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Abstract: Bioceramics are used to repair, rebuild, and replace parts of the human body, e.g., bones,
joints and teeth, in the form of powder, coatings or prostheses. The synthetic hydroxyapatite
[Ca10(PO4)6(OH)2 (HAP)] based on calcium phosphate has been widely used in the medical and
dental areas due to the chemical similarity with the inorganic component of human bone tissue. In this
work, hydroxyapatite nanocrystalline powders were synthesized by the solid-state reaction method
and sintered with a galactomannan and chitosan blend. The bioceramics studied were prepared
from 70%, 80% and 90% of hydroxyapatite with 30%, 20% and 10% of galactomannan and chitosan
blends, respectively. The influence of the blend content on the bioceramics was investigated through
structural, vibrational, thermal, morphological and dielectric characterizations. It was observed that
the increase in the blend percentage promoted an increase in the grain size, which was followed by a
decrease in the density and hardness of the samples. The sample with a higher amount of polymeric
blend also presented a higher dielectric constant and higher losses.

Keywords: hydroxyapatite; galactomannan; chitosan; polymeric blend; bioceramics

1. Introduction

The various pathologies that affect the bone structure, such as osteoporosis and loss
of bone mass, encouraged the search for synthetic materials that facilitate bone repair,
aiming for the rapid restoration of physiological functions [1,2]. Among these materials,
bioceramics are used to repair, rebuild and replace parts of the human body, e.g., bones,
joints, teeth and others, in the form of powder or coatings for prostheses [3,4].

The biomineral phase, based on calcium phosphates, is the main constituent of calcified
tissues (bone, enamel and dentin), which is present in human bone in a composition range
of about 65–70%, whereas the water content is in the range of 5–8% and the organic phase
constitutes the remaining content [5].

Calcium phosphate salts, such as the synthetic hydroxyapatite Ca10(PO4)6(OH)2
(HAP), have been widely used in the orthopedic and dental fields since they have chemical
similarity with the inorganic component of human bone tissue and high stability in the
presence of biological fluids. As a consequence, HAP has osteoconductivity, biocompati-
bility and bioactivity properties, i.e., the ability to form chemical bonds with neighboring
hard tissues after implantation [5–11].

The HAP has been studied in the form of powder and coating, such as nano or
microparticles [12,13], with its synthesis being reported by different wet and dry methods,
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e.g., precipitation in aqueous solutions, sol–gel processes, high-energy grinding, etc. [14–19].
The various techniques used for the synthesis of HAP infer different characteristics that
influence, for example, its orthopedic and dental application [4,9].

In the wet synthesis processes, since aqueous solutions are used, the by-product is
mainly water, producing, generally, nano-sized and homogeneous powders. Moreover,
there is a very low probability of contamination. However, disadvantages, such as the
inherent difficulty in controlling the exact stoichiometric composition of the product and
the long time required to obtain HAP powders, culminate in poor reproducibility and high
processing costs.

In the dry synthesis processes, i.e., processes that do not require solvents, there is
no need for specific controllable conditions, leading to high reproducibility and low cost.
However, the risk of contamination can be increased during the milling process, with most
of the dry processes having difficulty producing nano-sized HAP powders [20–22].

The HAP obtained at low temperatures presents low crystallinity being a fragile
material. At high temperatures (above 900 ◦C), HAP presents good crystallinity and can
produce a more resistant material and is also easy to handle [23].

HAP can be used as a biomaterial and as ion exchangers, adsorbents and catalysts; how-
ever, one of the most effective uses of HAP is as a hybrid material with biopolymers [24,25],
having, as an example, its joint use with collagen, chitosan and chitin, synthesized by
various methods, including precipitation, electrochemical deposition and blending, i.e.,
a biomimetic process with simulation of the biological fluid [26–33]. These biopolymers
end up inferring changes in the properties of HAP, particularly the dielectric, vibrational,
morphological and optical properties [34–36].

In this context, chitosan, a polycationic linear biopolymer, amino derived from the
partial or total deacetylation process of the chitin [37], with a structure formed by the repeti-
tion of N-acetyl-D-glucosamine or 2-acetamido-2-deoxy-D-glucose units in diluted β(1→4)
connections [38], contains numerous advantages, e.g., displaying high biodegradability,
high biocompatibility, chemical inertia and good film-forming properties [39,40].

Galactomannan, a polysaccharide present in the seed endosperm of a variety of legu-
minous plants, consists of linear chains of (1–4) linked β-D-mannopyranosyl residues,
most of which are substituted with (1–6) linked α-D-galactopyranosyl side-chain residues,
with the ratio of mannose to galactose depending on the plant source and the method of
extraction. These compounds have been studied in binary mixtures with other polysaccha-
rides due to their gel formation ability, rheological properties and applicability in several
systems [41–44].

The biopolymers mentioned, once added to the synthesis of HAP, can lead to changes
in its properties. Therefore, in this study, HAP nanocrystalline powders were synthesized
and sintered with a galactomannan and chitosan blend. The influence of the blend on
the bioceramic was investigated through structural, vibrational, thermal, dielectric and
morphological characterizations.

2. Materials and Methods
2.1. Bioceramics Preparation

The sample preparation consisted of six steps: synthesis of hydroxyapatite, galac-
tomannan extraction and solution preparation, chitosan solution preparation, polymeric
blend preparation and, finally, the production of the bioceramics composed of hydroxyap-
atite and the polymeric blend.

The synthesis of HAP was performed by the high-energy method, using stoichiometric
amounts of calcium hydroxide, Ca(OH)2 (Vetec, 97%), and calcium hydrogen phosphate,
CaHPO4 (Aldrich, St. Louis, MO, USA, 99%), according to the chemical reaction presented
in Equation (1):

4Ca(OH)2 + 6CaHPO4 → Ca10(PO4)6(OH)2 + 6H2O (1)
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The starting materials were ground in a Fritsch Pulverisette 6 planetary ball mill.
During grinding, air-sealed stainless steel bowls and balls were used, with a rotation speed
of 370 rpm. To avoid excessive heat, the synthesis was performed in 30 min stages with
10 min pauses, with a total duration of 20 h.

The crude galactomannan was extracted from the seeds of Adenanthera pavonina L. The
endosperms were obtained after heating the seeds in boiling distilled water for 20 min with
enzymatic inactivation, followed by swelling for 12 h. The seed coats were removed and
then the endosperms were separated from the embryo and stored under refrigeration [34].

The galactomannan solution (GP) was obtained by the solubilization of the endosperms
at room temperature in a 0.1% acetic acid solution (pH = 3.0) for 1 h under mechanical
agitation. The solution was centrifuged at 14,560× g (10,000 rpm) for 1 h, and the dry
matter of the suspension was obtained by heating it at 100 ◦C until a constant weight was
reached. The resulting solution was taken to a final concentration of 10 mg/g.

The chitosan solution (CP) was obtained by the solubilization of the chitosan powder
(Sigma/Aldrich, St. Louis, MO, USA,) at room temperature in 0.1% acetic acid solution
(pH = 3.0) for 24 h under mechanical agitation. The solution was centrifuged at 14,560× g
for 1 h, with the resulting solution taken to a final concentration of 5 mg/g.

The polymeric blend of galactomannan and chitosan (GC) was prepared from the
homogenization of GP (10 mg/g) and CP (5 mg/g) solutions, obtained by agitation at room
temperature, centrifuged at 582 g for 20 min and stored under refrigeration until use.

Figure 1 shows the representative flowchart of GC blend preparation and the processes
that preceded it.
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Figure 1. Representative flowchart of the extraction of galactomannan and preparation processes of
the GP and CP solutions as well as the synthesis of the GC blend.

Finally, the bioceramics were prepared from 70%, 80% and 90% of HAP nanocrystalline
powder with 30%, 20% and 10% of GC blends, respectively, and categorized as follows:
H70GC30, H80GC20 and H90GC10. The resulting powders were molded into cylindrical
pellets that were 10 mm in diameter and 1 mm in height by cold uniaxial pressing (260 MPa)
in a hydraulic press. The samples were then sintered at 900 ◦C for 5 h at a heating rate of
5 ◦C/min.

Figure 2 shows the representative flowchart of the bioceramics preparation process.
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2.2. Bioceramics Characterization

X-ray diffraction (XRD) patterns were determined by a Rigaku DMAXB diffractometer
configured in a Bragg–Brentano geometry with Cu Kα radiation (40 kV and 25 mA). The
analyses were performed at room temperature (27 ◦C) with an angular interval of 10–70◦

(2θ) at a rate of 1◦/min. The XRD patterns were analyzed by the Rietveld refinement
method [45]. The quantitative analysis of the Rietveld refinement was performed using
the BGMN software with the Profex interface [46]. This method consists of minimizing the
sum of squares of the difference between the intensities observed and calculated for each
point of the powder diffraction pattern (Equation (2)).

M = ∑i wi
(

IOBSi − ICALCi

)2 (2)

where M is the minimum residue, IOBSi is the intensity of the experimental diffraction
pattern in the i-point, ICALCi is the intensity of the theoretical diffraction pattern in the
i-point and wi is the weight for each measured point [18]. To evaluate the quality of the
adjustment, quantitative factors that require reliable data are used, and among them, we
can define the standard weight residue, RWP, and the expected residue, Rexp, presented in
Equations (3) and (4).

RWP =

[
∑i wi

(
IOBSi − ICALCi

)2

∑i wi
(

IOBSi

)2

] 1
2

(3)

Rexp =

(
N − P

∑i wi
(

IOBSi

)2

) 1
2

(4)

where N is the total number of observed points and P is the number of fitted parameters.
From the mathematical point of view, the factor with the greatest statistical significance to
be evaluated is the RWP because it depends on the minimum residue M. Another important
factor is S, also called the goodness of fit (Equation (5)), and should be close to 1.0 at the
end of the refinement process.

S =
RWP
Rexp

(5)

The size of the crystallite, LC, can be estimated from the Scherrer formula, presented
in Equation (6), and using the peaks obtained from X-ray diffraction.

LC =
kλ

β cos θ
(6)
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where k is the constant that depends on the morphology and direction of the material net-
work (and is equal to 0.9), λ is the wavelength of X-rays, β is the width at half height of the
diffracted peak (FWHM) and θ is the Bragg angle of the corresponding diffracted peak [47].
The percentage degree of crystallinity (XC) was determined using Equation (7) [48].

XC = 100×
Iexp − Iback

Iexp
(7)

where Iexp refers to the total integrated area of the experimental pattern obtained by
X-ray diffraction and Iback is the integral area of the baseline that corresponds to the
amorphous region.

The Fourier transform infrared (FTIR) spectra of hydroxyapatite and hydroxyapatite
samples with polymeric blends were obtained using KBr, measured in the region between
400 and 4000 cm−1, using the SHIMATZU FTIR-283B spectrometer.

The experimental density was measured by Archimedes’ principle using a pycnometer.
The thermogravimetry (TG) analyses were performed using the SHIMADZU TGA

50H thermal analyzer. The samples were heated in an inert atmosphere of nitrogen gas
at a heating rate of 10 ◦C/min. The differential scanning calorimetry (DSC) studies were
performed in a Shimadzu DSC50 thermal analyzer, with utilization of the same heating rate.

To perform scanning electron microscopy (SEM), the samples were coated with gold
and analyzed in a Phillips XL-30 operating with primary electron groups limited between
12 and 20 KeV. The average grain size was estimated from the obtained micrographs.

To evaluate the hardness of the samples, a SHIMADZU HMV2 microdurometer was
used, and was equipped with a standard Vickers microhardness tester, upon which a load
of 920.7 mN was applied for 20 s. We then performed 10 indentations in each sample, with
10 mm in diameter and 1 mm in thickness. The hardness is the mechanical property used to
know the strength of the material, and it is related to the material’s density and morphology.
The Vickers microhardness tester consists of a pyramidal diamond penetrator that is forced
against the specimen. The Vickers hardness, HV, of each sample was determined according
to Equation (8).

HV =
L

2d2 (8)

where d is the average length of the indentation diagonal, expressed in meters, and L the
indentation load, in Newton [49,50].

The dielectric measurements of the GC blend and the bioceramics H70GC30, H80GC20
and H90GC10 were performed using the Solartron 1260 Impedance Analyzer in the fre-
quency range from 1 Hz to 30 MHz at room temperature (27 ◦C). The real part of the
dielectric permittivity, ε′, was calculated from the measured capacitance, C, of the samples,
and is given by Equation (9).

ε′ =
Cd
ε0 A

(9)

where d is sample thickness, A is the surface area of the electrode and ε0 is the vacuum
permittivity (8,851,014 × 10−12 F/m).

The complex part of the dielectric permittivity, ε′′ , was obtained from the resistance, R,
of the samples by applying Expression (10):

ε′′ =
d

Rωε0 A
(10)

The real and complex parts of the dielectric permittivity can be related by the tangent
loss, tanδ, which is given by Equation (11).

tanδ =
ε′′

ε′
(11)
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The ε′ measures the ability of a dielectric to store energy and relates to the polarization
that occurs in the material subject to an electric field. The ability of a material to convert
electromagnetic energy into heat is measured by the ε′′ [51–56].

3. Results
3.1. XRD and Rietveld Refinement

The structure of the HAP (sintered at 900 ◦C for 5 h with a heating rate of 5 ◦C/min)
was determined by XRD. Figure 3a shows the XRD patterns and the ICSD 429,746 pro-
file [57]. It is observed that the HAP assumes all the characteristic peaks of the hexagonal
phase of hydroxyapatite, not presenting peaks that could be assigned to secondary phases.
The crystallite size, LC, and the percentage degree of crystallinity, XC, of the sintered HAP,
obtained using Equations (6) and (7), are (30.45 ± 0.7) nm and 37.52%, respectively, and
are depicted in Table 1. Silva et al. [58], when synthesizing hydroxyapatite samples by
high-energy mechanical grinding, obtained an average crystallite size between 22 and
39 nm, showing good agreement with this work.
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HAP spectrum.

Table 1. Structural parameters obtained through the XRD pattern and Rietveld refinement.

Sample
Lattice

Parameter RWP (%) S ρ (g/cm3) LC (nm) XC (%)
a = b (Å) c (Å) V (Å3)

HAP 9.4204 (7) 6.8823 (5) 528.9358 (5) 15.01 1.08 3.147 30.45 ± 0.7 37.52

With the Rietveld refinement, a quantitative analysis of the crystalline phase of HAP
was performed. Figure 3b confirms that the sample presents 100% of the Ca10(PO4)6(OH)2
phase, with a hexagonal structure characteristic of the space group P63/m, and the network
parameters and density presented in Table 1. The results found are aligned with the values
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previously reported [57,58]. The RWP and S values, obtained using Equations (3)–(5), are
satisfactory since they are within their typical range [19,59].

3.2. Infrared Spectroscopy

The FTIR spectrum for the HAP sample, measured in the region ranging from 2000 cm−1

to 400 cm−1, is displayed in Figure 4. The characteristic bands, assigned to the functional
groups phosphate (PO4

3−), carbonate (CO3
2−) and hydroxyl (OH−) can be identified: the

bands at 569 cm−1, 603 cm−1, 968 cm−1, 1043 cm−1 and 1093 cm−1 can be attributed to the
PO4

3− ion; the bands at 1419 cm−1 and 1469 cm−1 arise from vibrations of the CO3
2− ions;

and vibrations associated to OH− are observed at 630 cm−1 and 1649 cm−1. The band at
1649 cm−1 corresponds to free OH−, attributed to symmetric deformation in the molecule
of H2O adsorbed in the synthesis process. The bands at 1469 cm−1 and 1419 cm−1 are
assigned to the asymmetric stretching vibration of carbonate ions. The bands at 1093 cm−1

and 1043 cm−1 may be ascribed to the triply degenerated ν3 anti-symmetric stretching of
the P–O band, and the 968 cm−1 band can be due to the ν1 non-degenerated symmetric
stretching of the P–O bond. The band refers to the oscillation mode of the OH- ions, and
the band of the P-OH bond corresponding to the water adsorbed on the surface is visible
at 630 cm−1. Finally, the bands at 603 cm−1 and 569 cm−1 can be attributed to the triply
degenerated ν4 vibration of the O–P–O bond, and the band at 478 cm−1 may be related to
the doubly degenerated ν2 O–P–O bending.
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The results obtained are in agreement with the literature [15,16,47,60–64] and the
observed bands and their corresponding assignments can be consulted in Table 2.
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Table 2. FTIR bands with corresponding vibrations for HAP and GC.

Bands
Wavenumber (cm−1)

HAP GC

υ2 (O-P-O) 478 -
υ4 (O-P-O) 569 -
υ4 (O-P-O) 603 -

OH− 630 -
α–D–galactopyranose - 808
β–D–mannopyranose - 879

υ1 (P-O) 968 -
CH3 - 1139

υ3 (P-O) 1043 -
υ3 (P-O) 1093 -

C-O-C stretching vibration 1000 to 1110
Symmetric deformations of

groups CH2 and COH - 1350 to 1450

υ3 (CO3
2−) 1419 -

υ3 (CO3
2−) 1469 -

N−H - 1575
OH− 1649 -
C=O - 1660

The FTIR spectrum of the GC blend, measured in the region from 2000 cm−1 to
400 cm−1, is also depicted in Figure 4. The bands at 808 cm−1 and 879 cm−1 indicate the
presence of α–D–galactopyranose and β–D–mannopyranose units, respectively, and, at
1014 cm−1, a common band of polysaccharides is also present. It is noteworthy that the
band between 1000 and 1110 cm−1 is attributed to C-O-C stretching vibration and, in the
region from 1350 to 1450 cm−1, the bands correspond to the symmetrical deformations of
the CH2 and COH groups [65–68].

According to [69], these spectra can be influenced by parameters such as the deacety-
lation percentage or crystallinity. The IR spectra of chitosan, which is essentially produced
from chitin by a deacetylation reaction, corresponds to a convolution of specific signals for
carbohydrates and absorption due to amine and amide functions. Therefore, the band at
1575 cm−1 arises from the peptide bond vibration amide II and can be ascribed to the N–H
stretching vibrations, while the 1660 cm−1 band is assigned to the stretching vibrations of
C=O due to the peptide bond vibration amide I [69–73].

The analysis of the IR of the bioceramics H70GC30, H80GC20 and H90GC10 showed
the same absorptions of HAP.

3.3. Thermal Analysis

To study the thermal behavior of HAP and the GC blend, thermogravimetry and differential
scanning calorimetry measurements were performed and are depicted in Figures 5 and 6.

The TG curve shows a three-stage weight loss at the temperature ranges of 20–100,
100–300 and 300–500 ◦C, approximately.

In the first stage, the weight loss is due to the evaporation of adsorbed water [72,73].
The presence of water, physically adsorbed in the synthesis process of HAP, was already
discussed in the infrared spectrum analysis. The second stage shows weight loss due
to the release of adsorbed and lattice water, which is in accordance with the findings of
Tõnsuaadu et al. [74], which stated that the lattice water is irreversibly lost between 200 and
400 ◦C. The third stage may represent the loss of water from decomposition, which means
that in the present case, the removal of water molecules starts at lower temperatures when
compared to the literature. According to Tõnsuaadu et al. [75], the dehydroxylation of HAP
with the removal of water molecules in the air atmosphere starts at 900 ◦C. However, Bulina
et al. [73] reported that this process probably starts at a lower temperature, specifically
600 ◦C, and Mandal et al. [72] considered the temperature of 780 ◦C to be the beginning
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point of the dihydroxylation process. Such a temperature discrepancy should be attributed
to the differences between samples and the experimental method [75]. Above 500 ◦C, HAP
is thermally stable since stoichiometric hydroxyapatite with a Ca/P ratio of 1.67 is stable
up to 1200 ◦C [76].
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In Figure 5b, the endothermic event present in the range 20 to 100 ◦C, more precisely
at 52.74 ◦C, corroborates the information given by the TG curve and can be attributed to
the evaporation of adsorbed water [77]. In the range of 100–300 ◦C, a broad exothermic
peak can be considered. This peak is due to crystal growth and lattice strain release
during the heating process. In the grinding process, a large amount of strain and defects
are incorporated into the powder particles and, when the milled sample is heated, grain
growth takes place and strain is released, although no phase transformation occurs up to
1200 ◦C [72].

The thermogram of the GC blend, shown in Figure 6a, indicates that the thermal
decomposition occurs in two stages. In the first, in the range of 25 to 150 ◦C, there is a loss
of 15.03% of the initial mass of the sample resulting from the water release. In the second,
between 200 and 350 ◦C, a pronounced decline in the TG curve is observed, referring to
the disintegration of macromolecules related to the polymeric groups present in the blend
as well as the decomposition of the organic material, which results in the loss of another
53.85% of the initial mass.
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In Figure 6b, the thermal transitions present in the GC blend were verified through
the DSC. The two events present in the thermogram are represented by two peaks, one
endothermic at 85 ◦C and one exothermic at 290 ◦C, respectively. The endothermic peak is
related to the loss of water in the structure and the exothermic peak with the degradation
of the material. The GC blend can be considered thermally stable due to the presence of
two well-defined thermal transition regions [68,72].

In the thermal analyses of the bioceramics H70GC30, H80GC20 and H90GC10, no
divergences were observed with the results presented by HAP. This occurred since the
biopolymers degraded at a temperature of around 290 ◦C; therefore, the bioceramics only
show the presence of HAP, an outcome that can relate to the results obtained in the FTIR.

3.4. Morphological Analysis

The sample morphology was investigated using SEM. Figure 7 presents the micro-
graphs of H70GC30, H80GC20 and H90GC10 bioceramics, with a magnification factor of
25,000×. The grains can be described as small spherical particles, being in consonance with
the morphology presented by pure hydroxyapatite.
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Table 3 shows the average grain size, the experimental density and the Vickers hard-
ness obtained for each sample. For the HAP, the average estimated grain size, 0.5 µm, is
aligned with the values reported by Macêdo et al. [34]. It can be observed that the increase
in the CG blend content promoted an increase in the average grain size. This grain growth
has an impact on the porosity of the samples since a decrease in the experimental density
can be observed.

Table 3. Average grain size, Vickers hardness and density of HAP, H70GC30, H80GC20 and H90GC10
bioceramics.

Bioceramics Average Grain Size
(µm) Density (g/cm3)

Vickers Hardness
(GPa)

HAP 0.5 2.61 1.9
H70GC30 0.75 2.20 0.73
H80GC20 0.69 2.32 0.79
H90GC10 0.60 2.67 0.97

The Vickers hardness of HAP, H70GC30, H80GC20 and H90GC10 bioceramics was
calculated with Equation (8). It is observed that the hardness of the bioceramics decreased
with the biopolymer addition. This behavior was expected since the main contribution of
the decrease of the microhardness is the decrease in the ceramic density [50].

3.5. Dielectric Spectroscopy

The dielectric behavior of the GC blend as a function of frequency is depicted in
Figure 8. Figure 8a shows that the dielectric constant, ε′, at room temperature and in
the frequency range considered. This constant decreases monotonically with increasing
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frequency. The continuous decrease of the dielectric constant with increasing frequency
is a common behavior for all dielectric materials [78] and is due to the fact that when
the frequency of the applied electric field increases, the mechanism of polarization will
not be able to follow the change in the electric field and, therefore, the contribution of
polarization to the dielectric constant will diminish [51,78,79]. At higher frequencies, when
already in the limit of the measurement window, it is possible to infer that the ε′ values
tend to stabilize, a prediction supported by the dielectric behavior observed in several
polymers [79]. Figure 8b presents the tangent loss, tanδ, as a function of the frequency. The
inexistence of peaks shows that, at room temperature and in the frequency range of the
measurements, the CG blend does not present any relaxation phenomenon and, since the
values of tanδ are inferior to one, based on Equation (11), it is possible to conclude that the
dielectric losses are inferior to the dielectric constant.
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The dielectric properties of the bioceramics H70GC30, H80GC20 and H90GC10, de-
picted in Figure 9, are related to the different types of polarization present in the sample.
The interfaces of bioceramics with biopolymers have a large number of defects that result
in an unequal distribution of charges [80]. It can be verified in Figure 9a that the increase in
the amount of GC promoted the increase of ε′. This enhancement in the dielectric constant
values shows the increased energy storage capacity of the studied bioceramics [78–83].
With the addition of GC, cations are the dominant charges and may be responsible for the
increase in the dielectric constant [34]. Until≈ 10 MHz, the samples show a quasi-frequency
independent behavior, indicating that the materials do not exhibit intense polarization
processes and that the stored charge remains practically constant in the frequency range
considered. At higher frequencies (>10 MHz), the charge carriers are unable to follow the
rapid changes in the applied electric field and, as a consequence, the dielectric constant
values start to decrease [81,82].
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74. Tonsuaadu, K.; Gross, K.A.; Plūduma, L.; Veiderma, M. A review on the thermal stability of calcium apatites. J. Therm. Anal.
Calorim. 2012, 110, 647–659. [CrossRef]

75. Wang, T.; Dorner-Reisel, A.; Müller, E. Thermogravimetric and thermokinetic investigation of the dehydroxylation of a hydroxya-
patite powder. J. Eur. Ceram. Soc. 2004, 24, 693–698. [CrossRef]

76. Mostafa, N.Y. Characterization, thermal stability and sintering of hydroxyapatite powders prepared by different routes. Mater.
Chem. Phys. 2005, 94, 333–341. [CrossRef]

77. Zima, A. Hydroxyapatite-chitosan based bioactive hybrid biomaterials with improved mechanical strength. Spectrochim. Acta
Part A 2018, 193, 175–184. [CrossRef]

https://doi.org/10.1016/j.physb.2008.07.017
https://doi.org/10.1016/j.bpc.2005.11.001
https://www.ncbi.nlm.nih.gov/pubmed/16337076
https://doi.org/10.3390/cryst13060960
https://doi.org/10.1016/j.molliq.2019.112344
https://doi.org/10.1016/j.indcrop.2013.08.007
https://doi.org/10.1016/B978-1-4377-7817-5.00004-3
https://doi.org/10.1016/j.solidstatesciences.2008.07.010
https://doi.org/10.1016/j.jssc.2016.03.004
https://doi.org/10.1016/S1293-2558(03)00035-9
https://doi.org/10.1016/j.ceramint.2013.11.096
https://doi.org/10.1016/j.biomaterials.2004.02.043
https://doi.org/10.1016/j.matchemphys.2005.01.028
https://doi.org/10.1016/j.cap.2009.03.024
https://doi.org/10.1016/j.materresbull.2009.04.014
https://doi.org/10.1016/j.biomaterials.2008.07.042
https://doi.org/10.1016/j.jcis.2006.10.086
https://www.ncbi.nlm.nih.gov/pubmed/17316669
https://doi.org/10.1016/S0378-5173(03)00408-3
https://doi.org/10.1016/S0032-3861(02)00834-0
https://doi.org/10.1007/s13204-012-0109-5
https://doi.org/10.1016/j.matchemphys.2005.10.027
https://doi.org/10.1016/j.carbpol.2004.01.011
https://doi.org/10.1016/j.ijpharm.2007.06.024
https://doi.org/10.1016/j.powtec.2013.12.026
https://doi.org/10.3390/min11121310
https://doi.org/10.1007/s10973-011-1877-y
https://doi.org/10.1016/S0955-2219(03)00248-6
https://doi.org/10.1016/j.matchemphys.2005.05.011
https://doi.org/10.1016/j.saa.2017.12.008


Crystals 2023, 13, 1429 16 of 16

78. Rahman, P.M.; Mujeeb, V.A.; Muraleedharan, K.; Thomas, S.K. Chitosan/nano ZnO composite films: Enhanced mechanical,
antimicrobial and dielectric properties. Arabian J. Chem. 2018, 11, 120–127. [CrossRef]

79. Raja, V.; Sharma, A.K.; Rao, V.N. Impedance spectroscopic and dielectric analysis of PMMA-CO-P4VPNO polymer films. Mater.
Lett. 2004, 58, 3242–3247. [CrossRef]

80. Bonardd, S.; Robles, E.; Barandiaran, I.; Saldías, C.; Leiva, Á.; Kortaberria, G. Biocomposites with increased dielectric constant
based on chitosan and nitrile-modified cellulose nanocrystals. Carbohydr. Polym. 2018, 199, 20–30. [CrossRef]

81. Al-Muntaser, A.A.; Pashameah, R.A.; Alzahrani, E.; AlSubhi, S.A.; Hameed, S.T.; Morsi, M.A. Graphene nanoplatelets/TiO2
hybrid nanofiller boosted PVA/CMC blend based high performance nanocomposites for flexible energy storage applications.
J. Polym. Environ. 2023, 31, 2534–2548. [CrossRef]

82. El-Naggar, A.M.; Heiba, Z.K.; Kamal, A.M.; Alzahrani, K.E.; Abd-Elkader, O.H.; Mohamed, M.B. Impact of natural melanin
doping on the structural, optical and dielectric characteristics of the PVP/CMC blend. J. Taibah Univ. Sci. 2023, 17, 2190731.
[CrossRef]

83. Abdullah, A.Q.; Ali, N.A.; Hussein, S.I.; Hakamy, A.; Abd-Elnaiem, A.M. Improving the Dielectric, Thermal, and Electrical
Properties of Poly (Methyl Methacrylate)/Hydroxyapatite Blends by Incorporating Graphene Nanoplatelets. J. Inorg. Organomet.
Polym. Mater. 2023, 1–12. [CrossRef]

84. Bhatt, A.S.; Bhat, D.K.; Santosh, M.S. Electrical and magnetic properties of chitosan-magnetite nanocomposites. Physica B 2010,
405, 2078–2082. [CrossRef]

85. Costa, M.M.; Sohn, R.S.T.M.; Macêdo, A.A.M.; Mazzetto, S.E.; Graça, M.P.F.; Sombra, A.S.B. Study of the temperature and organic
bindings effects in the dielectric and structural properties of the lithium ferrite ceramic matrix (LiFe5O8). J. Alloys Compd. 2011,
509, 9466–9471. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.arabjc.2016.09.008
https://doi.org/10.1016/j.matlet.2004.05.061
https://doi.org/10.1016/j.carbpol.2018.06.088
https://doi.org/10.1007/s10924-022-02748-z
https://doi.org/10.1080/16583655.2023.2190731
https://doi.org/10.1007/s10904-023-02701-0
https://doi.org/10.1016/j.physb.2010.01.106
https://doi.org/10.1016/j.jallcom.2011.07.038

	Introduction 
	Materials and Methods 
	Bioceramics Preparation 
	Bioceramics Characterization 

	Results 
	XRD and Rietveld Refinement 
	Infrared Spectroscopy 
	Thermal Analysis 
	Morphological Analysis 
	Dielectric Spectroscopy 

	Conclusions 
	References

