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1. Overview

The lattice of set partitions of a set of n elements can be interpreted as
the intersection lattice for the hyperplane arragement corresponding to a root
system of type An−1, i.e. the symmetric group of n objects, Sn. In particular,
two of its subposets are very well–behaved and widely studied, i.e. the lattice
of, respectively, noncrossing and nonnesting partitions, which have a lot of
interesting combinatorial properties, see e.g. [4, 7, 8, 9, 12, 14, 15, 18, 21,
22, 23, 24, 25] and the references therein.

Recently, Victor Reiner [19] and Alexander Postnikov, see Christos
Athanasiadis’ paper [2, §6, Remark 2] generalized the notion of, respectively,
noncrossing and nonnesting partitions to all classical reflection groups, and a
new very active research area sprung up, namely generalizing previous known
results held for noncrossing and nonnesting partitions of type A to their type
B and D analogue, see e.g. [1, 3, 13, 26, 27] and the references therein.

In particular, it is well known that in type A the number of noncrossing
partition equals the number of nonnesting partition, and several bijections
have been established. Recently one of us in [16, 17] solved the corresponding
problem for the type B (and type C) presenting an explicit bijection which
falls back to one already known when restricted to the type A.

The goal of this paper is to present an explicit bijection for the type D,
therefore solving the problem for all classical Weyl groups, and to show that
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this bijection has interesting additional combinatorial properties. For in-
stance, for any classical reflection group and any partition it is possible to
define three different maps, called openers, closers, and transients, going from
the partition itself to subsets of the involved reflection group, and we show
that our bijection preserves all these functions. Furthermore, our map re-
mains a bijection if restricted to the two sets of respectively, noncrossing and
nonnesting partitions which are both of type B and type D, and therefore
it is also a bijection between the partitions which are noncrossing in type
D but which are actually crossing in type B, and the partition which are
nonnesting in type D but which are actually nesting in type B.

Very recently, two other bijections have been presented for solving the type
D problem, see [10, 20], but they seem not to share all properties our holds:
for example, openers, closers and transients are not preserved.

2. Definitions and Preliminars

In this section we review the notions of noncrossing and nonnesting parti-
tions of types B and D, following closely [2, 3], and referring to [5, 11] for
any undefined terminology and comprehensive references on Coxeter groups.
Throughout the paper, let

[n] := {1, 2, . . . , n},

[±n] := {1, 2, . . . , n, 1, 2, . . . , n}

for any positive integer n, where we set i := −i.
The Coxeter group WBn of type Bn is realized combinatorially as the hy-

peroctahedral group of signed permutations of [±n]. These are permutations
of [±n] which commute with the involution i 7→ i. We write the elements
of W in cycle notation, using commas between elements. The simple gener-
ators of WBn are the transposition (1, 1) and the pairs (i + 1, i)(i, i + 1)
for i = 1, . . . , n − 1. The reflections in WBn are the transpositions (i, i)
for i = 1, . . . , n, and the pairs of transpositions (i, j)(j, i) for i 6= j.
Identifying the sets [±n] and [2n] through the map i 7→ i for i ∈ [n] and
i 7→ n + i for i ∈ {1, 2, . . . , n}, allows us to identify the hyperoctahedral
group WBn with the subgroup U of S2n which commutes with the permuta-
tion (1, n + 1)(2, n + 2) · · · (n, 2n).

Denoting by e1, . . . , en the standard basis of R
n, the root system of type

Bn consists on the set of 2n2 vectors

Φ = {±ei : 1 ≤ i ≤ n} ∪ {±ei ± ej : i 6= j, 1 ≤ i, j ≤ n},
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and we take

Φ+ = {ei : 1 ≤ i ≤ n} ∪ {ei ± ej : 1 ≤ j < i ≤ n}

as a choice of positive roots. Each root ei, ei − ej and ei + ej defines a
reflection that acts on R

n as the permutation (i, −i), (i, j)(−i, −j) and
(i, −j)(−i, j), respectively.

The crystallographic root system of type Dn has n(n − 1) positive roots,
consisting of

{ei ± ej}, for 1 ≤ i < j ≤ n.

Thus, Dn is a sub–root system of Bn, and the Weyl group WDn is an (index
2) subgroup of the signed permutation group WBn, generated by the elements
(1, 2)(2, 1) and (i + 1, i)(i, i + 1) for i = 1, . . . , n − 1. The reflections in
WDn are the transpositions (i, j)(i, j) for 1 ≤ i < |j| ≤ n. Any element of
WDn can be expressed uniquely (up to reordering) as a product of disjoint
cycles

c1c1 · · · ckckd1 · · · dr,

each having at least two elements, where c is obtained by negating the ele-
ments of c, dj = dj for j = 1, 2, . . . , r, and r is even (see [6]).

2.1. Set partitions and partitions of type B and D. A partition of a
finite set S is a collection of pairwise disjoint, non-empty, subsets of S, called
blocks, whose union is the whole set. A generic set partition with no further
restriction is sometimes denoted as partition of type A, because the lattice of
all set partitions of a set of n elements can be interpreted as the intersection
lattice for the hyperplane arragement corresponding to a root system of type
An−1, i.e. the symmetric group of n objects, Sn. A partition of [n] can be
visualized by placing the numbers 1, 2, . . . , n in this order along a line and
then joining consecutive elements of each block by an arc. A singleton of a
set partition is a block which has only one element, so it corresponds to an
isolated vertex in the graphical representation. The smallest element of each
block is called an opener, the greatest is said a closer, and the remaining
ones are called transients. These elements can be recognized by looking
at the graphical representation of the partition: the openers correspond to
singletons and to vertices from which an arc begins and no arc ends, the
closers correspond to singletons and to vertices to which an arc ends and no
arc begins, and the transients are the vertices from which an arc ends and
another one begins.
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A Bn–partition π is a partition of [±n] which has at most one block (called
the zero block) fixed by negation and it is such that for any block B of π,
the set −B, obtained by negating the elements of B, is also a block of π.
The type of a Bn–partition π is the integer partition whose parts are the
cardinalities of the blocks of π, including one part for each pair of nonzero
blocks B,−B. A Dn–partition is a Bn–partition π with the additional prop-
erty that the zero block, when it is eventually present, has more than two
elements. The set of all Bn–partitions, ordered by refinement, is denoted by
∏B(n), and its subposet consisting of all Dn–partitions is denoted by

∏D(n).

The posets
∏B(n) and

∏D(n) are geometric lattices which are isomorphic to
the intersection lattice of the Bn and Dn Coxeter hyperplane arrangement,
respectively.

Identifying the sets [±n] and [2n] as before, we may represent Bn and Dn–
partitions graphically using the conventions made for their type A analogue,
placing the integers

1, 2, . . . , n, 1, 2, . . . , n

along a line instead of the usual 1, 2, . . . , 2n. For any π ∈
∏B(n), let the set

of openers op(π) be made by the least element of all blocks of π having only
positive integers; let the set of closers cl(π) be made by the greatest element
of all blocks of π having only positive integers and by the absolute values
of the least and greatest elements of all blocks having positive and negative
integers; and finally let the set of transients tr(π) be made by all elements of
[n] which are not in op(π) ∪ cl(π).

Example 2.1. The B5 set partition
π = {{−1, 1}, {2, 3, 5}, {−2,−3,−5}, {4}, {−4}}, represented below, has ty-
pe (3, 2, 1), set of openers op(π) = {2, 4}, closers cl(π) = {1, 4, 5} and tran-
sients tr(π) = {3}. The openers, closers and transients can be visualized as
in type A by looking only at the arcs on the positive half of the represen-
tation of π. Note that π is not a Dn-partition since the zero block has only
two elements.

1 2 3 4 5 1 2 3 4 5
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2.2. Noncrossing partitions. Following [3], we now present the notion of
noncrossing partitions of types B and D.

Label the vertices of a convex 2n–gon as 1, 2, . . . , n, 1, 2, . . . , n clockwise,
in this order. Given a Bn–partition π and a block B, let ρ(B) be the convex
hull of the set of vertices labeled with the elements of B. We say that π is
noncrossing if ρ(B) and ρ(B′) have empty intersection for any two distinct
blocks B and B′ of π. Cutting the 2n–gon between the integers 1 and n and
stretching it along a line, we get a graphical representation of the noncrossing
partition π where no two arcs cross. The set of all noncrossing partitions of
[±n], denoted by NCB(n), is a subposet of

∏B(n) which is a self–dual and
graded lattice of rank n, see [19].

In the following example two noncrossing partitions are depicted.

Example 2.2. The Bn-partitions π = {{4, 4}, {5, 1, 3}, {5, 1, 3}, {2}, {2}} and
π′ = {{5, 1}, {5, 1}, {4, 3, 2}, {3, 4, 2}}, represented below, are elements of
NCB(5), with op(π) = {2}, cl(π) = {2, 3, 4, 5}, tr(π) = {1}, and op(π′) = ∅,
cl(π) = {1, 2, 4, 5}, tr(π′) = {3}.
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Consider now the type D case. Let us label the vertices of a regular (2n−2)–
gon as 2, 3, . . . , n, 2, 3, . . . , n clockwise, in this order, and label its centroid
with both 1 and 1. Given a Dn–partition π and a block B of π, let ρ(B) be
the convex hull of the set of vertices labeled with the elements of B. Two
distinct blocks B and B′ of π are said to cross if ρ(B) and ρ(B′) do not
coincide and one of them contains a point of the other in its relative interior.
Note that the case ρ(B) = ρ(B′) can occur only when B and B′ are the
singletons {1} and {1}, and that if π has a zero block B, then B and the
block containing 1 cross unless {1, 1} ⊆ B.

The poset NCD(n) is defined as the subposet of
∏D(n) consisting of those

Dn–partitions π with the property that no two blocks of π cross. It is a
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graded lattice of rank n. Note that the zero block of π ∈ NCD(n), if it
is eventually present, contains necessarily the integers 1, 1, and at least one
more pair i, i, with i 6= ±1.

Example 2.3. Below are graphical representations of the noncrossing Dn-
partitions π = {{±1,±3,±4}, {5, 2}{5, 2}} and
π′ = {{1, 4, 5}, {1, 4, 5}, {2, 3}, {2, 3}}. Observe that while π is not an ele-
ment of NCB(5), π′ is. This may be checked by moving the integers 1 and 1
to their respective places in the 2n-gon and see if some cross occur.
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We have op(π) = ∅, cl(π) = {2, 4, 5}, tr(π) = {1, 3}, and op(π′) = {2},
cl(π′) = {1, 3, 5}, tr(π) = {4}.

2.3. Nonnesting partitions. Let Φ be the root system of type Ψ, with
Ψ = Bn or Dn. The root poset of Φ is the set Φ+ of positive roots partially
ordered by letting α ≤ β if β−α is in the positive integer span of the positive
roots. A nonnesting partition of type Ψ is just an antichain in Φ+, i.e. a
subset of Φ+ consisting of pairwise incomparable elements. We denote by
NNΨ(n) the set of nonnesting Ψ–partitions.

A diagram representing a nonnesting Bn–partition π can be drawn over the
ground set n < . . . < 2 < 1 < 0 < 1 < 2 < . . . < n as follows: for i, j ∈ [n],
we include an arc between i and j, and between i and j, if π contains the root
ei − ej; an arc between i and j, and between i and j if π contains the root
ei + ej; and arcs between i and 0 and i and 0 is π contains the root ei. The
presence of 0 in the ground set for nonnesting Bn–partitions is necessary to
correctly represent (when it is eventually present) the arc between a positive
number i an its negative (see [2]). The chains of successive arcs in the diagram
become the blocks of a Bn–partition, after dropping 0, which is the partition
we associate to π. This map defines a bijection between nonnesting Bn–
partitions of WBn and Bn–partitions whose diagrams, in the above sense,
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contain no two arcs nested one within the other. We call this diagram the
nonnesting graphical representation of π, to distinguish it from the graphical
representation of the Bn–partition associated to π.

Example 2.4. Below is represented the nonnesting B5-partition
{{±4,±5}, {2, 3}, {2, 3}}:

5 4 3 2 1 0 1 2 3 4 5

The positive roots of Dn are those of Bn other than ei, 1 ≤ i ≤ n. The
same rules as before determine the diagram of a nonnesting Dn–partition
relatively to the ground set n < . . . < 3 < 2 < 1, 1 < 2 < . . . < n, in which
the integers 1 and 1 are not comparable. This means that, for instance, an
arc with 1 as endpoint and another one with 1 as endpoint are not considered
nested. The chains of successive arcs in the diagram become the blocks of a
Dn–partition, whose diagrams, in the above sense, contain no two arcs nested
one within the other. The zero block, if it is eventually present, contains 1 if
a nesting {ei − e1, ei + e1} appears in π.

Example 2.5. The D5-partition {{4, 1, 2}, {4, 1, 2}, {3, 5}, {3, 5}}, represented
below is nonnesting:

5 4 3 2 1 1 2 3 4 5

3. A bijection between nonnesting and noncrossing Dn–

partitions

The main constituent of our bijection between the sets NND(n) and
NCD(n) is the bijection

f : NNB(n) −→ NCB(n)

between nonnesting and noncrossing Bn–partitions presented in [16], which
preserves openers, closers and transients. This map reduces to a bijection
between noncrossing and nonnestin partitions of type A, and it was also
used to obtain the analog bijection for type C, see [17]. Recently, Martin
Rubey and Christian Stump [20] have also obtained the same bijection using
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a different construction, and proved that this is (essentially) the unique bijec-
tion between nonnesting and noncrossing partitions of type B that preserves
openers, closers and transients.

Theorem 3.1 ([16, 17, 20]). The map f : NNB(n) −→ NCB(n) is a bijec-

tion and it preserves openers, closers and transients.

The following Lemma is a consequence of the definition of f and Theorem
3.1.

Lemma 3.2. Let π ∈ NNB(n) and i 6= ±1. Then

(1) π has a zero block if and only if f(π) has a zero block;

(2) the zero block of π contains 1, i if and only if the zero block of f(π)
contains 1, j for some j 6= ±1.

Proof : (1) and the fact that 1 is in the zero block of π if and only if it is
in the zero block of f(π) follow immediately from the definition of f given
in [16, 17]. It is easy to see that if 1, i belong to the zero block of π then 1
must necessarily be a transient, and since f preserves openers, closers and
transients, then 1 must also be a transient in the zero block of f(π). Since
the greatest element of the zero block is a closer, there is at least one other
positive integer j in that zero block.

We now point out the relation between the two posets NND(n) and
NNB(n).
The only Bn partitions π in NND(n) which are not in NNB(n) are those
having a nesting between an arc with endpoint 1 and another with endpoint
1. There are only two kinds of Dn–partitions in NND(n) for which this can
happen:

(1) Dn–partitions π with no zero block and having a block B with entries
j, 1, i in a row, where 1 < i < j;

(2) Dn–partitions with zero block having integers 1, k in a row such that
1 < k, and with at least one block with integers i, j in a row, where
1 < i < j < k.

All other Dn–partition in NND(n) are also in NNB(n).

Example 3.1. To exemplify the first case, consider the nonnesting
D7-partition π = {{6, 1, 4, 7}, {6, 1, 4, 7}, {3, 2}, {3, 2}}, represented below,
noticing that π is not in NNB(7), since the arc linking 1 and 6 nest the arc
linking 1 and 4.
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7 6 5 4 3 2 1 1 2 3 4 5 6 7

An example for the remaining possibility for a B7-partition to be in NND(7)

but not in NNB(7) is η = {{±1,±7}, {2, 5}, {2, 5}, {3, 4}, {3, 4}}:

7 6 5 4 3 2 1 1 2 3 4 5 6 7

The B7–partition η is not an element of NNB(7) since in the nonnesting
graphical representation of η, the arc linking 0 and 1 is nested by the arc
linking 2 and 5.

Given a block B of a Bn–partition π, we write the elements of B by in-
creasing order, and B = Bn ∪ Bp, where Bn, respectively Bp, is the subset
of B formed by all its negative, respectively positive, integers. Finally, we
denote by s(B) the least positive integer of B and by w(B) = s(−Bn), i.e.
the absolute value of the largest negative entry of B; obviously, if B has only
positive integers then s(B) is the opener of this block.

Definition 3.1. We now design a map ι of NND(n) into NNB(n), for any
n ≥ 2. As one would expect, ι is just the identity for all partitions π ∈
NND(n) ∩ NNB(n), but otherwise a very careful attention is required.

Construct the map

ι : NND(n) −→ NNB(n)

as a three step definition as follows.
Let π = {B0, B1,−B1, B2,−B2, . . . , Bm,−Bm} ∈ NND(n), where B0 is the

zero block.

(1) If B0 = ∅, 1 ∈ B1 and 1 < s(B1 \ {1}) < w(B1), then set

ι(π) := {C0, C1,−C1, B2,−B2, . . . , Bm,−Bm},

where C0 = ±Bp
1 \ {1} and C1 = −Bn

1 ∪ {1}.
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(2) If 1 ∈ B0 and Bℓ for ℓ = 1, . . . , s ≤ m, are the blocks having both pos-
itive and negative entries with 1 < w(Bs) < · · · < w(B1) < s(B1) <
· · · < s(Bs), then set

ι(π) = {C0, C1,−C1, . . . , Cs,−Cs, Bs+1,−Bs+1, . . . Bm,−Bm},

where

C0 = ±Bp
s

C1 = −Bp
s−1 ∪ Bp

0

C2 = Bn
2 ∪ −Bn

1

C3 = Bn
3 ∪ Bp

1

...

Cs−1 = Bn
s−1 ∪ Bp

s−3 and

Cs = Bn
s ∪ Bp

s−2.

(3) Finally, set ι(π) = π if π is not of type (1) nor (2), (viz. π ∈ NND(n)∩
NNB(n)).

Example 3.2. The image, and respective graphical representation, of the
nonnesting D7-partitions π and η, considered in Example 3.1, by the map ι
are, respectively: ι(π) = {{±4,±7}, {1, 6}, {1, 6}, {3, 2}, {3, 2}} :

7 6 5 4 3 2 1 0 1 2 3 4 5 6 7

and ι(η) = {{±5}, {4, 1, 7}, {4, 1, 7}, {2, 3}, {2, 3}} :

7 6 5 4 3 2 1 0 1 2 3 4 5 6 7

Theorem 3.3. The map ι : NND(n) −→ NNB(n) is an injection. More-

over, the set ι(NND(n)) is made by the nonnesting Bn–partitions having zero

blocks, when they are present, containing 1 and at least one more positive in-

teger, and by the nonnesting Bn–partitions having a zero block without 1 and
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such that 1 belongs to a block B for which either B\{1} contains only positive

integers or it contains both positive and negative integers.

Proof : Given π ∈ NND(n), consider its image ι(π). If π is of type (1),
then {C0, C1,−C1} is clearly a nonnesting Bn–partition, and therefore the
whole ι(π) is also a nonnesting Bn–partition. Note that ι(π) has a zero block
without 1, and this integer is the opener of the block C1, which contains only
positive integers and it has cardinality strictly greater than 1.

If π is of type (2) then the situation is similar, since by its construction,
the set {C0, C1,−C1, . . . , Cs,−Cs} is a nonnesting Bn–partition. Since π ∈
NND(n) it follows that the whole ι(π) is a nonnesting Bn–partition having
zero block not containing 1, and this integer is a transient of the block C1. It
is immediate by definition that C1 \ {1} contains both positive and negative
integers.

Moreover, it is not hard to see that ι is one–to–one. In fact, going back-
wards, for any element π′ of NNB(n) having a zero block without 1 and
such that 1 belongs to a block B for which either B \ {1} contains only
positive integers or it contains both positive and negative integers, the in-
verse of the above construction for the cases (1) and (2) gives unambigu-
ously a nonnesting Dn–partition, whose image by ι is exactly π′. Therefore
ι : NND(n) −→ NNB(n) is an injection.

The following result is a consequence of the construction of the map ι.

Corollary 3.4. The map ι : NND(n) −→ NNB(n) preserves openers,

closers and transients, except for the nonnesting Dn–partitions of type (1)
in Definition 3.1, for which we have











op(ι(π)) = op(π)
⋃

{1}

cl(ι(π)) = cl(π)

tr(ι(π)) = tr(π) \ {1}

.

Corollary 3.5. The set (f ◦ ι)
(

NND(n)
)

⊂ NCB(n) is made by the non-

crossing Bn–partitions whose zero blocks, when they are present, contain 1
and at least one more positive integer, and by the noncrossing Bn–partitions

having a zero block without 1 and such that 1 belongs to a block B for which

either B \ {1} contains only positive integers or it contains both positive and

negative integers.
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Proof : By Lemma 3.2, the map f transforms nonnesting Bn–partition with
zero block having 1 and at least one other positive element into noncrossing
Bn–partition having the same properties, and therefore also nonnesting Bn–
partition with zero block without 1 into noncrossing Bn–partition with zero
block without 1. Since f preserves openers, closers and transients, the desired
result follows.

To fully present the bijection between nonnesting and noncrossing Dn–
partitions we need to explicitly investigate the relation between the two
posets (f ◦ ι)

(

NND(n)
)

, which is a subset of NCB(n), and NCD(n). A
careful examination at the notion of noncrossing Bn and Dn–partitions shows
that if π ∈ NCB(n) but π /∈ NCD(n) then only one of the following 3 mu-
tually exclusive possibilities can occur:

(1) π has a nonzero block which contains only the integers ±1,
(2) π has a zero block which does not contain 1,
(3) π has two blocks B and B′ such that the first one contains integers

1, i in a row and the second one contains integers k, j, with either
k < 1 < i < j or k < i < 1 < j.

Note that in the last case, notwithstanding the name noncrossing, when
considering the corresponding (2n− 2)–gon the convex hulls ρ(B) and ρ(B′)
actually cross.

We now design a map ξ of (f ◦ ι)
(

NND(n)
)

into NCD(n), for any n ≥ 2.
As one would expect, ξ is just the identity for all partitions
π ∈ (f ◦ ι)

(

NND(n)
)

∩ NCD(n), but otherwise a very careful attention is
required.

Definition 3.2. Construct the map

ξ : f ◦ ι(NND(n)) −→ NCD(n)

as a six step definition as follows. Let π = {B0, B1,−B1, . . . , Bm,−Bm} ∈
f ◦ ι(NND(n)), whereth B0 is the zero block.

(1) If 1 /∈ B0 6= ∅, 1 ∈ B1 and B1 \ {1} is not empty and it contains both
positive and negative integers, then set

ξ(π) = {C0, C1,−C1, B2,−B2, . . . , Bm,−Bm},

where C0 = B0 ∪ {±1} and C1 = B1 \ {1}.
(2) If B0 = ∅, 1 ∈ B1 and B1 \ {1} is not empty and it contains both

positive and negative integers, and there is at least one more block



ON NONCROSSING AND NONNESTING PARTITIONS OF TYPE D 13

containing both positive and negative integers, then assume B2 is the
block with the largest number s(B) among all blocks containing both
positive and negative integers. Set

ξ(π) = {C1,−C1, C2,−C2, B3,−B3 . . . , Bm,−Bm},

where C1 = B1 \ {1} and C2 = B2 ∪ {1}.
(3) Suppose B0 = ∅, 1 ∈ B1 and B1\{1} is not empty and it contains only

positive integers, and there is at least one block having both positive
and negative integers. Let B2, B3, . . . , Bk,−Bk, . . . ,−B3,−B2 be the
collection of all blocks having both positive and negative integers by
increasing order of their s(B) numbers. Then set

ξ(π) = {C1,−C1, . . . , Ck,−Ck, Bk+1,−Bk+1 . . . , Bm,−Bm},

where

C1 = B1 \ {1} ∪ Bn
2

C2 = Bp
2 ∪ Bn

3

...

Ck−1 = Bp
k−1 ∪ Bn

k and

Ck = Bp
k ∪ {1}.

(4) Similarly to case (3), assume B0 = ∅, 1 ∈ B1 and B1\{1} is not empty
and it contains only negative integers, and there is at least one block
having both positive and negative integers. Let
B2, B3, . . . , Bk,−Bk, . . . ,−B3,−B2 be the collection of all blocks hav-
ing both positive and negative integers by increasing order of their
s(B) numbers. Then set

ξ(π) = {C1,−C1, . . . , Ck,−Ck, Bk+1,−Bk+1 . . . , Bm,−Bm},

where

C1 = B1 \ {1} ∪ Bp
2

C2 = Bn
2 ∪ Bp

3

...

Ck−1 = Bn
k−1 ∪ Bp

k and

Ck = Bn
k ∪ {1}.
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(5) Assume 1 /∈ B0 6= ∅, 1 ∈ B1 and the block B1 contains only positive
integers, and there is at least one block having both positive and nega-
tive integers. Let B2, B3, . . . , Bk,−Bk, . . . ,−B3,−B2 be the collection
of all blocks having both positive and negative integers by increasing
order of their s(B) numbers. Then set

ξ(π) = {C1,−C1, . . . , Ck,−Ck, Bk+1,−Bk+1 . . . , Bm,−Bm},

where

C1 = B1 \ {1} ∪ Bn
2

C2 = Bp
2 ∪ Bn

3

...

Ck−1 = Bp
k−1 ∪ Bn

k and

Ck = Bp
k ∪ {−1} ∪ Bn

0 .

(6) Finally, set ξ(π) = π otherwise, i.e., if π ∈ (f ◦ ι)
(

NND(n)
)

∩
NCD(n).

Example 3.3. Here are instances of the application of the map ξ to the first
five cases of Definition 3.2.
Case 1.

•

•
••

•

•

•
• •

•

1

2

3

4

51

2

3

4

5

ξ
−→ •

•
•

•

•

•
•

•

2

3

4
5

2

3

4
5

1 1•

Case 2.
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•

•
••

•

•

•
• •

•

1

2

3

4

51

2

3

4

5

ξ
−→ •

•
•

•

•

•
•

•

2

3

4
5

2

3

4
5

1

1•

Case 3.

•

•
••

•

•

•
• •

•

1

2

3

4

51

2

3

4

5

ξ
−→ •

•
•

•

•

•
•

•

2

3

4
5

2

3

4
5

1
1•

Case 4.

•

•
••

•

•

•
• •

•

1

2

3

4

51

2

3

4

5

ξ
−→ •

•
•

•

•

•
•

•

2

3

4
5

2

3

4
5

1
1

•

Case 5.

•

•
••

•

•

•
• •

•

1

2

3

4

51

2

3

4

5

ξ
−→ •

•
•

•

•

•
•

•

2

3

4
5

2

3

4
5

1
1•
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Theorem 3.6. The map ξ : (f ◦ ι)
(

NND(n)
)

−→ NCD(n) is a bijection.

Proof : By Definition 3.2 it is easy to see that ξ(π) is always a noncrossing
Dn–partition.

By the investigation of the two posets (f ◦ ι)
(

NND(n)
)

and NCD(n) im-
mediately preceding the definition of ξ, it follows that the noncrossing Bn–
partitions which satisfy one of the the first five cases in Definition 3.2 are
the only ones which are not in NCD(n). Furthermore, the images by ξ of all
these Bn–partitions are not in NCB(n), since in all cases the block containing
the integer 1 always crosses at least one block containing both positive and
negative integers.

Therefore ξ restricted to the first five cases of Definition 3.2 sends
(f ◦ ι)

(

NND(n)
)

\ NCD(n) (recall (f ◦ ι)
(

NND(n)
)

⊂ NCB(n)) into

NCD(n) \ NCB(n).
Finally, the construction can be easily reversed. The only partitions in

NCD(n) which are not in NCB(n) are those such that the block B containing
1 contains also some other integer j which crosses some other block containing
both positive and negative integers. It follows that if π′ ∈ NCD(n)\NCB(n)
then π′ must belong to the set (ξ ◦ f ◦ ι)

(

NND(n)
)

, showing that ξ is indeed
bijective.

The composition of the maps ι, f and ξ gives the desired bijection between
the nonnesting and noncrossing Dn–partitions.

Theorem 3.7. The map ξ ◦ f ◦ ι : NND(n) −→ NCD(n) is a bijection, and

furthermore, writing

NND(n) =
(

NND(n)
⋂

NNB(n)
)

⊎

(

NND(n) \ NNB(n)
)

,

NCD(n) =
(

NCD(n)
⋂

NCB(n)
)

⊎

(

NCD(n) \ NCB(n)
)

,

we have that the two restrictions

ξ ◦ f ◦ ι : NND(n)
⋂

NNB(n) −→ NCD(n)
⋂

NCB(n)

ξ ◦ f ◦ ι : NND(n) \ NNB(n) −→ NCD(n) \ NCB(n)

are also bijections.

Moreover the map ξ ◦ f ◦ ι preserves openers, closers and transients.

Proof : The bijectivity follows from Theorems 3.1, 3.3, 3.6, and the proof of
the latter Theorem.
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By Definition 3.2 the only case where openers, closers and transients are
not preserved by the map ξ is when a Bn–partition has a nonzero block
without 1, and 1 belongs to a block containing only positive integers, i.e. in
the case (5) of the definition. In this case we have 1 ∈ op(π) but 1 ∈ tr(ξ(π)).

For all other integers their properties of being openers, closers or transients
are preserved, i.e.











op(ξ(π)) = op(π) \ {1}

cl(ξ(π)) = cl(π)

tr(ξ(π)) = tr(π) ∪ {1}

.

It is easy to see that π is a partition satisfying case (5) of Definition 3.2 if
and only if it is the image of a partition satisfying case (1) of Definition 3.1.
Therefore recalling Corollary 3.4, the desired result follows.
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