next-to-next-to leading order
(N3LO) calculations in the chEFT [36,37]. (ii) a hybrid
set of EOSs which consists of the DDB EOS at low density
(≤ 2ρ0) and the deconfined quark matter at very high
densities (≥ 40ρ0) while the region (2ρ0-40ρ0) is interpo-
lated by piecewise polytropes (DDB-Hyb). For the decon-
fined quark matter, we employ NNLO pQCD results of
Refs. [6,38] which can be cast in a simple fitting function
for the pressure as a function of chemical potential (μ)
given as

PpQCDðμÞ ¼
μ4

108π2

�
c1 −

d1X−ν1

ðμ=GeVÞ − d2X−ν2

�
ð1Þ

where the parameters are c1 ¼ 0.9008, d1 ¼ 0.5034, d2 ¼
1.452, ν1 ¼ 0.3553, and ν2 ¼ 0.9101 [39]. Here X is a
dimensionless renormalization scale parameter, X ¼ 3Λ̄=μ
which is allowed to vary X∈ ½1; 4�. We use this pQCD EOS
for densities beyond ρ ≃ 40ρ0 which corresponds to
μpQCD ¼ 2.6 GeV [39]. Between the region of the validity
of pQCD and DDB i.e., μDDB ≤ μ ≤ μpQCD, where μDDB
is the chemical potential of DDB EOS at ρ ¼ 2ρ0, we
divide the interval into two segments, (μDDB-μc) and
(μc-μpQCD), and assume EOS has a polytropic form in
each segment, i.e., PiðρiÞ ¼ κiρ

γi
i for the ith segment [38].

The segments can be connected to each other by requiring
that the pressure and the energy density are continuous at μc
as well as the pressure should be an increasing function
of the energy density and the EOS must be subluminal. We
also ensure that there is no jump in the baryon number
density. This corresponds to assuming no first order phase
transition between hadronic matter and quark matter. If one
wishes to include a first order phase transition, an extra
term to the number density at μc can be added [38].
To obtain the EOS of the core, we proceed as follows. For

the outer core, which extends approximately until ρ ¼ 2ρ0,
we use a soft (stiff) DDB EOS as obtained in Ref. [35] within
90% CI. The corresponding value of chemical potential at
ρ ¼ 2ρ0 is μDDB ¼ 1.036ð1.097Þ GeV for a soft (stiff) DDB
EOS. We interpolate the region from μ ¼ μDDB to μ ¼ μc
and from μ ¼ μc to μ ¼ μpQCD with two piecewise poly-
tropes. We select all those EOSs which (i) match with pQCD
at μ ¼ μpQCD (i.e., X∈ ½1; 4�) (ii) have pressure as an
increasing function of energy density, and (iii) are sublu-
minal. We refer this EOS as DDB-Hyb. The chemical
potential μc is here chosen in such a way that the EOS
matches PQCD at μ ¼ μpQCD. We take μc ∈ ½1.04; 2.2� GeV
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and the corresponding pressure Pc ∈ ½20; 1260� MeV:fm−3.
For an ensemble of DDB-Hyb. EOSs we choose μc, Pc
randomly in the prescribed domain by latin-hypercube-
sampling method [40] for an uniform distribution. For a
given μc, Pc and PDDB, the parameters of the first polytrope,
ðκ1; γ1Þ get determined. Similarly for a given μc, Pc and P2

(where P2 is the pQCD pressure for a given value of X at
μ ¼ μpQCD), the parameters of the second polytrope (κ2, γ2)
get determined. The domains for pressure (Pc) and chemical
potential (μc) become Pc ∈ ½45; 1255� MeV · fm−3 and
μc ∈ ½1.07; 2.09� GeV after constrained by pQCD. These
domains further squeeze to Pc ∈ ½53; 680� MeV:fm−3

and μc ∈ ½1.15; 1.88� GeV after putting the constraint of
Mmax ≥ 2M⊙ and so we find 0.38 million EOSs out of
54 million sampled EOSs satisfying these constraints. It may
be mentioned here that, although we use two polytropes
for the interpolation between (μDDB − μpQCD), there have
been different interpolation functions like spectral decom-
position [41,42] and speed of sound method [9,11,43].

III. PULSATING EQUATIONS

To estimate the specific oscillation frequency of NSs, let
us discuss the nonradial oscillation of a spherically sym-
metric NS characterized by the background space-time
metric where the line element is given by

ds2 ¼ −e2Φdt2 þ e2Λdr2 þ r2ðdθ2 þ sin2 θdϕ2Þ: ð2Þ

We shall consider the pulsating equations within the
Cowling approximation so that our study is limited to
the modes related to fluid perturbations and neglect the
metric perturbations. The Lagrangian fluid displacement
vector is given by

ξi ¼ ðe−ΛW;−V∂θ;−V sin−2 θ∂ϕÞr−2Ylm ð3Þ

Where Wðr; tÞ and Vðr; tÞ are the perturbation functions
and Ylm are the spherical harmonic function. The pertur-
bation equations that describe oscillations can be obtained
by the perturbed Einstein field equations δGαβ ¼ 8πδTαβ

with Gαβ ¼ Rαβ − 1
2
gαβR being the Einstein tensor.

Linearizing these equations in the perturbation, while
choosing a harmonic time dependence for the perturbation,
i.e., Wðr; tÞ ∝ WðrÞeiωt and Vðr; tÞ ∝ VðrÞeiωt with fre-
quency ω, the differential equations further fluid perturba-
tion functions can be obtained as [24,27,44]

W0 ¼ dϵ
dP

ðω2r2eΛ−2ΦV þWΦ0Þ − lðlþ 1ÞeΛV; ð4Þ

V 0 ¼ 2VΦ0 −
1

r2
WeΛ; ð5Þ

here, the prime denotes the total derivative with respect to r.
These equations are solved with appropriate boundary

conditions at the stellar center r ¼ 0 and at the surface
r ¼ R. The W and V in the vicinity of the stellar center
are taken as WðrÞ ∼ Crlþ1 and VðrÞ ∼ −Crl=l, where C is
an arbitrary constant. The other boundary condition that
needs to be fulfilled is that the Lagrangian perturbation
to the pressure must vanish at the stellar surface. This leads
to [24,27,44]

ω2r2eΛ−2ΦV þWΦ0jr¼R ¼ 0 ð6Þ

This apart in the case of density discontinuity these
equations have to be supplemented by an extra junction
condition at the surface of discontinuity. We shall not
consider here a density discontinuity. With these boundary
conditions, the problem becomes an eigenvalue problem
for the parameter ω which can be estimated numerically.
We shall confine ourselves to l ¼ 2 quadrupolar modes.

IV. RESULTS

We now proceed to analyze the ensembles of EOSs that
are consistent with nuclear matter properties or PNM EOS
based on theoretically robust chEFT at low densities and
pQCD at very high densities. As mentioned earlier, we start
with 54 million EOSs. We discard those EOS which do not
match the two end points or are superluminal (square of
speed of sound c2s > 1) as well as the condition of positive
speed of sound. This leaves us with an ensemble of
0.38 million DDB-Hyb EOSs. This ensemble of EOSs is
represented in Fig. 1 by the orange band. We next enforce
the Mmax ≥ 2.0M⊙ constraint resulting from solving the
Tolman-Oppenheimer-Volkoff (TOV) equations with this
ensemble. This constraint further reduces the number
of EOSs to 55,000 which are displayed in Fig. 1 as the
gray band, named here after DDB-Hyb set. The polytrope
indices γ1 and γ2 are seen to vary over an intervals
γ1 ∈ ½1.67; 13.76� and γ2 ∈ ½1.0; 1.51�. The tight constraint
on γ2 has its origin on the matching to the pQCD pressure.
In Fig. 1, the light blue band is the β-equilibrated nuclear
matter ≈10 k EOSs (DDB 90% CI) while the dark red band
corresponds to pQCD EOS. For comparison, we also plot
the domain of EOSs obtained in Ref. [10] (red solid curve)
compatible with recent NICER and GWs observations.
The red dashed lines refers to the dense PDF (≥ 0.08)
obtained in Ref. [11] with continuous sound speed and
consistent not only with nuclear theory and pQCD, but also
with astronomical observations. It is to be noted that both of
DDB and DDB-Hyb sets are compatible with them.
In Fig. 2, we plot the NS mass-radii and f mode

frequency-mass regions obtained at 90% CI for the condi-
tional probabilities PðRjMÞ (left) and PðfjMÞ (right) from
the mass-radius clouds arising from the ensembles of EOSs
of DDB-Hyb (black dotted) and DDB (dark red). The blue
horizontal bar on the left panel indicates the 90% CI radius
for a 2.08M⊙ star determined in Ref. [45] combining
observational data from GW170817 and NICER as well as
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nuclear data. The top and bottom gray regions indicate,
the 90% (solid) and 50% (dashed) CI of the LIGO/Virgo
analysis for each binary component from the GW170817
event [46] respectively. The 1σ (68%) credible zone of the
2-D posterior distribution in mass-radii domain from
millisecond pulsar PSR J0030þ 0451 (cyan and yellow)
[47,48] as well as PSR J0740þ 6620 (violet) [45,49] are
shown for the NICER x-rays data. The horizontal (radius)
and vertical (mass) error bars reflect the 1σ credible interval
derived for the same NICER data’s 1-D marginalized
posterior distribution. The mass-radius domain for the
DDB-Hyb set sweeps a wider range than the DDB set,
restricted to nucleonic degrees of freedom. The DDB-Hyb
set constrained by pQCD at high density leads to larger
radii for high mass NS. We conclude that the present
observational constraints either obtained from GW170817
or NICER cannot rule out the existence of exotic degrees of
freedom. In the right panel, we see that the 90% CI for
PðfjMÞ f mode frequency f∈ ½1.95; 2.7� kHz for both the
DDB and DDB-Hyb sets. The range is smaller for low NS
mass and as the mass increases the 90% CI for f mode
frequency increases. The f mode frequency of a NS above
2M⊙ mass is in the range (2.1–2.7) kHz and (2.3–2.65) kHz
for the DDB-Hyb and DDB sets, respectively. As men-
tioned in the earlier sections, the solutions for f mode
obtained in this work are within the Cowling approximation
(neglecting perturbations of the background metric). It was
shown that the Cowling approximation can overestimate

the quadrupolar f mode frequency of NSs by up to 30 to
10% for NS masses in the range (1.0–2.5)M⊙ compared to
the frequency obtained in the linearized general relativistic
(GR) formalism [21,50,51]. The accurate measurement of f
modes may further constrain EOS to a narrower range.
Besides, a star of 2M⊙ with a low f mode frequency may
indicate an existence of non-nucleonic degrees of freedom.
In Fig. 3, we have studied two known URs involving

the f mode frequency with global properties of NS, often
studied in literature with a limited set of EOSs. In
particular, we name UR1 the UR between the f mode
frequency and the square root of the average star densityffiffiffiffiffiffiffiffiffiffiffiffi
M=R3

p
, and UR2a the UR involving the ωM versus the

compactness M=R, where ω ¼ 2πf. We have analyzed
their robustness with our EOS sets, DDB-Hyb and DDB.
We have also found a new and direct relation between the f
modes frequency, f, and radius, R, with the help of the
existing strong correlation between them. In the left panel
of the figure we show UR1:

f ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM=R3Þ

q
þ b: ð7Þ

It has been shown in Refs. [19,53] that the average density
can be well parameterized via the f mode frequency.
The following values of a and b have been obtained:
a ¼ 22.27� 0.023ð26.76� 0.01Þ kHz · km, b ¼ 1.520�
0.001ð1.348� 0.001Þ kHz for DDB-Hyb (DDB). The

FIG. 2. NS mass (M)-radii (R) and f mode frequency-mass (M)
region obtained from the 90% CI for the conditional probabilities
PðRjMÞ (left) and PðfjMÞ (right) for DDB-Hyb (black dotted)
and DDB (dark red). The blue horizontal bar on the left panel
indicates the 90% CI radius for a 2.08M⊙ star determined in [45]
combining observational data from GW170817 and NICER as
well as nuclear saturation properties. The top and bottom gray
regions indicate, respectively, the 90% (solid) and 50% (dashed)
CI of the LIGO/Virgo analysis for each binary component from
the GW170817 event [46]. The 1σ (68%) credible zone of the 2-D
posterior distribution in mass-radii domain from millisecond
pulsar PSR J0030þ 0451 (cyan and yellow) [47,48] as well
as PSR J0740þ 6620 (violet) [45,49] are shown for the NICER
x-rays data. The horizontal (radius) and vertical (mass) error bars
reflect the 1σ credible interval derived for the same NICER data’s
1-D marginalized posterior distribution.

FIG. 1. We show pressure and energy density regions in
MeV:fm−3 of our sampled EOSs (DDB and DDB-Hyb). We
consider nucleonic β-equilibrated EOS of the 90% CIs for DDB
(light blue) as a full range and (dark blue) up to 2ρ0 [35] and at
very high density ∼40ρ0 the NNLO pQCD (dark red) [6]. In the
intermediate region, EOS is evolved in thermodynamically
consistent way with two polytropic segments (see text for
details). Also included are the limits of the domain of EOSs
obtained in Ref. [10] (red solid curve) and the dense PDF
(≥ 0.08) calculated in Ref. [11] (red dashed lines).
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maximum relative percentage error obtained for UR1
within 90% CI is 6.0%(4.5%) for DDB-Hyb (DDB). We
verify that the UR1 depends slightly on the EOS, reflected
in a relative dispersion of ∼5% at 90%CI. Also, the slope of
the medians depend on the dataset, with the nucleonic
dataset DDB presenting a 15% larger slope, and similar to
the one obtained in [50] which was calculated with realistic
nucleonic EOS, and is at the upper limit of our 90% CI. It is
important to take note that this particular work has been
executed utilizing the Cowling approximations [24,27,44]
as previously referenced. In the scholarly publication by
Yoshida et al. [52], a comparative analysis was performed
between the outcomes obtained from complete linearized
general relativity (GR) and those acquired through the
Cowling approximations. The findings of their study reveal
that, for l ¼ 2, the f mode is overestimated by 30% and 15%
when the compactness values of M=R are 0.05 and 0.2,
respectively. Using this as a linear relation, we have scaled
the solutions obtained in the Cowling approximation, for
both DDB and DDB-Hyb, see the bottom band in Fig. 3 left
panel designated by GR solutions. It is interesting to notice
that the scaled frequencies are compatible with the full GR
solutions obtained in the literature. Notice that the dispersion
is smaller, but still corresponds to a 5% relative uncertainty.
In Andersson and Kokkotas (Benhar et al.) the authors have
obtained the following parameters a ¼ 35.9ð33.0Þ kHz · km
and b ¼ 0.78ð0.79Þ kHz [19,21,53], the difference between
both works being the EOS considered in the study. In those
studies the linearized GR equations were solved, and, as
expected, lower frequencies have been determined. In
Ref. [50], the oscillations of nonrotating and fast rotating
NSs have been explored with a different set of EOSs based
on microscopic theories within the Cowling approximation.
The values of the coefficients of the UR1 obtained were

a ¼ 25.32 kHz · km and b ¼ 1.562 kHz, which are at the
90% CI upper limit of the relations we have obtained.
In center panel of the Fig. 3 we display UR2a:

ωM ¼ a

�
M
R

�
þ b ð8Þ

obtained for both DDB-Hyb and DDB sets, with a ¼
0.6474� 4.6 × 10−5 (a ¼ 0.6549� 2.6 × 10−5) and b ¼
−0.0085� 1.05 × 10−5 (b ¼ −0.0103� 6.18 × 10−6) for
DDB-Hyb (DDB) set. Both the coefficients are dimension-
less. The maximum relative percentage error obtained for
UR2a within 90% CI is 3.78% (2.20%) for DDB-Hyb
(DDB) set. The values of the slope and intercept for UR2a
are also compatible with the ones obtained in Ref. [54]
within the Cowling approximation with a few nucleonic
and hyperonic EOSs as a ¼ 0.65765 and b ¼ 0.0127866,
respectively. We have also obtained a relation as UR2b for
ωR as ωR ¼ aðMRÞ2 þ bðMRÞ þ c. The coefficients are found
to be a ¼ −3.0369� 0.0013ð−3.1844� 0.0020Þ, b ¼
1.5829� 0.0005ð1.6288� 0.0008Þ, and c ¼ 0.4095�
5 × 10−5ð0.4087� 7 × 10−5Þ for DDB-Hyb (DDB) set,
all the coefficients are dimensionless. In this case the
maximum relative percentage error is 2.6% (1.6%) in the
set DDB-Hyb (DDB). We might note here that UR2b
can be related to a UR2a by multiplying former with the
compactness (M=R). We have checked that both the
relations UR2a and UR2b are consistent with each other
for the range of compactness considered here. In particular,
the difference is about 5% at the lower value of (M=R),
while for the higher value of (M=R), the same is less
than 1%. Compared with UR1, the relative maximum
uncertainty is smaller for UR2a and UR2b for both

FIG. 3. URs obtained with our sets of EOSs, namely DDB-Hyb and DDB. UR1 (left): The frequency of the f mode is plotted as a
function of the square root of the average density, and corresponding GR scaled data according to [52] (bottom band) as explained in the
text. Also included are results from Doneva et al. [50] obtained in the Cowling approximation, Andersson and Kokkotas [19] and Benhar
et al. [20] calculated with full GR; UR2a (center): The universality among ωM and M=R obtained with both datasets; and UR3 (right)
the universal linear relations among f mode frequency and radii of NS with masses ranging from 1.6 to 2.4M⊙ in a step of 0.2M⊙. The
band corresponds to 90% CI.
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DDB-Hyb and DDB sets. Using these relations we predict
f mode frequencies for the PSR J0740þ 6620. For this
pulsar, the mass and radius are determined as 2.08� 0.7
M⊙ and 12.35� 0.75 km in [45] combining observational
data from GW170817 and NICER as well as nuclear data.
The corresponding mean values of f mode frequency is
calculated as 2.35 kHz and 2.36 kHz for UR2a and UR2b,
respectively, with a ∼1–4% intrinsic error in the URs
and additional ∼10–12% error due to uncertainty present
in mass and radius. A comment regarding the Cowling
approximation may be in order.
We have identified a strong linear correlation between

the f mode frequency and NS radius R and we are naming
it as UR3. The values r∈ ½0.98; 0.99� of the Pearson
correlation coefficient were obtained between f and R
for NS with a mass M∈ ½1.6; 2.4� with our two sets of
EOSs. These results can also be traced back from UR1 by
keeping fixed NS mass while noting that the correlation is
stronger only for the NS of large mass. In the right panel of
Fig. 3, we plot the linear relations between f and R. The
values of slope m∈ ½−0.23;−0.21� and intercept are
c∈ ½5.21; 5.0� for NS mass M∈ ½1.6 to 2.0; 2.0 to 2.4�M⊙.
We also plot a marginalized UR3 obtained with NS masses
in the range of 1.6 to 2.4M⊙ with a slope, (m ¼ −0.22) and
an intercept, (c ¼ 5.1). This gives ≈1.5% relative residual
within 90% CI. We expect that the correlation is also
present if the full GR solutions are considered. Taking this
correction factor into account, the new relation (UR3) will
be very useful for the upcoming future detection in order to
constrain NS radius of massive NS precisely. For example,
in order to measure a radius of a NS with ∼0.2 km
uncertainty, the f mode frequency needs to be measured
within ∼2% uncertainty.

V. SUMMARY AND CONCLUSION

The QNMs are related with the viscous properties of
matter. In the future, precise measurements of them can put
constraints on the EOS of dense matter. We have studied
the f mode frequency among the QNMs, which is in
the sensitivity band of the future gravitational waves
networks [17]. We have calculated the f mode frequency
within the Cowling approximation with a nucleonic set of
14,000 EOSs (DDB set), obtained in Ref. [35] based on the
relativistic mean field (RMF) theory, constrained by
existing observational, theoretical and experimental data

through Bayesian analysis. We have also generated an
ensemble of EOSs using DDB below twice saturation
density (ρ ≤ 2ρ0) and pQCD at high densities (ρ ≥ ρ0)
as in Ref. [9]. Two piecewise polytropes have been used to
interpolate the region from 2ρ0 to 40ρ0. Implementing the
constraints of causality and maximummassMmax ≥ 2.0M⊙
a set of 55000 DDB-Hyb typed EOSs has obtained. The
mass-radius cloud that we obtain from the ensembles of
these EOSs is consistent with the GW170817 joint prob-
ability distribution as well as the recent NICER observa-
tions of mass and radius. We have analyzed the robustness
of a few previously known universal relations, UR1 and
UR2, and confirmed the robustness of UR2. UR1 shows a
dispersion of 5% relative uncertainty at 90% CI, and a 15%
smaller slope for the DDB-Hyb compared with the DDB
set. We also found a novel strong correlation between the f
mode frequency, f, and the radius, R, for a NS of mass in
the range ð1.6–2.4ÞM⊙. These new direct relations between
f and R will allow an accurate determination of the radius
of NS using future f mode detection.
We show that the quadrupolar f mode frequencies

obtained in Cowling approximation of NS of masses
2.0M⊙ and above lie in the range (2.1-2.7) kHz and
(2.3-2.65) kHz for DDB-Hyb and DDB sets, respectively.
We use this URs to predict the f mode frequencies of
the NICER observations and obtain ∼2.35 (2.0) kHz in
Cowling approximation (linearized GR) for the PSR
J0740þ 6620which interestingly lies within the sensitivity
band of the future gravitational wave detector networks
[17] for the detection of gravitational waves. It was shown
that a two solar mass star with a low f mode frequency
may indicate the existence of non-nucleonic degrees of
freedom. In the future, a detailed investigation of how this
frequency is correlated with the individual component of
the EOS or different particle compositions in NS core will
be carried out.

ACKNOWLEDGMENTS

The authors acknowledge the Laboratory for Advanced
Computing at the University of Coimbra for providing
HPC resources for this research results reported within this
paper [55]. This work was partially supported by national
funds from FCT (Fundação para a Ciência e a Tecnologia,
I.P, Portugal) under Projects No. UIDP -04564 -2020, No.
UIDB-04564-2020 and No. 2022.06460.PTDC.

KUMAR, MALIK, MISHRA, and PROVIDÊNCIA PHYS. REV. D 108, 083008 (2023)

083008-6



[1] N. K. Glendenning, Compact Stars (Springer, New York,
NY, 1996).

[2] P. Haensel, A. Y. Potekhin, and D. G. Yakovlev, Neutron
Stars 1: Equation of State and Structure (Springer,
New York, NY, 2007), Vol. 326.

[3] The Physics and Astrophysics of Neutron Stars, edited by L.
Rezzolla, P. Pizzochero, D. I. Jones, N. Rea, and I. Vidaña
(Springer, New York, 2018), Vol. 457.

[4] J. Schaffner-Bielich, Compact Star Physics (Cambridge
University Press, Cambridge, England, 2020).

[5] L. Lindblom and N. M. Indik, Phys. Rev. D 86, 084003
(2012).

[6] A. Kurkela, E. S. Fraga, J. Schaffner-Bielich, and A.
Vuorinen, Astrophys. J. 789, 127 (2014).

[7] E. R. Most, L. R. Weih, L. Rezzolla, and J. Schaffner-
Bielich, Phys. Rev. Lett. 120, 261103 (2018).

[8] E. Lope Oter, A. Windisch, F. J. Llanes-Estrada, and M.
Alford, J. Phys. G 46, 084001 (2019).

[9] E. Annala, T. Gorda, A. Kurkela, J. Nättilä, and A.
Vuorinen, Nat. Phys. 16, 907 (2020).

[10] E. Annala, T. Gorda, E. Katerini, A. Kurkela, J. Nättilä, V.
Paschalidis, andA.Vuorinen,Phys.Rev.X12, 011058 (2022).

[11] S. Altiparmak, C. Ecker, and L. Rezzolla, Astrophys. J. Lett.
939, L34 (2022).

[12] P. B. de Tovar, M. Ferreira, and C. Providência, Phys. Rev.
D 104, 123036 (2021).

[13] S. M. A. Imam, N. K. Patra, C. Mondal, T. Malik, and B. K.
Agrawal, Phys. Rev. C 105, 015806 (2022).

[14] C. Mondal and F. Gulminelli, Phys. Rev. D 105, 083016
(2022).

[15] R. Essick, I. Tews, P. Landry, and A. Schwenk, Phys. Rev.
Lett. 127, 192701 (2021).

[16] C. Chirenti, P. R. Silveira, and O. D. Aguiar, Int. J. Mod.
Phys. Conf. Ser. 18, 48 (2012).

[17] G. Pratten, P. Schmidt, and T. Hinderer, Nat. Commun. 11,
2553 (2020).

[18] N. Andersson and K. D. Kokkotas, Phys. Rev. Lett. 77, 4134
(1996).

[19] N. Andersson and K. D. Kokkotas, Mon. Not. R. Astron.
Soc. 299, 1059 (1998).

[20] O. Benhar, E. Berti, and V. Ferrari, Mon. Not. R. Astron.
Soc. 310, 797 (1999).

[21] O. Benhar, V. Ferrari, and L. Gualtieri, Phys. Rev. D 70,
124015 (2004).

[22] L. K. Tsui and P. T. Leung, Mon. Not. R. Astron. Soc. 357,
1029 (2005).

[23] T. K. Chan, Y. H. Sham, P. T. Leung, and L. M. Lin, Phys.
Rev. D 90, 124023 (2014).

[24] H. Sotani, Phys. Rev. D 103, 123015 (2021).
[25] H. Sotani and B. Kumar, Phys. Rev. D 104, 123002 (2021).

[26] A. Kunjipurayil, T. Zhao, B. Kumar, B. K. Agrawal, and
M. Prakash, Phys. Rev. D 106, 063005 (2022).

[27] P. N. McDermott, H. M. van Horn, and J. F. Scholl,
Astrophys. J. 268, 837 (1983).

[28] S. Yoshida and U. Lee, Astron. Astrophys. 395, 201 (2002).
[29] S. Y. Lau, P. T. Leung, and L. M. Lin, Phys. Rev. D 99,

023018 (2019).
[30] D. Bandyopadhyay, S. A. Bhat, P. Char, and D. Chatterjee,

Eur. Phys. J. A 54, 26 (2018).
[31] S. Han and A.W. Steiner, Phys. Rev. D 99, 083014 (2019).
[32] P. von Doetinchem et al., J. Cosmol. Astropart. Phys. 08

(2020) 035.
[33] G. Baym, C. Pethick, and P. Sutherland, Astrophys. J. 170,

299 (1971).
[34] J. Carriere, C. J. Horowitz, and J. Piekarewicz, Astrophys. J.

593, 463 (2003).
[35] T. Malik, M. Ferreira, B. K. Agrawal, and C. Providência,

Astrophys. J. 930, 17 (2022).
[36] I. Tews, T. Krüger, K. Hebeler, and A. Schwenk, Phys. Rev.

Lett. 110, 032504 (2013).
[37] K. Hebeler, J. M. Lattimer, C. J. Pethick, and A. Schwenk,

Astrophys. J. 773, 11 (2013).
[38] A. Kurkela, P. Romatschke, and A. Vuorinen, Phys. Rev. D

81, 105021 (2010).
[39] E. S. Fraga, A. Kurkela, and A. Vuorinen, Astrophys. J. Lett.

781, L25 (2014).
[40] A. Florian, Prob. Eng. Mech. 7, 123 (1992).
[41] L. Lindblom, Phys. Rev. D 82, 103011 (2010).
[42] L. Lindblom, Phys. Rev. D 97, 123019 (2018).
[43] E. Annala, T. Gorda, A. Kurkela, J. Nättilä, and A.

Vuorinen, Nat. Phys. 16, 907 (2020).
[44] D. Kumar, H. Mishra, and T. Malik, J. Cosmol. Astropart.

Phys. 02 (2023) 015.
[45] M. C. Miller et al., Astrophys. J. Lett. 918, L28 (2021).
[46] B. P. Abbott et al. (LIGO Scientific and Virgo Collaboration),

Phys. Rev. X 9, 011001 (2019).
[47] T. E. Riley et al., Astrophys. J. Lett. 887, L21 (2019).
[48] M. C. Miller et al., Astrophys. J. Lett. 887, L24 (2019).
[49] T. E. Riley et al., Astrophys. J. Lett. 918, L27 (2021).
[50] D. D. Doneva, E. Gaertig, K. D. Kokkotas, and C. Krüger,

Phys. Rev. D 88, 044052 (2013).
[51] B. K. Pradhan, D. Chatterjee, M. Lanoye, and P. Jaikumar,

Phys. Rev. C 106, 015805 (2022).
[52] S. Yoshida and Y. Kojima, Mon. Not. R. Astron. Soc. 289,

117 (1997).
[53] K. D. Kokkotas, T. A. Apostolatos, and N. Andersson,

Mon. Not. R. Astron. Soc. 320, 307 (2001).
[54] B. K. Pradhan and D. Chatterjee, Phys. Rev. C 103, 035810

(2021).
[55] https://www.uc.pt/lca.

ROBUST UNIVERSAL RELATIONS IN NEUTRON STAR … PHYS. REV. D 108, 083008 (2023)

083008-7

https://doi.org/10.1103/PhysRevD.86.084003
https://doi.org/10.1103/PhysRevD.86.084003
https://doi.org/10.1088/0004-637X/789/2/127
https://doi.org/10.1103/PhysRevLett.120.261103
https://doi.org/10.1088/1361-6471/ab2567
https://doi.org/10.1038/s41567-020-0914-9
https://doi.org/10.1103/PhysRevX.12.011058
https://doi.org/10.3847/2041-8213/ac9b2a
https://doi.org/10.3847/2041-8213/ac9b2a
https://doi.org/10.1103/PhysRevD.104.123036
https://doi.org/10.1103/PhysRevD.104.123036
https://doi.org/10.1103/PhysRevC.105.015806
https://doi.org/10.1103/PhysRevD.105.083016
https://doi.org/10.1103/PhysRevD.105.083016
https://doi.org/10.1103/PhysRevLett.127.192701
https://doi.org/10.1103/PhysRevLett.127.192701
https://doi.org/10.1142/S2010194512008185
https://doi.org/10.1142/S2010194512008185
https://doi.org/10.1038/s41467-020-15984-5
https://doi.org/10.1038/s41467-020-15984-5
https://doi.org/10.1103/PhysRevLett.77.4134
https://doi.org/10.1103/PhysRevLett.77.4134
https://doi.org/10.1046/j.1365-8711.1998.01840.x
https://doi.org/10.1046/j.1365-8711.1998.01840.x
https://doi.org/10.1046/j.1365-8711.1999.02983.x
https://doi.org/10.1046/j.1365-8711.1999.02983.x
https://doi.org/10.1103/PhysRevD.70.124015
https://doi.org/10.1103/PhysRevD.70.124015
https://doi.org/10.1111/j.1365-2966.2005.08710.x
https://doi.org/10.1111/j.1365-2966.2005.08710.x
https://doi.org/10.1103/PhysRevD.90.124023
https://doi.org/10.1103/PhysRevD.90.124023
https://doi.org/10.1103/PhysRevD.103.123015
https://doi.org/10.1103/PhysRevD.104.123002
https://doi.org/10.1103/PhysRevD.106.063005
https://doi.org/10.1086/161006
https://doi.org/10.1051/0004-6361:20021270
https://doi.org/10.1103/PhysRevD.99.023018
https://doi.org/10.1103/PhysRevD.99.023018
https://doi.org/10.1140/epja/i2018-12456-y
https://doi.org/10.1103/PhysRevD.99.083014
https://doi.org/10.1088/1475-7516/2020/08/035
https://doi.org/10.1088/1475-7516/2020/08/035
https://doi.org/10.1086/151216
https://doi.org/10.1086/151216
https://doi.org/10.1086/376515
https://doi.org/10.1086/376515
https://doi.org/10.3847/1538-4357/ac5d3c
https://doi.org/10.1103/PhysRevLett.110.032504
https://doi.org/10.1103/PhysRevLett.110.032504
https://doi.org/10.1088/0004-637X/773/1/11
https://doi.org/10.1103/PhysRevD.81.105021
https://doi.org/10.1103/PhysRevD.81.105021
https://doi.org/10.1088/2041-8205/781/2/L25
https://doi.org/10.1088/2041-8205/781/2/L25
https://doi.org/10.1016/0266-8920(92)90015-A
https://doi.org/10.1103/PhysRevD.82.103011
https://doi.org/10.1103/PhysRevD.97.123019
https://doi.org/10.1038/s41567-020-0914-9
https://doi.org/10.1088/1475-7516/2023/02/015
https://doi.org/10.1088/1475-7516/2023/02/015
https://doi.org/10.3847/2041-8213/ac089b
https://doi.org/10.1103/PhysRevX.9.011001
https://doi.org/10.3847/2041-8213/ab481c
https://doi.org/10.3847/2041-8213/ab50c5
https://doi.org/10.3847/2041-8213/ac0a81
https://doi.org/10.1103/PhysRevD.88.044052
https://doi.org/10.1103/PhysRevC.106.015805
https://doi.org/10.1093/mnras/289.1.117
https://doi.org/10.1093/mnras/289.1.117
https://doi.org/10.1046/j.1365-8711.2001.03945.x
https://doi.org/10.1103/PhysRevC.103.035810
https://doi.org/10.1103/PhysRevC.103.035810
https://www.uc.pt/lca
https://www.uc.pt/lca
https://www.uc.pt/lca

