A LOGIC OF QUASI-EQUATIONS

JIŘÍ ADÁMEK AND LURDES SOUSA

Abstract

Quasi-equations given by parallel pairs of finitary morphisms represent properties of objects: an object satisfies the property if its contravariant homfunctor merges the parallel pair. Recently Adámek and Hébert characterized subcategories of locally finitely presentable categories specified by quasi-equations. We now present a logic of quasi-equations close to Birkhoff's classical equational logic. We prove that it is complete in all locally finitely presentable categories with effective equivalence relations.

1. Introduction

It was Bill Hatcher who first considered a representation of properties of objects via a parallel pair $u, v: R \rightarrow X$ of morphisms in the sense that an object A has the property iff every morphism $f: X \rightarrow A$ fulfils $f \cdot u=f \cdot v$, see [9]. Later Bernhard Banaschewski and Horst Herrlich [5] considered the related concept of injectivity w.r.t. a regular epimorphism $c: X \rightarrow Y$: this is just the step from parallel pairs to their coequalizers. For regular epimorphisms which are finitary, that is, have finitely presentable domain and codomain, Banaschewski and Herrlich [5] characterized full subcategories of "suitable" categories which can be specified by such injectivity: they are precisely the subcategories closed under products, subobjects, and filtered colimits. Recently the same result was proved for all locally finitely presentable categories, see [2], where parallel pairs of morphisms u, v with finitely presentable domain and codomain are called quasi-equations. Notation: $u \equiv v$.
In the present paper we introduce a logic of quasi-equations: for every set Q of quasi-equations we characterize its consequences, that is, quasi-equations $u \equiv v$ which hold in every object satisfying every quasi-equation in Q. In fact, we introduce two logics: one which is sound and complete in every locally finitely presentable category. Moreover, this logic is extremely simple: it states that (1) $u \equiv u$ always holds, (2) if $u \equiv v$ holds, then also $q \cdot u \equiv q \cdot v$

[^0]holds, and (3) if $u \equiv v$ holds and c is a coequalizer of u and v

then for all pairs with $c \cdot u^{\prime}=c \cdot v^{\prime}$ we have that $u^{\prime} \equiv v^{\prime}$ holds. However this last rule makes the logic disputable in applications. Think of Birkhoff's Equational Logic in the category $\operatorname{Alg} \Sigma$: its aim is to describe the fully invariant congruence generated by (u, v), whereas the coequalizer rule takes the congruence that (u, v) generates for granted.

We therefore present our main logic, called the Quasi-Equational Logic, without the coequalizer rule. Instead, we work with the parallel pairs alone. This logic is a bit more involved than (1)-(3) above, but is much nearer to Birkhoff's classical result [7]. We prove its completeness in
(i) every locally finitely presentable category with effective equivalence relations
and
(ii) in $\operatorname{Mod} \Sigma$, the category of Σ-structures for every (many-sorted) firstorder signature.
However, we also present an example of a locally finitely presentable category in which the Quasi-Equational Logic is not complete.

Related Work Satisfaction of a quasi-equation $u \equiv v$ is equivalent to injectivity w.r.t. the coequalizer of u and v. Our simple logic is just a translation of the injectivity logic w.r.t. epimorphisms presented in [4]. The full logic we present is based on a description of the kernel pairs which for regular, locally finitely presentable categories was presented by Pierre Grillet [8], and the generalization to all locally finitely presentable categories we use stems from [1].

2. The Coequalizer Logic

Here we present a (surprisingly simple) deduction system for quasi-equations which is sound and complete in all locally finitely presentable categories. Its only disadvantage is that it uses the concept of coequalizer, and this makes the usufelness in applications a bit questionable.
2.1. Observation Let the diagram

$$
R \xrightarrow[v]{\stackrel{\substack{u^{\prime} \\ u^{\prime}}}{\substack{\|^{\prime} \\ v^{\prime}}} X \xrightarrow{c} C}
$$

be such that we have

$$
c \cdot u^{\prime}=c \cdot v^{\prime} \quad \text { and } c=\operatorname{coeq}(u, v) .
$$

Then the quasi-equation $u^{\prime} \equiv v^{\prime}$ is a consequence of $u \equiv v$. In fact, if A satisfies $u \equiv v$ then for every $f: X \rightarrow A$ we see that f factors through c, consequently, $f \cdot u^{\prime} \equiv f \cdot v^{\prime}$.

This suggests the following
2.2. Definition The Coequalizer Logic uses the following deduction rules:

Reflexivity:

$$
u \equiv u
$$

Left Composition: $\frac{u \equiv v}{q \cdot u \equiv q \cdot v}$ given $\underset{v}{\underset{\sim}{u}} \xrightarrow{q}$

Coequalizer: $\quad \frac{u \equiv v c \cdot u^{\prime}=c \cdot v^{\prime}}{u^{\prime} \equiv v^{\prime}}$ for $c=\operatorname{coeq}(u, v)$
2.3. Remark (i) The Coequalizer Deduction System is obviously sound: whenever we can prove a quasi-equation $u \equiv v$ from a given set Q by using the above three deduction rules, it follows that $u \equiv v$ is a consequence of Q.
(ii) We will prove the completeness of the above deduction system by reducing it to the completeness of the logic presented by Manuela Sobral and the authors in [4]. That logic concerned injectivity w.r.t. finitary epimorphisms, that is, epimorphisms $e: X \rightarrow Y$ such that X and Y are finitely presentable. Recall that an object A is injective w.r.t. e if every morphism from X to A factors through e. We say that e is an injectivity consequence of a set \mathcal{E} of finitary epimorphisms provided that every object injective w.r.t. membes of \mathcal{E} is also injective w.r.t. e. We formulated the following logic of
injectivity consisting of one axiom and three deduction rules (where e and e^{\prime} are finitary epimorphisms):
(A) $\overline{\mathrm{id}_{X}} \quad$ for finitely presentable objects X
(P) $\frac{e}{e^{\prime}}$
for every pushout $\xrightarrow[e^{\prime}]{\stackrel{e}{\longrightarrow}} \downarrow$
(C) $\frac{e e^{\prime}}{e \cdot e^{\prime}}$
given $\xrightarrow{e^{\prime}} \xrightarrow{e}$
(L) $\frac{e \cdot e^{\prime}}{e^{\prime}}$

And we proved that this represents a sound and complete injectivity logic in every locally finitely presentable category. That is, given a set Q of finitary epimorphisms, then the injectivity consequences e of Q are precisely those which have a (finite) proof applying the above axiom and deduction rules to members of Q.
(iii) Before proceeding with our logic of quasi-equations, we observe an unexpected property of proofs based on the rules above: Let Q be a set of finitary epimorphisms containing all finitary identity morphisms. Then for every injectivity consequence e of Q there exists a proof of the following form

$$
\begin{gathered}
\left\{\begin{array}{l}
e_{1} \\
\vdots \\
e_{k_{1}}
\end{array}\right. \\
(\mathrm{P})\left\{\begin{array}{l}
e_{k_{1}+1} \\
\vdots \\
e_{k_{2}}
\end{array}\right. \\
(\mathrm{C})\left\{\begin{array}{l}
e_{k_{2}+1} \\
\vdots \\
e_{k_{3}}
\end{array}\right. \\
(\mathrm{L})\left\{\begin{array}{l}
e_{k_{3}+1} \\
\vdots \\
e_{k_{4}}=e
\end{array}\right.
\end{gathered}
$$

whose first part consists of elements of Q, the second part uses only (P), the third one only (C), and the last one only (L). This follows from the next lemma in which we put

$$
\begin{aligned}
& Q_{C}=\left\{e_{1} \cdot e_{2} \ldots e_{k} ; e_{i} \in Q\right\} \\
& Q_{L}=\left\{e^{\prime} ; e \cdot e^{\prime} \in Q \text { for some } e\right\}
\end{aligned}
$$

and
$Q_{P}=$ the closure under pushout.
2.4. Lemma Let Q be a set of finitary epimorphisms containing all id_{X}, X finitely presentable. Then $\left(\left(Q_{P}\right)_{C}\right)_{L}$ is closed under pushout, composition and left cancellation.

Proof Observe that $\left(Q_{P}\right)_{C}$ is closed under pushout (and composition) since a pushout of a composite is the composite of pushouts.

To prove the statement, let us first prove that $\left(\left(Q_{P}\right)_{C}\right)_{L}$ is closed under pushout: Consider a pushout

where $e \cdot e^{\prime} \in\left(Q_{P}\right)_{C}$ and form a pushout P of e along v to get, due to (i), $f \cdot e^{\prime \prime} \in\left(Q_{P}\right)_{C}$, thus, $e^{\prime \prime} \in\left(\left(Q_{P}\right)_{C}\right)_{L}$. Next we prove that $\left(\left(Q_{P}\right)_{C}\right)_{L}$ is closed under composition: Consider a composite $f^{\prime} \cdot e^{\prime}$

where $e \cdot e^{\prime} \in\left(Q_{P}\right)_{C}$ and $f \cdot f^{\prime} \in\left(Q_{P}\right)_{C}$. Form the pushout P of e and $f \cdot f^{\prime}$ to get $v \in\left(Q_{P}\right)_{C}$, thus $v \cdot e \cdot e^{\prime}=w \cdot f \cdot f^{\prime} \cdot e^{\prime} \in\left(Q_{P}\right)_{C}$. This proves $f^{\prime} \cdot e^{\prime} \in\left(Q_{P}\right)_{C}$.
2.5. Theorem The Coequalizer Deduction System is complete in every locally finitely presentable category.

Proof We apply the result of [4] mentioned in 2.3: given a set \mathcal{H} of finitary epimorphisms containing all finitary identity morphisms then the injectivity
consequences of e form the closure of \mathcal{H} under composition, pushout, and left cancellation.
Denote by $\mathcal{A}_{f p}$ the full subcategory of all finitely presentable objects in the category \mathcal{A} and by

$$
K: \mathcal{A}_{f p}^{\vec{~}} \longrightarrow \mathcal{A}_{f p}^{\vec{f}}
$$

the functor assigning to every quasi-equation its coequalizer. We have

$$
Q \models u \equiv v \quad \text { iff } \quad K(u, v) \text { is an injectivity consequence of } K[Q] .
$$

Assume, without loss of generality, that Q contains all pairs $u \equiv u$. Then the above result together with Lemma 2.4 tells us that

$$
Q \models u \equiv v \quad \text { iff } \quad K(u, v) \in\left(\left(K[Q]_{P}\right)_{C}\right)_{L} .
$$

Thus, all we need to do is to present a proof of $u \equiv v$ from Q given that the coequalizer $c=K(u, v)$ lies in the left-cancellation hull of $\left(K[Q]_{P}\right)_{C}$, i.e., it has the form

and for every i we have a pushout

for some $u_{i} \equiv v_{i}$ in Q and $k_{i}=K\left(u_{i}, v_{i}\right)$. Observe first that c_{i} is a coequalizer of $u_{i}^{\prime}=g_{i} \cdot u_{i}$ and $v_{i}^{\prime}=g_{i} \cdot v_{i}$ and we have

$$
\frac{u_{i} \equiv v_{i}}{u_{i}^{\prime} \equiv v_{i}^{\prime}}
$$

due to Left Composition. The Coequalizer Rule then yields

$$
\begin{gathered}
\frac{c_{n} c_{n-1} \ldots c_{1} u=c_{n} c_{n-1} \ldots c_{1} v \quad u_{n}^{\prime} \equiv v_{n}^{\prime}}{c_{n-1} \ldots c_{1} u=c_{n-1} \ldots c_{1} v \quad u_{n-1}^{\prime} \equiv v_{n-1}^{\prime}} \\
\frac{c_{1} u=c_{1} v \quad u_{1} \equiv v_{1}}{u \equiv v}
\end{gathered}
$$

3. The Quasi-Equational Logic in Regular Categories

In the present section we introduce the logic of quasi-equations that only works with parallel pairs (and does not use coequalizers). This logic is sound in all categories, and we prove here that it is complete in every category which
(a) is locally finitely presentable,
(b) is regular in the sense of Michael Barr [6]
and
(c) has effective equivalence relations.

In the next section we will show that regularity can be avoided. We present also important examples (graphs, posets, first-order structures) of categories satisfying (a) and (b) but not (c) in which our logic is also complete. However, a counter-example demonstrates that the logic is not complete in every regular, locally finitely presentable category.
3.1. Definition The Quasi-Equational Logic uses the following deduction rules

$$
\begin{array}{ll}
\text { Reflexivity: } & \frac{u \equiv u}{} \\
\text { Symmetry: } & \frac{u \equiv v}{v \equiv u} \\
\text { Transitivity: } & \frac{u \equiv v \quad v \equiv w}{u \equiv w} \\
\text { Union: } & \frac{u \equiv v}{u+u^{\prime} \equiv v+v^{\prime}}
\end{array}
$$

Composition: $\quad \frac{u \equiv v}{q \cdot u \cdot p \equiv q \cdot v \cdot p}$ given $\xrightarrow{p} \underset{v}{u} \xrightarrow{q}$
Epi-Cancellation: $\quad \frac{u \cdot p \equiv v \cdot p}{u \equiv v} \quad$ for epimorphisms p
We say that a quasi-equation $u \equiv v$ is deducible from a set Q of quasiequations, in symbols

$$
Q \vdash u \equiv v
$$

if there exists a (finite) proof of $u \equiv v$ applying the above deduction rules to members of Q.
3.2. Remark The Quasi-Equational Logic is obviously sound: whenever $Q \vdash u \equiv v$, then the quasi-equation $u \equiv v$ is a consequence of Q. That is, every object satisfying all quasi-equations in Q satisfies $u \equiv v$ too.
We will discuss the completeness in this and the next section.
3.3. Remark Every proof in Birkhoff's Equational Logic has an easy translation into the Quasi-Equational Logic: Recall that that logic for a given signature Σ consists of Reflexivity, Symmetry, Transitivity, and the following rules:
Invariance: $\quad \frac{u \equiv v}{\sigma(u) \equiv \sigma(v)} \quad$ for all substitutions σ
Congruence: $\frac{u_{1} \equiv v_{1}, \ldots, u_{n} \equiv v_{n}}{h\left(u_{1}, \ldots, u_{n}\right) \equiv h\left(v_{1}, \ldots, v_{n}\right)} \quad$ for all n-ary symbols h in Σ
Let $F:$ Set $\rightarrow \boldsymbol{A l g} \Sigma$ be the left adjoint of the forgetful functor of $\operatorname{Alg} \Sigma$. A (finitary) equation $u \equiv v$ (where $u, v: 1 \rightarrow F X$ are Σ-terms for some finite set X of variables) may be regarded as a pair of morphisms of $\operatorname{Alg} \Sigma$

$$
F 1 \underset{\bar{u}}{\stackrel{\bar{v}}{\longrightarrow}} F X
$$

extending u and v. This replacement of equations by quasi-equations, together with a convenient translation of the deduction rules, transforms every formal proof in Birkhoff's equational logic into one in the Quasi-Equational Logic. The Invariance Rule is a special case of Left Composition (recall that a substitution is nothing else than an endomorphism $\sigma: F X \rightarrow F X)$:

$$
\frac{u \equiv v}{\sigma \cdot u \equiv \sigma \cdot v}
$$

For the Congruence Rule, consider the homomorphism $\bar{h}: F 1 \rightarrow F n$ taking the generator of $F 1$ to the term $h(0, \ldots, n-1)$ in $F n$. By applying Union we obtain

$$
\bar{u}_{0}+\bar{u}_{1}+\cdots+\bar{u}_{n-1} \equiv \bar{v}_{0}+\bar{v}_{1}+\cdots+\bar{v}_{n-1}: F n \rightarrow F X
$$

and then we just compose with \bar{h} from the right and the codiagonal from the left:

$$
F 1 \xrightarrow{\bar{h}} F n \xrightarrow[\bar{v}_{0}+\bar{v}_{1}+\cdots+\bar{v}_{n-1}]{\stackrel{\bar{u}_{0}+\cdots+\bar{u}_{n-1}}{\bar{v}^{2}}} X X+\cdots+F X \xrightarrow{\nabla} F X
$$

3.4. Example In the category of posets deduction of quasi-equations is rather trivial:
(i) Consider the following quasi-equation

From $u_{0} \equiv v_{0}$ we can deduce $u_{1} \equiv v_{1}$:

In fact, by using Composition we deduce from $u_{0} \equiv v_{0}$ the following

and

Symmetry yields $v_{0}^{\prime} \equiv u_{0}^{\prime}$ and since $u_{0}^{\prime}=u_{0}^{\prime \prime}$ Transitivity yields

$$
u_{0} \equiv v_{0} \vdash u_{1} \equiv v_{1}
$$

(ii) Analogously we deduce from $u_{0} \equiv v_{0}$ the following quasi-equations

(iii) More generally, we will show that the consequences of $u_{0} \equiv v_{0}$ are all quasi-equations $u, v: A \rightarrow B$ such that
$\left.{ }^{*}\right) \quad u(a)$ and $v(a)$ lie in the same component of B for all $a \in A$.
Given a quasi-equation $u \equiv v$ satisfying $\left({ }^{*}\right)$ then

$$
u_{0} \equiv v_{0} \vdash u \equiv v .
$$

This is clear from (ii) in case $A=\mathbf{1}=\{0\}$ is the terminal object: since $u(0)$ and $v(0)$ lie in the same component they are connected by a zig-zag. By using Union and Composition (with the codiagonal as q and $p=\mathrm{id}$) we conclude that the statement holds for all $u, v: A \rightarrow B$ with $A=1+\cdots+1$. And if A is arbitrary use the epimorphism $e: 1+\cdots+\mathbf{1} \rightarrow A$ carried by the identity map: since $u_{0} \equiv v_{0} \vdash u \cdot e \equiv v \cdot e$, Epi-Cancellation yields $u_{0} \equiv v_{0} \vdash u \equiv v$.
(iv) Conversely, every quasi-equation $u \equiv v$ where $u, v: A \rightarrow B$ are distinct implies $u_{0} \equiv v_{0}$. In fact, choose $p \in A$ with $u(p) \neq v(p)$; say, $u(p) \nsupseteq v(p)$. Then we have an isotone map $q: B \rightarrow \mathbf{2}=\{0,1\}$ where $q(u(p))=0$ and $q(v(p))=1$. Consequently, $u \equiv v \vdash u_{0} \equiv v_{0}$ by Composition:

(v) Given $u, v: A \rightarrow B$ such that $\left({ }^{*}\right)$ does not hold, then $u \equiv v$ implies the quasi-equation $l \equiv r$ for the coproduct injections $l, r: \mathbf{1} \rightarrow \mathbf{1}+\mathbf{1}$: use Composition picking $p: \mathbf{1} \rightarrow A$ such that $u \cdot p$ and $v \cdot p$ lie in different components and $q: B \rightarrow \mathbf{1}+\mathbf{1}$ which maps one of the components to l and the rest to r.
(vi) Conversely, $l \equiv r$ implies every quasi-equation. In fact, by Composition we clearly derive quasi-equations $u, v: \mathbf{1} \rightarrow B$. Using Union and Composition this yields all $u, v: \mathbf{1}+\mathbf{1} \cdots+\mathbf{1} \rightarrow B$. Finally, use $e: A^{\prime} \rightarrow A$ as in (ii) above.
3.5. Remark Recall from [6] or [8] that:
(i) A finitely complete category \mathcal{A} is regular if it has regular factorizations and if pulling back preserves regular epimorphisms.
(ii) By a relation R on an object X is meant a subobject of $X \times X$. We can represent it by a collectively monic pair $u, v: R \rightarrow X$.
(iii) The inverse relation R^{-1} is represented by $v, u: R \rightarrow X$.
(iv) The relation composite $R \cdot R^{\prime}$ of relations represented by collectively monic pairs $u, v: R \rightarrow X$ and $u^{\prime}, v^{\prime}: R^{\prime} \rightarrow X$ is obtained from the pullback P of v and u^{\prime} via a factorization of $u \cdot p, v^{\prime} \cdot p^{\prime}: P \rightarrow X$:

as a regular epimorphism $e: P \rightarrow R \cdot R^{\prime}$ followed by a collecting monic pair $\bar{u}, \bar{v}: R \cdot R^{\prime} \rightarrow X$. In regular categories this composition is associative.
(v) An equivalence relation is a relation R which is
a. reflective, i.e., $\Delta_{X} \subseteq R$
b. symmetric, i.e., $R=R^{-1}$, and
c. transitive, i.e., $R=R \cdot R$.

Example: every kernel pair is an equivalence relation.
(vi) A regular category has effective equivalence relations if every equivalence relation $u, v: R \rightarrow X$ is a kernel pair (of some morphism - it follows that it is the kernel pair of $\operatorname{coeq}(u, v))$.
(vii) Let R be a reflexive and symmetric relation in a regular, locally finitely presentable category. Then the smallest equivalence relation containing R is

$$
\widehat{R}=R \cup(R \cdot R) \cup(R \cdot R \cdot R) \cup \ldots
$$

see [8], 1.6.8.
3.6. Examples (i) Sets, posets, graphs, Σ-algebras (for every finitary, possibly many-sorted signature Σ) are all regular, locally finitely presentable categories. Also categories $\operatorname{Mod} \Sigma$ of structures for first-order languages Σ have these properties. Whereas $\operatorname{Alg} \Sigma$ has effective equivalence relations, posets, graphs and Σ-structures in general do not have them. A simple example in Pos: let $u, v: \mathbf{2 \times 2 \rightarrow 2}$ (where $\mathbf{2}$ is the chain $0<1$) be the kernel pair of the morphism $2 \rightarrow \mathbf{1}$. If R is the subobject of 2×2 with the same underlying set which has $(0,0)<(1,1)$ as the only strict relation, then $u, v: R \rightarrow \mathbf{2}$ is an equivalence relation that is not a kernel pair.
(ii) Every coherent Grothendieck topos is a regular, locally finitely presentable category with effective equivalence relations.
3.7. Notation Given a parallel pair $u, v: R \rightarrow X$ we denote by

$$
u_{0}, v_{0}: R_{0} \rightarrow X
$$

the reflexive and symmetric relation it generates: it is obtained by factorizing the pair

$$
[u, v, \mathrm{id}],[v, u, \mathrm{id}]: R+R+R \rightarrow X
$$

as a regular epimorphism $e_{0}: R+R+X \rightarrow R_{0}$ followed by a collectively monic pair $\left(u_{0}, v_{0}\right)$. Then we denote by

$$
R_{0}^{n} \mapsto \widehat{R}
$$

the inclusion of the n-subobject in the union of 3.5 (vii), represented by

$$
u_{n}, v_{n}: R_{0}^{n} \rightarrow X
$$

3.8. Remark For further use let us recall here that in a locally finitely presentable category every directed union $R=\bigcup_{i \in I} R_{i}$ of subobjects is the colimit $R=$ colim R_{i} of the corresponding diagram of inclusion maps, see [3], 1.62 .
3.9. Theorem The Quasi-Equational Logic is complete in every regular, locally finitely presentable category with effective equivalence relations.

Proof (1) We prove first that for every quasi-equation $u \equiv v$ the relations $u_{n}, v_{n}: R_{0}^{n} \rightarrow X$ of 3.7 have the following property:
$\left.{ }^{*}\right) u \equiv v \vdash u_{n} \cdot s \equiv v_{n} \cdot s \quad$ for every $s: S \rightarrow R_{0}^{n}$ with S finitely presentable.
The proof is by induction in n.
Case $n=0$: Given $s: S \rightarrow R_{0}$:

we form the pullback Q of s along e_{0} and express Q as a filtered colimit of finitely presentable objects with the colimit cocone $q_{i}: Q_{i} \rightarrow Q(i \in I)$. Then we form the regular factorization of $\bar{e}_{0} \cdot q_{i}$ as indicated in the diagram above. The object S is the union of the subobjects $s_{i}: S_{i} \rightarrow S(i \in S)$ because $\left[s_{i}\right]: \coprod_{i \in I} S_{i} \rightarrow S$ is a regular epimorphism. In fact, $\left[s_{i}\right] \cdot \coprod \bar{q}_{i}=\bar{e}_{0} \cdot\left[q_{i}\right]$ obviously is a regular epimorphism (since in the regular category e_{0} is a regular epimorphism), thus, so is $\left[s_{i}\right]$. By 3.8 we have $S=\operatorname{colim} S_{i}$, therefore, the fact that S is finitely presentable implies that s_{j} is an isomorphism for some $j \in I$. We now have a derivation of $u_{0} \cdot s \equiv v_{0} \cdot s$ as follows:

$$
\begin{array}{cl}
\frac{u \equiv v}{u \equiv v \quad v \equiv u \quad \mathrm{id} \equiv \mathrm{id}} & \text { by Symmetry and Reflexivity } \\
\hline \frac{[u, v, \mathrm{id}] \equiv[v, u, \mathrm{id}]}{u_{0} \cdot s \cdot s_{j} \quad \bar{q}_{j} \equiv v_{0} \cdot s \cdot s_{j} \cdot \bar{q}_{j}} & \begin{array}{l}
\text { by Union and Composition (with } p=\mathrm{id}, \\
u_{0} \cdot s \equiv v_{0} \cdot s
\end{array} \\
\text { by Composition }\left(p=\bar{s} \cdot q_{j}, q=\mathrm{id}\right) \\
\text { by Epi-Cancellation }
\end{array}
$$

Induction Case: Suppose (*) holds and $s: S \rightarrow R_{0}^{n+1}$ with S finitely presentable is given.

Analogously to the above case we form the pullback Q of s and e_{n} and express Q as a filtered colimit of finitely presentable objects Q_{i} with the colimit cocone $q_{i}: Q_{i} \rightarrow Q(i \in I)$. We then form regular factorizations of $\bar{e}_{n+1} \cdot q_{i}$ as indicated, and by the above argument we conclude that s_{j} is an isomorphism for some $j \in I$. Therefore, by induction hypothesis, from $u \equiv v$, we can deduce

$$
\begin{equation*}
u_{0} \cdot p_{n}^{\prime} \cdot \bar{s} \cdot q_{j} \equiv v_{0} \cdot p_{n}^{\prime} \cdot \bar{s} \cdot q_{j} \quad \text { and } \quad u_{n} \cdot p_{n} \cdot \bar{s} \cdot q_{j} \equiv u_{0} \cdot p_{n}^{\prime} \cdot \bar{s} \cdot q_{j} \tag{3.1}
\end{equation*}
$$

since $v_{n} \cdot p_{n}=u_{0} \cdot p_{n}^{\prime}$. Hence, by Transitivity,

$$
u_{n} \cdot p_{n} \cdot \bar{s} \cdot q_{j} \equiv v_{0} \cdot p_{n}^{\prime} \cdot \bar{s} \cdot q_{j}
$$

that is,

$$
u_{n+1} \cdot s \cdot s_{j} \cdot \bar{q}_{j} \equiv v_{n+1} \cdot s \cdot s_{j} \cdot \bar{q}_{j} .
$$

Now, by Epi-Cancellation, we conclude

$$
u_{n+1} \cdot s \equiv v_{n+1} \cdot s
$$

(2) We are ready to prove the completeness of the Quasi-Equational Logic. Since the Coequalizer Deduction System is complete, and the only deduction rule not contained in 3.1 is the Coequalizer rule, it is sufficient to find a
translation of that rule:

$$
R \xrightarrow[v]{\stackrel{\substack{R^{\prime} \\ u^{\prime}}}{\stackrel{y}{\longrightarrow}} X \xrightarrow{v^{\prime}}} \xrightarrow{c} Y
$$

Suppose $u \equiv v$ and $u^{\prime} \equiv v^{\prime}$ are quasi-equations such that the coequalizer c of u, v fulfils $c \cdot u^{\prime}=c \cdot v^{\prime}$. Then we will find a derivation of $u^{\prime} \equiv v^{\prime}$ from $u \equiv v$ in the deduction system of 3.1. Let $\hat{u}, \hat{v}: \widehat{R} \rightarrow X$ be the kernel pair of c. Then the pair u^{\prime}, v^{\prime} factorizes through it via a morphism $t: R^{\prime} \rightarrow \hat{R}$. Now $\widehat{R}=\bigcup_{n \in \mathbb{N}} R_{0}^{n}$ is a chain colimit by 3.8 , and R^{\prime} is finitely presentable, thus, t factors through one of the colimit morphisms $r_{n}=\left[u_{n}, v_{n}\right]: R_{n} \longmapsto \widehat{R}$:

That is, we have $\bar{t}: R^{\prime} \rightarrow R_{0}^{n}$ such that $u_{n} \cdot \bar{t}=u^{\prime}$ and $v_{n} \cdot \bar{t}=v^{\prime}$. Thus, we can derive $u^{\prime} \equiv v^{\prime}$ from $u \equiv v$, see (1).
3.10. Remark (i) Observe that the effectivity of equivalence relations was not used in the first part of the proof.
(ii) Observe also that Epi-Cancellation was only used for regular epimorphisms in the above proof. We will use it more generally in 3.12 below.
3.11. Remark The above theorem implies that in categories

$\operatorname{Alg} \Sigma$

of algebras of an arbitrary finitary S-sorted (algebraic) signature Σ the QuasiEquational Logic is complete: in fact, $\operatorname{Alg} \Sigma$ is a regular, locally finitely presentable category and has effective equivalence relations. We want to extend this result to categories

$$
\operatorname{Mod} \Sigma
$$

of structures of an arbitrary (finitary) S-sorted first-order language Σ. Recall that Σ is given by a set Σ_{f} of function symbols with prescribed arities σ :
$s_{1} \ldots s_{n} \rightarrow s$ (for $s_{1}, \ldots, s_{n} \in S^{*}$ and $s \in S$) and a set Σ_{r} of relation symbols with prescribed arities $s_{1} \ldots s_{n}$ in S^{*}. A model of Σ is an S-sorted set $A=\left(A_{s}\right)_{s \in S}$ together with functions $\sigma^{A}: A_{s_{1}} \times \cdots \times A_{s_{n}} \rightarrow A_{s}$ for all $\sigma: s_{1} \ldots s_{n} \rightarrow s$ in Σ_{f} and relations $\rho^{A} \subseteq A_{s_{1}} \times \cdots \times A_{s_{n}}$ for all ρ in Σ_{f} of arity $s_{1} \ldots s_{n}$.

Although Mod Σ does not have effective equivalence relations, we have the following

3.12. Proposition The Quasi-Equational Logic is complete in $\operatorname{Mod} \Sigma$.

Proof Consider the adjoint situation

$$
\operatorname{Mod} \Sigma \frac{W}{\frac{T}{D}} \operatorname{Alg} \Sigma_{f}
$$

where W forgets the relations and D defines them to be empty. Both W and D preserve limits, colimits and finitely presentable objects. Consequently, they preserve regular factorizations and composition of relations.
As in the previous proof, we just need to translate the Coequalizer rule: given quasi-equations in $\operatorname{Mod} \Sigma$:

with $c \cdot u^{\prime}=c \cdot v^{\prime}$ for $c=\operatorname{coeq}(u, v)$, we will prove that

$$
u \equiv v \vdash u^{\prime} \equiv v^{\prime}
$$

From the proof of 3.9 and 3.10 we have that $u \equiv v \vdash u_{n} \cdot s \equiv v_{n} \cdot s$ for all $s: S \rightarrow R_{0}^{n}$ with S finitely presentable. Further, since $W c$ is the coequalizer of $W u, W v$ and the kernel pair of $W c$ is represented by the relation

$$
W \widehat{R}=\bigcup W R_{0}^{n}=\bigcup(W R)_{0}^{n}
$$

we see that the pair $W u^{\prime}, W v^{\prime}$ factorizes through some $W u_{n}, W v_{n}: W R_{0}^{n} \rightarrow$ $W X$ via a morphism $\bar{t}: W R^{\prime} \rightarrow W R_{0}^{n}$. In case $R^{\prime}=D W R^{\prime}$ we have a morphism $s: R^{\prime} \rightarrow R_{0}^{n}$ with $\bar{t}=W s$, and then $u \equiv v \vdash u^{\prime} \equiv v^{\prime}$ because $u^{\prime}=u_{n} \cdot s$ and $v^{\prime} \equiv v_{n} \cdot s$. In general, the counit of $D \dashv W$ gives an epimorphism $e: D W R^{\prime} \rightarrow R^{\prime}$ (carried by the identity map) and the above consideration yields $u \equiv v \vdash u^{\prime} \cdot e \equiv v^{\prime} \cdot e$. Using Epi-Cancellation, we derive $u \equiv v \vdash u^{\prime} \equiv v^{\prime}$.
3.13. Example The Quasi-Equational Logic is complete in the category of posets. This follows easily from Example 3.4: If $u \equiv v$ is a consequence of a set Q of quasi-equations, and if some member of Q does not satisfy $\left(^{*}\right)$, then $Q \vdash l \equiv r$, and from that $Q \vdash u \equiv v$ follows. If all members of Q fulfil $\left(^{*}\right)$ then also $u \equiv v$ satisfiess $\left(^{*}\right)$ (it is easy to see that the set of all quasi-equations fulfilling $\left(^{*}\right)$ is closed under the deduction rules of 3.1). Thus, either Q contains a nontrivial quasi-equation, in which case we deduce $u_{0} \equiv v_{0}$ from Q and we also deduce $u \equiv v$ from $u_{0} \equiv v_{0}$. Or Q contains only quasi-equations $w \equiv w$, but then $u=v$.
3.14. Example of incompletenes of the Quasi-Equational Logic. For the language Σ_{2} of one binary relation the category $\operatorname{Mod} \Sigma_{2}$ (of graphs and homomorphisms) has complete Quasi-Equational Logic by 3.12. Let \mathcal{A} be the full subcategory of all graphs (X, R) which are antireflexive $\left(R \cap \Delta_{X}=\emptyset\right)$ with the terminal object added. \mathcal{A} is closed under limits, filtered colimits and regular factorizations in $\operatorname{Mod} \Sigma_{2}$, thus, it is a regular, locally finitely presentable subcategory. Recall the property $\left({ }^{*}\right)$ in 3.4.

The quasi-equation

is satisfied by precisely those graphs in \mathcal{A} that are discrete or terminal. Therefore, it has as a consequence the quasi-equation

However, we cannot derive $u^{\prime} \equiv v^{\prime}$ from $u \equiv v$. In fact, all quasi-equations $\bar{u} \equiv \bar{v}$ that can be deduced from $u \equiv v$ have the property $\left({ }^{*}\right)$ since the quasiequation $u \equiv v$ satisfies it and the set of all quasi-equations $\bar{u} \equiv \bar{v}$ satisfying it is closed under all deduction rules. Since $u^{\prime} \equiv v^{\prime}$ does not fulfil $\left(^{*}\right)$, the proof is concluded.

4. The Quasi-Equational Logic in Non-Regular Categories

In the present section we work in a locally finitely presentable category with effective equivalence relations - but we do not assume regularity. We prove, again, that the Quasi-Equational Logic is complete. However, we need to extend slightly the concept of quasi-equation: we will consider all
parallel pairs $u, v: R \rightarrow X$ where X is finitely presentable but R only finitely generated. Since finitely generated objects are precisely the strong quotients $e: \bar{R} \rightarrow R$ of finitely presentable objects \bar{R}, the difference is just a small technicality: for the quasi-equations (in the sense of preceding sections) $u^{\prime} \equiv v^{\prime}$ where $u^{\prime}=u \cdot e, v^{\prime}=v \cdot e$ we have $u \equiv v \vdash u^{\prime} \equiv v^{\prime}$ by Composition and, conversely, $u^{\prime} \equiv v^{\prime} \vdash u \equiv v$ by Epi-Cancellation.
4.1. Definition A weak quasi-equation is a parallel pair of morphisms (u, v) whose domain is finitely generated and codomain is finitely presentable. An object A satisfies $u \equiv v$ if $\mathcal{A}(-, A)$ merges u and v.
4.2. Theorem The Quasi-Equational Logic is complete and sound in every locally finitely presentable category with effective equivalence relations: given a set Q of weak quasi-equations, then a weak quasi-equation $u \equiv v$ is a consequence of Q iff it can be deduced from Q.
4.3. Remark Before we prove this theorem, we need to modify Remark 3.5. Every locally finitely presentable category has the factorization system (strong epi, mono), see [3], 1.61. By a relation we again understand a subobject of $X \times X$. In the definition of composite, see 3.5 (iv), we just use the (strong epi, mono)-factorization of $u \cdot p, u^{\prime} \cdot p^{\prime}$. Then the concept of equivalence relation and having effective equivalence relations is an 3.5. However, relation composition is not associative in general.

Let R be a reflexive and symmetric relation. Then the smallest equivalence relation containing R is

$$
\widehat{R}=R \cup(R \cdot R) \cup(R \cdot(R \cdot R)) \cup((R \cdot R) \cdot R) \cup \ldots
$$

that is, the union

$$
\widehat{R}=\bigcup_{i \in I} R_{i}
$$

of the smallest set $R_{i}(i \in I)$ of relations containing R and closed under composition. This is essentially proved in [1]. For the sake of easy reference here is a proof:
(a) \widehat{R} is reflexive since R is (so that R_{i} is reflexive for every i since a composite of reflexive relations is reflexive).
(b) \widehat{R} is symmetric since R is: the formula

$$
\left(R_{j} \cdot R_{i}\right)^{-1}=R_{i}^{-1} \cdot R_{j}^{-1}
$$

implies that the set $\left\{R_{i}\right\}_{i \in I}$ is closed under the formation of inverses.
(c) \widehat{R} is transitive because by 3.8

$$
\widehat{R}=\operatorname{colim}_{i \in I} R_{i}
$$

and in locally finitely presentable categories pullbacks commute with filtered colimits. Indeed, let $u_{i}, v_{i}: R_{i} \rightarrow X$ be the pair representing r_{i} and \hat{u}, \hat{v} : $\widehat{R} \rightarrow X$ that representing \hat{r}. Form the pullback

Transitivity of \widehat{R} means that the pair $\hat{u} \cdot p, \hat{v} \cdot p^{\prime}: \widehat{P} \rightarrow X$ factors through \hat{u}, \hat{v}. The above pullback is a colimit of the pullbacks

and for each $i \in I$ we have $j \in J$ with $R_{j}=R_{i} \cdot R_{i}$, therefore, the pair $u_{i} \cdot p_{i}, v_{i} \cdot p_{i}^{\prime}: P_{i} \rightarrow X$ factors through u_{j}, v_{j}. From $p=\operatorname{colim} p_{i}$ and $p^{\prime}=$ colim p_{i}^{\prime} we conclude that the pair $\hat{u} \cdot p, \hat{v} \cdot p^{\prime}$ factors through \hat{u}, \hat{v}, as requested.
(d) It is obvious that an equivalence relation S containing R contains each R_{i}, thus, $\widehat{R} \subseteq S$. Moreover, it is easy to see that for every morphism $c: X \rightarrow$ Y we have

$$
c \cdot u=c \cdot v \quad \text { iff } \quad c \cdot \hat{u}=c \cdot \hat{v}
$$

(since $c \cdot u=c \cdot v$ implies that the set of all relations u^{\prime}, v^{\prime} with $c \cdot u^{\prime}=c \cdot v^{\prime}$ is closed under inverse and relation composite - thus, $c \cdot u_{i}=c \cdot v_{i}$ for all $i \in I$.)
4.4. Notation For a weak quasi-equation $u, v: R \rightarrow X$ we denote by $u_{0}, v_{0}: R_{0} \rightarrow X$ the reflexive-and-symmetric hull given by a factorization of
[$u, v, \mathrm{id}],[v, u, \mathrm{id}]: R+R+X \rightarrow X$ as a strong epimorphism followed by a collectively monic pair $\left(u_{0}, v_{0}\right)$. Then we have the above subobjects

$$
r_{i}: R_{i} \rightarrow \widehat{R} \quad(i \in I)
$$

forming the least equivalence relation $\widehat{R}=\bigcup_{i \in I} R_{i}$ containing R_{0} represented by pairs $u_{i}, v_{i}: R_{i} \rightarrow X$. If the pair $\hat{u}, \hat{v}: \widehat{R} \rightarrow X$ represents the equivalence relation \widehat{R}, then $u_{i}=\hat{u} \cdot r_{i}$ and $v_{i}=\hat{v} \cdot r_{i}$.
4.5. Proof of Theorem 4.2 Let $u, v: R \rightarrow X$ be a weak quasi-equation which is a consequence of a set Q of weak quasi-equations. We prove $Q \vdash$ $u \equiv v$.
(1) We first prove that for every weak quasi-equation $u \equiv v$ we have

$$
u \equiv v \vdash u_{i} \cdot s \equiv v_{i} \cdot s \quad \text { for every } s: S \rightarrow R_{i} \text { with } S \text { finitely generated }
$$

by structural induction on $i \in I$: we verify first the case $s: S \rightarrow R_{0}$ for the reflexive-and-symmetric hull R_{0}, and then show that if the above holds for R_{i} and R_{j}, then it holds for $R_{i} \cdot R_{j}$.
Base case: As in 3.9 derive $[u, v, \mathrm{id}] \equiv[v, u, \mathrm{id}]$ from $u \equiv v$, then use Epi-Cancellation to get $u_{0} \equiv v_{0}$. Due to Composition $u \equiv v \vdash u_{0} \cdot s \equiv v_{0} \cdot s$.
Induction case: Let $R_{k}=R_{i} \cdot R_{j}$ and let

$$
u \equiv v \vdash u_{i} \cdot s \equiv v_{i} \cdot s \quad \text { and } \quad u \equiv v \vdash u_{j} \cdot s \equiv v_{j} \cdot s
$$

hold for all morphisms s with finitely generated domain and codomain such that the composites are defined. Given

$$
s: S \rightarrow R_{k}, S \text { finitely generated, }
$$

we prove $u \equiv v \vdash u_{k} \cdot s \equiv v_{k} \cdot s$. Let us recall the definition of $R_{k}=R_{i} \cdot R_{j}$:

Express P_{k} as a filtered colimit of finitely presentable objects $Q_{d}(d \in D)$ with the colimit cocone $q_{d}: Q_{d} \rightarrow P_{k}(d \in D)$ and let the (strong epi, mono)factorization of $e_{k} \cdot q_{d}$ be

$$
e_{k} \cdot q_{d}=m_{d} \cdot \bar{q}_{d} \quad \text { for } m_{d}: \bar{Q}_{d} \mapsto R_{k} .
$$

Then $R_{k}=\bigcup_{d \in D} \bar{Q}_{d}$ because $\left[m_{d}\right] \cdot \coprod_{d \in D} \bar{q}_{d}=e_{k} \cdot\left[q_{d}\right]$ is a strong epimorphism, thus, so is $\left[m_{d}\right]$. By 3.8

$$
R_{k}=\operatorname{colim} \bar{Q}_{d}
$$

is a colimit of a directed diagram of monomorphisms. Since S is finitely generated, $\mathcal{A}(S,-)$ preserves this colimit, consequently, $s: S \rightarrow \operatorname{colim} \bar{Q}_{d}$ factors through some m_{d} :

$$
s=m_{d} \cdot \bar{s} \quad \text { for some } d \in D \text { and } \bar{s}: S \rightarrow \bar{Q}_{d} .
$$

By induction hypothesis,

$$
u \equiv v \vdash u_{i} \cdot p_{i} \cdot q_{d} \equiv v_{i} \cdot p_{i} \cdot q_{d} \quad \text { and } \quad u \equiv v \vdash u_{j} \cdot p_{j} \cdot q_{d} \equiv v_{j} \cdot p_{j} \cdot q_{d}
$$

which by Transitivity and $v_{i} \cdot p_{i}=u_{j} \cdot p_{j}$ yields

$$
u \equiv v \vdash u_{i} \cdot p_{i} \cdot q_{d}=v_{j} \cdot p_{j} \cdot q_{d}
$$

In other words,

$$
u \equiv v \vdash u_{k} \cdot e_{k} \cdot q_{d} \equiv v_{k} \cdot e_{k} \cdot q_{d}
$$

Now from $e_{k} \cdot q_{d}=m_{d} \cdot \bar{q}_{d}$ we deduce, due to Epi-Cancellation,

$$
u \equiv v \vdash u_{k} \cdot m_{d} \equiv v_{k} \cdot m_{d}
$$

and using $s=m_{d} \cdot \bar{s}$ we get, via Composition,

$$
u \equiv v \vdash u_{k} \cdot s \equiv v_{k} \cdot s
$$

as desired.
(2) The rule Coequalizer (for finitary morphisms) is, due to (1), translated to the rules of 3.1 quite analogously as in the proof of 3.9 , part (2).
(3) To prove the completeness, let $u, v: R \rightarrow X$ be a weak quasi-equation which is a consequence of the set Q. Since R is finitely generated, it is a strong quotient $e: R^{*} \rightarrow R$ of a finitely presentable object R^{*} and we consider the quasi-equation $u^{*} \equiv v^{*}$ obtained from $u \equiv v$ by composition with e. Analogously, for every member $\bar{u} \equiv \bar{v}$ of Q we form a quasi-equation $\bar{u}^{*} \equiv \bar{v}^{*}$ in the above manner and get a set Q^{*} of quasi-equations.

It is clear that $u \equiv v$ is a consequence of Q iff $u^{*} \equiv v^{*}$ is a consequence of Q^{*} : use the soundness of Epi-Cancellation and Composition. By Theorem 2.5, there is a formal proof of $u^{*} \equiv v^{*}$ from Q^{*} using the Coequalizer Deduction System. We see from (2) that this formal proof gives rise to a proof of $u^{*} \equiv v^{*}$ from Q^{*} using the deduction rules of 3.1. Now $Q \vdash u \equiv v$ follows from the fact that $Q \vdash Q^{*}$ and $u^{*} \equiv v^{*} \vdash u \equiv v$.

References

[1] J. Adámek and V. Koubek, Are colimits of algebras simple to construct?, J. Algebra 66 (1980), 226-250.
[2] J. Adámek and M. Hébert, On quasi-equations in locally presentable categories, submitted.
[3] J. Adámek and J. Rosický: Locally presentable and accessible categories, Cambridge University Press, 1994.
[4] J. Adámek, M. Sobral and L. Sousa, A logic of implications in algebra and coalgebra, to appear in Algebra Universalis.
[5] B. Banaschewski and H. Herrlich, Subcategories defined by implications, Houston J. Math. 2 (1976), 149-171.
[6] M. Barr, Exact categories. In: Barr, M., Grillet, P. A. \& Van Osdol, D. H. (eds.), Exact Categories and Categories of Sheaves, Lectures in Math. 236, pp. 1-120, Springer-Verlag, 1971.
[7] G. Birkhoff, On the structure of abstract algebras, Proceedings of the Cambridge Philosophical Society 31 (1935), 433-454.
[8] P. A. Grillet, Regular categories. In: Barr, M., Grillet, P. A. \& Van Osdol, D. H. (eds.), Exact Categories and Categories of Sheaves, Lectures in Math. 236, pp. 121-222. Springer-Verlag, 1971.
[9] W. Hatcher, Quasiprimitive categories, Math. Ann. 190 (1970), 93-96.

JiŘí AdÁmek
Department of Theoretical Computer Science, Technical University of Braunschweig, Postfach 3329, 38023 Braunschweig, Germany

Lurdes Sousa
School of Technology of Viseu, Campus Politecnico, 3504-510 Viseu, Portugal
CMUC, University of Coimbra, 3001-454 Coimbra, Portugal

[^0]: Received March 08, 2009.
 The authors acknowledge partial financial support from the Center of Mathematics of the University of Coimbra/FCT.

