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Universidade de Coimbra
Preprint Number 09–11

A LOGIC OF QUASI-EQUATIONS

JIŘÍ ADÁMEK AND LURDES SOUSA

Abstract: Quasi-equations given by parallel pairs of finitary morphisms repre-
sent properties of objects: an object satisfies the property if its contravariant hom-
functor merges the parallel pair. Recently Adámek and Hébert characterized sub-
categories of locally finitely presentable categories specified by quasi-equations. We
now present a logic of quasi-equations close to Birkhoff’s classical equational logic.
We prove that it is complete in all locally finitely presentable categories with effec-
tive equivalence relations.

1. Introduction

It was Bill Hatcher who first considered a representation of properties of
objects via a parallel pair u, v : R → X of morphisms in the sense that an
object A has the property iff every morphism f : X → A fulfils f · u = f · v,
see [9]. Later Bernhard Banaschewski and Horst Herrlich [5] considered the
related concept of injectivity w.r.t. a regular epimorphism c : X → Y : this
is just the step from parallel pairs to their coequalizers. For regular epi-
morphisms which are finitary, that is, have finitely presentable domain and
codomain, Banaschewski and Herrlich [5] characterized full subcategories of
“suitable” categories which can be specified by such injectivity: they are pre-
cisely the subcategories closed under products, subobjects, and filtered col-
imits. Recently the same result was proved for all locally finitely presentable
categories, see [2], where parallel pairs of morphisms u, v with finitely pre-
sentable domain and codomain are called quasi-equations. Notation: u ≡ v.

In the present paper we introduce a logic of quasi-equations: for every set Q

of quasi-equations we characterize its consequences, that is, quasi-equations
u ≡ v which hold in every object satisfying every quasi-equation in Q. In fact,
we introduce two logics: one which is sound and complete in every locally
finitely presentable category. Moreover, this logic is extremely simple: it
states that (1) u ≡ u always holds, (2) if u ≡ v holds, then also q · u ≡ q · v
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holds, and (3) if u ≡ v holds and c is a coequalizer of u and v

v′

���
�
�

u′

���
�
�

u //

v
//

c //

then for all pairs with c · u′ = c · v′ we have that u′ ≡ v′ holds. However
this last rule makes the logic disputable in applications. Think of Birkhoff’s
Equational Logic in the category Alg Σ: its aim is to describe the fully
invariant congruence generated by (u, v), whereas the coequalizer rule takes
the congruence that (u, v) generates for granted.

We therefore present our main logic, called the Quasi-Equational Logic,
without the coequalizer rule. Instead, we work with the parallel pairs alone.
This logic is a bit more involved than (1)-(3) above, but is much nearer to
Birkhoff’s classical result [7]. We prove its completeness in

(i) every locally finitely presentable category with effective equivalence
relations

and
(ii) in ModΣ, the category of Σ-structures for every (many-sorted) first-

order signature.

However, we also present an example of a locally finitely presentable category
in which the Quasi-Equational Logic is not complete.

Related Work Satisfaction of a quasi-equation u ≡ v is equivalent to injec-
tivity w.r.t. the coequalizer of u and v. Our simple logic is just a translation
of the injectivity logic w.r.t. epimorphisms presented in [4]. The full logic
we present is based on a description of the kernel pairs which for regular,
locally finitely presentable categories was presented by Pierre Grillet [8], and
the generalization to all locally finitely presentable categories we use stems
from [1].

2. The Coequalizer Logic

Here we present a (surprisingly simple) deduction system for quasi-equations
which is sound and complete in all locally finitely presentable categories. Its
only disadvantage is that it uses the concept of coequalizer, and this makes
the usufelness in applications a bit questionable.
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2.1. Observation Let the diagram

R′

v′

��
u′

��

R
u //

v
// X

c // C

be such that we have

c · u′ = c · v′ and c = coeq(u, v).

Then the quasi-equation u′ ≡ v′ is a consequence of u ≡ v. In fact, if A

satisfies u ≡ v then for every f : X → A we see that f factors through c,
consequently, f · u′ ≡ f · v′.

This suggests the following

2.2. Definition The Coequalizer Logic uses the following deduction rules:

Reflexivity:
u ≡ u

u ≡ v

Left Composition: given
u

&&

v

88
q

//

q · u ≡ q · v

u ≡ v c · u′ = c · v′

Coequalizer: for c = coeq(u, v)

u′ ≡ v′

2.3. Remark (i) The Coequalizer Deduction System is obviously sound:
whenever we can prove a quasi-equation u ≡ v from a given set Q by using
the above three deduction rules, it follows that u ≡ v is a consequence of Q.

(ii) We will prove the completeness of the above deduction system by re-
ducing it to the completeness of the logic presented by Manuela Sobral and
the authors in [4]. That logic concerned injectivity w.r.t. finitary epimor-

phisms, that is, epimorphisms e : X → Y such that X and Y are finitely
presentable. Recall that an object A is injective w.r.t. e if every morphism
from X to A factors through e. We say that e is an injectivity consequence

of a set E of finitary epimorphisms provided that every object injective w.r.t.
membes of E is also injective w.r.t. e. We formulated the following logic of
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injectivity consisting of one axiom and three deduction rules (where e and e′

are finitary epimorphisms):

(A) idX for finitely presentable objects X

(P)
e

e′
for every pushout

e //

�� ��

e′
//

(C)
e e′

e · e′
given

e′ // e //

(L)
e · e′

e′

And we proved that this represents a sound and complete injectivity logic in
every locally finitely presentable category. That is, given a set Q of finitary
epimorphisms, then the injectivity consequences e of Q are precisely those
which have a (finite) proof applying the above axiom and deduction rules to
members of Q.

(iii) Before proceeding with our logic of quasi-equations, we observe an
unexpected property of proofs based on the rules above: Let Q be a set of
finitary epimorphisms containing all finitary identity morphisms. Then for
every injectivity consequence e of Q there exists a proof of the following form

(A)






e1

...
ek1

(P)






ek1+1

...
ek2

(C)






ek2+1

...
ek3

(L)






ek3+1

...
ek4

= e
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whose first part consists of elements of Q, the second part uses only (P), the
third one only (C), and the last one only (L). This follows from the next
lemma in which we put

QC = {e1 · e2 . . . ek; ei ∈ Q} (the closure under (C))
QL = {e′; e · e′ ∈ Q for some e} (the closure under (L))

and
QP = the closure under pushout.

2.4. Lemma Let Q be a set of finitary epimorphisms containing all idX,

X finitely presentable. Then ((QP )C)L is closed under pushout, composition

and left cancellation.

Proof Observe that (QP )C is closed under pushout (and composition) since
a pushout of a composite is the composite of pushouts.

To prove the statement, let us first prove that ((QP )C)L is closed under
pushout: Consider a pushout

e′ //

u

��

e //

v

��
w
��

e′′
//

f
// P

where e · e′ ∈ (QP )C and form a pushout P of e along v to get, due to (i),
f · e′′ ∈ (QP )C, thus, e′′ ∈ ((QP )C)L. Next we prove that ((QP )C)L is closed
under composition: Consider a composite f ′ · e′

e′ //
f ′

//

e
��

f
��

v �� w��

P

where e ·e′ ∈ (QP )C and f ·f ′ ∈ (QP )C. Form the pushout P of e and f ·f ′ to
get v ∈ (QP )C, thus v ·e·e′ = w ·f ·f ′ ·e′ ∈ (QP )C. This proves f ′ ·e′ ∈ (QP )C.
2

2.5. Theorem The Coequalizer Deduction System is complete in every locally

finitely presentable category.

Proof We apply the result of [4] mentioned in 2.3: given a set H of finitary
epimorphisms containing all finitary identity morphisms then the injectivity
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consequences of e form the closure of H under composition, pushout, and
left cancellation.

Denote by Afp the full subcategory of all finitely presentable objects in the
category A and by

K : A⇉

fp −→ A→
fp

the functor assigning to every quasi-equation its coequalizer. We have

Q |= u ≡ v iff K(u, v) is an injectivity consequence of K[Q].

Assume, without loss of generality, that Q contains all pairs u ≡ u. Then
the above result together with Lemma 2.4 tells us that

Q |= u ≡ v iff K(u, v) ∈ ((K[Q]P)C)L.

Thus, all we need to do is to present a proof of u ≡ v from Q given that the
coequalizer c = K(u, v) lies in the left-cancellation hull of (K[Q]P)C, i.e., it
has the form

··
·

cn
??�������

c2

??�������

u //

v
//

c1

??������� c //

f

OO

and for every i we have a pushout

ui //

vi

//

gi

��

ki //

hi
��

ci

//

for some ui ≡ vi in Q and ki = K(ui, vi). Observe first that ci is a coequalizer
of u′

i = gi · ui and v′i = gi · vi and we have

ui ≡ vi

u′
i ≡ v′i

due to Left Composition. The Coequalizer Rule then yields
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cncn−1 . . . c1u = cncn−1 . . . c1v u′
n ≡ v′n

cn−1 . . . c1u = cn−1 . . . c1v u′
n−1 ≡ v′n−1

...

c1u = c1v u1 ≡ v1

u ≡ v 2

3. The Quasi-Equational Logic in Regular Categories

In the present section we introduce the logic of quasi-equations that only
works with parallel pairs (and does not use coequalizers). This logic is sound
in all categories, and we prove here that it is complete in every category
which

(a) is locally finitely presentable,
(b) is regular in the sense of Michael Barr [6]

and

(c) has effective equivalence relations.

In the next section we will show that regularity can be avoided. We present
also important examples (graphs, posets, first-order structures) of categories
satisfying (a) and (b) but not (c) in which our logic is also complete. How-
ever, a counter-example demonstrates that the logic is not complete in every
regular, locally finitely presentable category.

3.1. Definition The Quasi-Equational Logic uses the following deduction
rules

Reflexivity :
u ≡ u

Symmetry :
u ≡ v

v ≡ u

Transitivity :
u ≡ v v ≡ w

u ≡ w

Union:
u ≡ v u′ ≡ v′

u + u′ ≡ v + v′
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Composition:
u ≡ v

q · u · p ≡ q · v · p
given

p
//

u
&&

v

88
q

//

Epi-Cancellation:
u · p ≡ v · p

u ≡ v
for epimorphisms p

We say that a quasi-equation u ≡ v is deducible from a set Q of quasi-
equations, in symbols

Q ⊢ u ≡ v

if there exists a (finite) proof of u ≡ v applying the above deduction rules to
members of Q.

3.2. Remark The Quasi-Equational Logic is obviously sound: whenever
Q ⊢ u ≡ v, then the quasi-equation u ≡ v is a consequence of Q. That is,
every object satisfying all quasi-equations in Q satisfies u ≡ v too.

We will discuss the completeness in this and the next section.

3.3. Remark Every proof in Birkhoff’s Equational Logic has an easy trans-
lation into the Quasi-Equational Logic: Recall that that logic for a given
signature Σ consists of Reflexivity, Symmetry, Transitivity, and the following
rules:

Invariance:
u ≡ v

σ(u) ≡ σ(v)
for all substitutions σ

Congruence:
u1 ≡ v1, . . . , un ≡ vn

h(u1, . . . , un) ≡ h(v1, . . . , vn)
for all n-ary symbols h in Σ

Let F : Set → Alg Σ be the left adjoint of the forgetful functor of Alg Σ.
A (finitary) equation u ≡ v (where u, v : 1 → FX are Σ-terms for some finite
set X of variables) may be regarded as a pair of morphisms of Alg Σ

F1
v //

u
// FX

extending u and v. This replacement of equations by quasi-equations, to-
gether with a convenient translation of the deduction rules, transforms every
formal proof in Birkhoff’s equational logic into one in the Quasi-Equational
Logic. The Invariance Rule is a special case of Left Composition (recall that
a substitution is nothing else than an endomorphism σ : FX → FX):
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u ≡ v

σ · u ≡ σ · v

For the Congruence Rule, consider the homomorphism h : F1 → Fn taking
the generator of F1 to the term h(0, . . . , n − 1) in Fn. By applying Union
we obtain

u0 + u1 + · · · + un−1 ≡ v0 + v1 + · · · + vn−1 : Fn → FX

and then we just compose with h from the right and the codiagonal from the
left:

F1
h // Fn

u0+···+un−1//

v0+v1+···+vn−1

// FX + · · · + FX
∇ // FX

3.4. Example In the category of posets deduction of quasi-equations is
rather trivial:

(i) Consider the following quasi-equation

• ��*
HHj •0

•1
v0

u01
2

From u0 ≡ v0 we can deduce u1 ≡ v1:

• �����* • •

•�
�
�

A
A

A
SSw

u1

v1

In fact, by using Composition we deduce from u0 ≡ v0 the following

• �����1

PPPPPq

• •

•�
�

�

u′
0

v′0

and • XXXXXXXXz

••

•@
@

@

SSw

u′′
0

v′′0

Symmetry yields v′0 ≡ u′
0 and since u′

0 = u′′
0 Transitivity yields

u0 ≡ v0 ⊢ u1 ≡ v1 .



10 JIŘÍ ADÁMEK AND LURDES SOUSA

(ii) Analogously we deduce from u0 ≡ v0 the following quasi-equations

• �����* • •

•�
�
�

A
A

A

1

• •

•�
�
�

A
A

A

2

• •
��AA

. . .

• •

•�
�
�

A
A

A

n

ZZ~

un

vn

(iii) More generally, we will show that the consequences of u0 ≡ v0 are all
quasi-equations u, v : A → B such that

(*) u(a) and v(a) lie in the same component of B for all a ∈ A.

Given a quasi-equation u ≡ v satisfying (*) then

u0 ≡ v0 ⊢ u ≡ v .

This is clear from (ii) in case A = 1 = {0} is the terminal object: since u(0)
and v(0) lie in the same component they are connected by a zig-zag. By using
Union and Composition (with the codiagonal as q and p = id) we conclude
that the statement holds for all u, v : A → B with A = 1+ · · ·+1. And if A

is arbitrary use the epimorphism e : 1 + · · · + 1 → A carried by the identity
map: since u0 ≡ v0 ⊢ u · e ≡ v · e, Epi-Cancellation yields u0 ≡ v0 ⊢ u ≡ v.

(iv) Conversely, every quasi-equation u ≡ v where u, v : A → B are distinct
implies u0 ≡ v0. In fact, choose p ∈ A with u(p) 6= v(p); say, u(p) 6≥ v(p).
Then we have an isotone map q : B → 2 = {0, 1} where q(u(p)) = 0 and
q(v(p)) = 1. Consequently, u ≡ v ⊢ u0 ≡ v0 by Composition:

1
u0 //

v0

//

p
��

2

A
u //

v
// B

q

OO

(v) Given u, v : A → B such that (*) does not hold, then u ≡ v implies
the quasi-equation l ≡ r for the coproduct injections l, r : 1 → 1 + 1: use
Composition picking p : 1 → A such that u · p and v · p lie in different
components and q : B → 1 + 1 which maps one of the components to l and
the rest to r.
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(vi) Conversely, l ≡ r implies every quasi-equation. In fact, by Compo-
sition we clearly derive quasi-equations u, v : 1 → B. Using Union and
Composition this yields all u, v : 1 + 1 · · · + 1 → B. Finally, use e : A′ → A

as in (ii) above.

3.5. Remark Recall from [6] or [8] that:
(i) A finitely complete category A is regular if it has regular factorizations

and if pulling back preserves regular epimorphisms.
(ii) By a relation R on an object X is meant a subobject of X × X. We

can represent it by a collectively monic pair u, v : R → X.
(iii) The inverse relation R−1 is represented by v, u : R → X.
(iv) The relation composite R · R′ of relations represented by collectively

monic pairs u, v : R → X and u′, v′ : R′ → X is obtained from the pullback
P of v and u′ via a factorization of u · p, v′ · p′ : P → X:

e

P
p

yyrrrrrrrrrrrr
p′

&&LLLLLLLLLLLL

R
u

~~~~
~~

~~
~~

v
%%LLLLLLLLLLLL R′

u′

yyrrrrrrrrrrrr
v′

  A
AA

AA
AA

A

X X X

// // R = R · R′

u

ddJJJJJJJJJJJJJJJJJJJJJJ

v

99tttttttttttttttttttttt

as a regular epimorphism e : P → R · R′ followed by a collecting monic pair
u, v : R · R′ → X. In regular categories this composition is associative.

(v) An equivalence relation is a relation R which is
a. reflective, i.e., ∆X ⊆ R

b. symmetric, i.e., R = R−1, and
c. transitive, i.e., R = R · R.

Example: every kernel pair is an equivalence relation.
(vi) A regular category has effective equivalence relations if every equiva-

lence relation u, v : R → X is a kernel pair (of some morphism – it follows
that it is the kernel pair of coeq(u, v)).
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(vii) Let R be a reflexive and symmetric relation in a regular, locally finitely
presentable category. Then the smallest equivalence relation containing R is

R̂ = R ∪ (R · R) ∪ (R · R · R) ∪ . . .

see [8], 1.6.8.

3.6. Examples (i) Sets, posets, graphs, Σ-algebras (for every finitary, pos-
sibly many-sorted signature Σ) are all regular, locally finitely presentable
categories. Also categories ModΣ of structures for first-order languages Σ
have these properties. Whereas Alg Σ has effective equivalence relations,
posets, graphs and Σ-structures in general do not have them. A simple ex-
ample in Pos: let u, v : 2 × 2 → 2 (where 2 is the chain 0 < 1) be the
kernel pair of the morphism 2 → 1. If R is the subobject of 2 × 2 with the
same underlying set which has (0, 0) < (1, 1) as the only strict relation, then
u, v : R → 2 is an equivalence relation that is not a kernel pair.

(ii) Every coherent Grothendieck topos is a regular, locally finitely pre-
sentable category with effective equivalence relations.

3.7. Notation Given a parallel pair u, v : R → X we denote by

u0, v0 : R0 → X

the reflexive and symmetric relation it generates: it is obtained by factorizing
the pair

[u, v, id], [v, u, id] : R + R + R → X

as a regular epimorphism e0 : R + R + X ։ R0 followed by a collectively
monic pair (u0, v0). Then we denote by

Rn
0  R̂

the inclusion of the n-subobject in the union of 3.5(vii), represented by

un, vn : Rn
0 → X.

3.8. Remark For further use let us recall here that in a locally finitely
presentable category every directed union R =

⋃
i∈I Ri of subobjects is the

colimit R = colimRi of the corresponding diagram of inclusion maps, see [3],
1.62.

3.9. Theorem The Quasi-Equational Logic is complete in every regular,

locally finitely presentable category with effective equivalence relations.
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Proof (1) We prove first that for every quasi-equation u ≡ v the relations
un, vn : Rn

0 → X of 3.7 have the following property:

(*) u ≡ v ⊢ un · s ≡ vn · s for every s : S → Rn
0 with S finitely presentable.

The proof is by induction in n.
Case n = 0: Given s : S → R0:

Qi
//
qi //

qi

����

Q
s //

e0

����

R + R + X

[u,v,id]
,,

[v,u,id]

22

e0

����

X

Si
//

si

// S
s // R0

u0

;;vvvvvvvvvvvvvvvvvvvvv

v0

;;vvvvvvvvvvvvvvvvvvvvv

we form the pullback Q of s along e0 and express Q as a filtered colimit of
finitely presentable objects with the colimit cocone qi : Qi → Q (i ∈ I). Then
we form the regular factorization of e0 · qi as indicated in the diagram above.
The object S is the union of the subobjects si : Si → S (i ∈ S) because
[si] :

∐
i∈I Si → S is a regular epimorphism. In fact, [si] ·

∐
qi = e0 · [qi]

obviously is a regular epimorphism (since in the regular category e0 is a
regular epimorphism), thus, so is [si]. By 3.8 we have S = colimSi, therefore,
the fact that S is finitely presentable implies that sj is an isomorphism for
some j ∈ I. We now have a derivation of u0 · s ≡ v0 · s as follows:

u ≡ v
by Symmetry and Reflexivity

u ≡ v v ≡ u id ≡ id
by Union and Composition (with p = id,
q = ∇ : X + X + X → X)

[u, v, id] ≡ [v, u, id]
by Composition (p = s · qj, q = id)

u0 · s · sj qj ≡ v0 · s · sj · qj
by Epi-Cancellation

u0 · s ≡ v0 · s

Induction Case: Suppose (*) holds and s : S → Rn+1
0 with S finitely

presentable is given.
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Qi
//
qi //

qi

����

Q

en+1

����

s // Pn
pn

||yy
yy

yy
yy

y p′n

""E
EE

EE
EE

EE

en+1

Rn
0

un

~~}}
}}

}}
}} vn

""F
FF

FF
FF

FF
R0

u0

||xx
xx

xx
xx

x v0

  A
AA

AA
AA

A

X X X

Si
//

si

// S s
// Rn+1

0

un+1

ccGGGGGGGGGGGGGGGGGGGG

vn+1

;;wwwwwwwwwwwwwwwwwww

oooo

Analogously to the above case we form the pullback Q of s and en and
express Q as a filtered colimit of finitely presentable objects Qi with the
colimit cocone qi : Qi → Q (i ∈ I). We then form regular factorizations of
en+1 · qi as indicated, and by the above argument we conclude that sj is an
isomorphism for some j ∈ I. Therefore, by induction hypothesis, from u ≡ v,
we can deduce

u0 · p
′
n · s · qj ≡ v0 · p

′
n · s · qj and un · pn · s · qj ≡ u0 · p

′
n · s · qj (3.1)

since vn · pn = u0 · p′n. Hence, by Transitivity,

un · pn · s · qj ≡ v0 · p
′
n · s · qj

that is,

un+1 · s · sj · qj ≡ vn+1 · s · sj · qj .

Now, by Epi-Cancellation, we conclude

un+1 · s ≡ vn+1 · s .

(2) We are ready to prove the completeness of the Quasi-Equational Logic.
Since the Coequalizer Deduction System is complete, and the only deduction
rule not contained in 3.1 is the Coequalizer rule, it is sufficient to find a
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translation of that rule:

R′

v′

��
u′

��

R
u //

v
// X

c // Y

Suppose u ≡ v and u′ ≡ v′ are quasi-equations such that the coequalizer c of
u, v fulfils c · u′ = c · v′. Then we will find a derivation of u′ ≡ v′ from u ≡ v

in the deduction system of 3.1. Let û, v̂ : R̂ → X be the kernel pair of c.
Then the pair u′, v′ factorizes through it via a morphism t : R′ → R̂. Now
R̂ =

⋃
n∈N

Rn
0 is a chain colimit by 3.8, and R′ is finitely presentable, thus, t

factors through one of the colimit morphisms rn = [un, vn] : Rn  R̂:

R′

t

wwoooooooooooooooooooooooooooooo

t

����
��

��
��

��
��

��
��

�

u′

��

v′

��
Rn

0

vn

77

un

''
//

rn //
R̂

û //

v̂
// X

That is, we have t : R′ → Rn
0 such that un · t = u′ and vn · t = v′. Thus, we

can derive u′ ≡ v′ from u ≡ v, see (1). 2

3.10. Remark (i) Observe that the effectivity of equivalence relations was
not used in the first part of the proof.

(ii) Observe also that Epi-Cancellation was only used for regular epimor-
phisms in the above proof. We will use it more generally in 3.12 below.

3.11. Remark The above theorem implies that in categories

Alg Σ

of algebras of an arbitrary finitary S-sorted (algebraic) signature Σ the Quasi-
Equational Logic is complete: in fact, Alg Σ is a regular, locally finitely
presentable category and has effective equivalence relations. We want to
extend this result to categories

ModΣ

of structures of an arbitrary (finitary) S-sorted first-order language Σ. Recall
that Σ is given by a set Σf of function symbols with prescribed arities σ :
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s1 . . . sn → s (for s1, . . . , sn ∈ S∗ and s ∈ S) and a set Σr of relation
symbols with prescribed arities s1 . . . sn in S∗. A model of Σ is an S-sorted
set A = (As)s∈S together with functions σA : As1

× · · · × Asn
→ As for all

σ : s1 . . . sn → s in Σf and relations ρA ⊆ As1
× · · · × Asn

for all ρ in Σf of
arity s1 . . . sn.

Although ModΣ does not have effective equivalence relations, we have the
following

3.12. Proposition The Quasi-Equational Logic is complete in ModΣ.

Proof Consider the adjoint situation

ModΣ
W

⊤
--
Alg Σf

D

mm

where W forgets the relations and D defines them to be empty. Both W and
D preserve limits, colimits and finitely presentable objects. Consequently,
they preserve regular factorizations and composition of relations.

As in the previous proof, we just need to translate the Coequalizer rule:
given quasi-equations in ModΣ:

R′

v′

��
u′

��

R
u //

v
// X

c // Y

with c · u′ = c · v′ for c = coeq(u, v), we will prove that

u ≡ v ⊢ u′ ≡ v′.

From the proof of 3.9 and 3.10 we have that u ≡ v ⊢ un · s ≡ vn · s for all
s : S → Rn

0 with S finitely presentable. Further, since Wc is the coequalizer
of Wu, Wv and the kernel pair of Wc is represented by the relation

WR̂ =
⋃

WRn
0 =

⋃
(WR)n

0

we see that the pair Wu′, Wv′ factorizes through some Wun, Wvn : WRn
0 →

WX via a morphism t : WR′ → WRn
0 . In case R′ = DWR′ we have a

morphism s : R′ → Rn
0 with t = Ws, and then u ≡ v ⊢ u′ ≡ v′ because

u′ = un · s and v′ ≡ vn · s. In general, the counit of D ⊣ W gives an
epimorphism e : DWR′ → R′ (carried by the identity map) and the above
consideration yields u ≡ v ⊢ u′ · e ≡ v′ · e. Using Epi-Cancellation, we derive
u ≡ v ⊢ u′ ≡ v′. 2
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3.13. Example The Quasi-Equational Logic is complete in the category of
posets. This follows easily from Example 3.4: If u ≡ v is a consequence
of a set Q of quasi-equations, and if some member of Q does not satisfy
(*), then Q ⊢ l ≡ r, and from that Q ⊢ u ≡ v follows. If all members of
Q fulfil (*) then also u ≡ v satisfiess (*) (it is easy to see that the set of
all quasi-equations fulfilling (*) is closed under the deduction rules of 3.1).
Thus, either Q contains a nontrivial quasi-equation, in which case we deduce
u0 ≡ v0 from Q and we also deduce u ≡ v from u0 ≡ v0. Or Q contains only
quasi-equations w ≡ w, but then u = v.

3.14. Example of incompletenes of the Quasi-Equational Logic. For the
language Σ2 of one binary relation the category ModΣ2 (of graphs and
homomorphisms) has complete Quasi-Equational Logic by 3.12. Let A be
the full subcategory of all graphs (X, R) which are antireflexive (R∩∆X = ∅)
with the terminal object added. A is closed under limits, filtered colimits
and regular factorizations in ModΣ2, thus, it is a regular, locally finitely
presentable subcategory. Recall the property (*) in 3.4.

The quasi-equation

• ��*
HHj •

•
6

u

v

is satisfied by precisely those graphs in A that are discrete or terminal. There-
fore, it has as a consequence the quasi-equation

• �����1

PPPPPq

• •

•

-

u′

v′

However, we cannot derive u′ ≡ v′ from u ≡ v. In fact, all quasi-equations
u ≡ v that can be deduced from u ≡ v have the property (*) since the quasi-
equation u ≡ v satisfies it and the set of all quasi-equations u ≡ v satisfying
it is closed under all deduction rules. Since u′ ≡ v′ does not fulfil (*), the
proof is concluded.

4. The Quasi-Equational Logic in Non-Regular Categories

In the present section we work in a locally finitely presentable category
with effective equivalence relations – but we do not assume regularity. We
prove, again, that the Quasi-Equational Logic is complete. However, we
need to extend slightly the concept of quasi-equation: we will consider all
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parallel pairs u, v : R → X where X is finitely presentable but R only
finitely generated. Since finitely generated objects are precisely the strong
quotients e : R ։ R of finitely presentable objects R, the difference is just a
small technicality: for the quasi-equations (in the sense of preceding sections)
u′ ≡ v′ where u′ = u · e, v′ = v · e we have u ≡ v ⊢ u′ ≡ v′ by Composition
and, conversely, u′ ≡ v′ ⊢ u ≡ v by Epi-Cancellation.

4.1. Definition A weak quasi-equation is a parallel pair of morphisms (u, v)
whose domain is finitely generated and codomain is finitely presentable. An
object A satisfies u ≡ v if A(−, A) merges u and v.

4.2. Theorem The Quasi-Equational Logic is complete and sound in every

locally finitely presentable category with effective equivalence relations: given

a set Q of weak quasi-equations, then a weak quasi-equation u ≡ v is a

consequence of Q iff it can be deduced from Q.

4.3. Remark Before we prove this theorem, we need to modify Remark
3.5. Every locally finitely presentable category has the factorization system
(strong epi, mono), see [3], 1.61. By a relation we again understand a sub-
object of X ×X. In the definition of composite, see 3.5 (iv), we just use the
(strong epi, mono)-factorization of u · p, u′ · p′. Then the concept of equiva-
lence relation and having effective equivalence relations is an 3.5. However,
relation composition is not associative in general.

Let R be a reflexive and symmetric relation. Then the smallest equivalence
relation containing R is

R̂ = R ∪ (R · R) ∪ (R · (R · R)) ∪ ((R · R) · R) ∪ . . .

that is, the union

R̂ =
⋃

i∈I

Ri

of the smallest set Ri (i ∈ I) of relations containing R and closed under
composition. This is essentially proved in [1]. For the sake of easy reference
here is a proof:

(a) R̂ is reflexive since R is (so that Ri is reflexive for every i since a
composite of reflexive relations is reflexive).

(b) R̂ is symmetric since R is: the formula

(Rj · Ri)
−1 = R−1

i · R−1
j
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implies that the set {Ri}i∈I is closed under the formation of inverses.

(c) R̂ is transitive because by 3.8

R̂ = colim
i∈I

Ri

and in locally finitely presentable categories pullbacks commute with filtered
colimits. Indeed, let ui, vi : Ri → X be the pair representing ri and û, v̂ :
R̂ → X that representing r̂. Form the pullback

P̂
p

����
��

��
�� p′

��>
>>

>>
>>

>

R̂
û

����
��

��
��

v̂ ��?
??

??
??

? R̂

û����
��

��
�� v̂

��?
??

??
??

?

X X X

Transitivity of R̂ means that the pair û · p, v̂ · p′ : P̂ → X factors through
û, v̂. The above pullback is a colimit of the pullbacks

Pi
pi

~~~~
~~

~~
~ p′i

  @
@@

@@
@@

Ri
ui

~~}}
}}

}}
}}

vi   A
AA

AA
AA

A
Ri

ui~~}}
}}

}}
}} vi

  A
AA

AA
AA

A

X X X

and for each i ∈ I we have j ∈ J with Rj = Ri · Ri, therefore, the pair
ui · pi, vi · p′i : Pi → X factors through uj, vj. From p = colim pi and p′ =
colim p′i we conclude that the pair û·p, v̂ ·p′ factors through û, v̂, as requested.

(d) It is obvious that an equivalence relation S containing R contains each

Ri, thus, R̂ ⊆ S. Moreover, it is easy to see that for every morphism c : X →
Y we have

c · u = c · v iff c · û = c · v̂

(since c · u = c · v implies that the set of all relations u′, v′ with c · u′ = c · v′

is closed under inverse and relation composite – thus, c · ui = c · vi for all
i ∈ I.)

4.4. Notation For a weak quasi-equation u, v : R → X we denote by
u0, v0 : R0 → X the reflexive-and-symmetric hull given by a factorization of
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[u, v, id], [v, u, id] : R + R + X → X as a strong epimorphism followed by a
collectively monic pair (u0, v0). Then we have the above subobjects

ri : Ri → R̂ (i ∈ I)

forming the least equivalence relation R̂ =
⋃

i∈I Ri containing R0 represented

by pairs ui, vi : Ri → X. If the pair û, v̂ : R̂ → X represents the equivalence
relation R̂, then ui = û · ri and vi = v̂ · ri.

4.5. Proof of Theorem 4.2 Let u, v : R → X be a weak quasi-equation
which is a consequence of a set Q of weak quasi-equations. We prove Q ⊢
u ≡ v.

(1) We first prove that for every weak quasi-equation u ≡ v we have

u ≡ v ⊢ ui · s ≡ vi · s for every s : S → Ri with S finitely generated

by structural induction on i ∈ I: we verify first the case s : S → R0 for the
reflexive-and-symmetric hull R0, and then show that if the above holds for
Ri and Rj, then it holds for Ri · Rj.

Base case: As in 3.9 derive [u, v, id] ≡ [v, u, id] from u ≡ v, then use
Epi-Cancellation to get u0 ≡ v0. Due to Composition u ≡ v ⊢ u0 · s ≡ v0 · s.

Induction case: Let Rk = Ri · Rj and let

u ≡ v ⊢ ui · s ≡ vi · s and u ≡ v ⊢ uj · s ≡ vj · s

hold for all morphisms s with finitely generated domain and codomain such
that the composites are defined. Given

s : S → Rk , S finitely generated,
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we prove u ≡ v ⊢ uk ·s ≡ vk ·s. Let us recall the definition of Rk = Ri ·Rj :

Qd

qd //

qd

����

Pk
pi

~~}}
}}

}}
}} pj

  A
AA

AA
AA

A

ek

Ri

ui

����
��

��
��

vi ��@
@@

@@
@@

@
Rj

uj��~~
~~

~~
~~ vj

��?
??

??
??

?

Qd **

md

**UUUUUUUUUUUUUUUUUUUUUUUUU X X X

S

s

OO�
�

�

s
// Rk

uk

ggOOOOOOOOOOOOOOOO
vk

77ooooooooooooooooo
oooo

Express Pk as a filtered colimit of finitely presentable objects Qd (d ∈ D)
with the colimit cocone qd : Qd → Pk (d ∈ D) and let the (strong epi, mono)-
factorization of ek · qd be

ek · qd = md · qd for md : Qd  Rk .

Then Rk =
⋃

d∈D Qd because [md]·
∐

d∈D qd = ek ·[qd] is a strong epimorphism,
thus, so is [md]. By 3.8

Rk = colimQd

is a colimit of a directed diagram of monomorphisms. Since S is finitely
generated, A(S,−) preserves this colimit, consequently, s : S → colimQd

factors through some md:

s = md · s for some d ∈ D and s : S → Qd .

By induction hypothesis,

u ≡ v ⊢ ui · pi · qd ≡ vi · pi · qd and u ≡ v ⊢ uj · pj · qd ≡ vj · pj · qd

which by Transitivity and vi · pi = uj · pj yields

u ≡ v ⊢ ui · pi · qd = vj · pj · qd .

In other words,
u ≡ v ⊢ uk · ek · qd ≡ vk · ek · qd .

Now from ek · qd = md · qd we deduce, due to Epi-Cancellation,

u ≡ v ⊢ uk · md ≡ vk · md

and using s = md · s we get, via Composition,

u ≡ v ⊢ uk · s ≡ vk · s
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as desired.
(2) The rule Coequalizer (for finitary morphisms) is, due to (1), translated

to the rules of 3.1 quite analogously as in the proof of 3.9, part (2).
(3) To prove the completeness, let u, v : R → X be a weak quasi-equation

which is a consequence of the set Q. Since R is finitely generated, it is
a strong quotient e : R∗

։ R of a finitely presentable object R∗ and we
consider the quasi-equation u∗ ≡ v∗ obtained from u ≡ v by composition
with e. Analogously, for every member u ≡ v of Q we form a quasi-equation
u∗ ≡ v∗ in the above manner and get a set Q∗ of quasi-equations.

It is clear that u ≡ v is a consequence of Q iff u∗ ≡ v∗ is a consequence of Q∗:
use the soundness of Epi-Cancellation and Composition. By Theorem 2.5,
there is a formal proof of u∗ ≡ v∗ from Q∗ using the Coequalizer Deduction
System. We see from (2) that this formal proof gives rise to a proof of u∗ ≡ v∗

from Q∗ using the deduction rules of 3.1. Now Q ⊢ u ≡ v follows from the
fact that Q ⊢ Q∗ and u∗ ≡ v∗ ⊢ u ≡ v. 2
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