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Abstract. We study nuclear embeddings for function spaces of generalised
smoothness defined on a bounded Lipschitz domain Ω ⊂ R

d. This covers, in par-
ticular, the well-known situation for spaces of Besov and Triebel–Lizorkin spaces
defined on bounded domains as well as some first results for function spaces of log-
arithmic smoothness. In addition, we provide some new, more general approach
to compact embeddings for such function spaces, which also unifies earlier results
in different settings, including also the study of their entropy numbers. Again
we rely on suitable wavelet decomposition techniques and the famous Tong re-
sult (1969) about nuclear diagonal operators acting in �r spaces, which we could
recently extend to the vector-valued setting needed here.

1. Introduction

Our main intention in this paper is to characterise nuclear embeddings
between function spaces of generalised smoothness. We were motivated by
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the nice paper [11], but now we are able to deal with the topic in a much
more general setting sealing also some small gaps left open there. In other
words, we combine two well-established concepts in functional analysis, that
is, the theory of function spaces of generalised smoothness as well as the the-
ory of nuclear operators, benefit from some rather recent methods (wavelet
decompositions, sequence space results) and finally obtain a criterion for the
nuclearity of continuous embedding operators of the type

(1.1) idΩ : Bσ
p1,q1(Ω) ↪→ Bτ

p2,q2(Ω).

Here Ω is a bounded Lipschitz domain and Bσ
p,q(Ω) are Besov spaces of gen-

eralised smoothness defined by restriction to Ω, where σ = (σj) represents
the smoothness, and 1 ≤ p, q ≤ ∞. As far as we know this question has not
been studied before apart from some special cases. Our proof turns out to be
surprisingly simple and straightforward, once all the necessary preparations
are available.

The study of spaces of generalised smoothness has a long history, result-
ing on one hand from the interpolation side (with a function parameter), see
[38] and [13], whereas the rather abstract approach (approximation by series
of entire analytic functions and coverings as well as by differences and mod-
uli of continuity) was independently developed by Gol’dman and Kalyabin
in the late 70’s and early 80’s of the last century; we refer to the survey
[29] and the appendix [37] which cover the extensive (Russian) literature
at that time. We rely on the Fourier-analytical approach as presented in
[5,6,8,21,39–41]. There one can also find further motivation for the continu-
ous interest in the study of such spaces: its connection with applications for
pseudo-differential operators (as generators of sub-Markovian semigroups)
or the study of trace spaces on fractals, that is, so-called h-sets Γ. Plainly
such applications and also the topic in its full generality are out of the scope
of the present paper.

It is well known that a generalisation of the Besov spaces Bs
p,q(R

d) and

the Triebel–Lizorkin spaces F s
p,q(R

d) can be given by a more general weight

sequence (σj)j∈N0
instead of the sequence (2js)j∈N0

, s ∈ R, representing the
smoothness, and an almost strongly increasing sequence (Nj)j∈N0

instead of
the dyadic sequence (2j)j∈N0

in the definition of the resolution of unity. We
refer to [21] for the history of these spaces and further details. Thanks to
the standardization procedure used in [9] one can restrict the more general
setting of partitions of Rd to the dyadic one, at the expenses of adapted
smoothness sequences.

The purpose of the present paper is to compare and unify different ap-
proaches to spaces of generalised smoothness, collect and extend known find-
ings about the compactness of embedding operators of type (1.1), and to
study the nuclearity of embeddings of type (1.1). Grothendieck introduced

Analysis Mathematica 49, 2023



NUCLEAR AND COMPACT EMBEDDINGS IN FUNCTION SPACES 1009

the concept of nuclearity in [22] a long time ago. It can be seen as the ba-
sis for many famous developments in functional analysis afterwards, like the
influential paper of Enflo [20] solving the approximation problem, a long-
standing problem of Banach from the Scottish Book. We refer to [44,46],
and, in particular, to [47] for further historic details.

Let X , Y be Banach spaces, T ∈ L(X,Y ) a linear and bounded op-
erator. Then T is called nuclear, denoted by T ∈ N (X,Y ), if there ex-
ist elements aj ∈ X ′, the dual space of X , and yj ∈ Y , j ∈ N, such that∑∞

j=1 ‖aj‖X′‖yj‖Y <∞ and a nuclear representation Tx =
∑∞

j=1 aj(x)yj for
any x ∈ X . Together with the nuclear norm

ν(T ) = inf

{ ∞∑

j=1

‖aj‖X′‖yj‖Y : T =
∞∑

j=1

aj(·)yj
}

,

where the infimum is taken over all nuclear representations of T , the space
N (X,Y ) becomes a Banach space. It is obvious that nuclear operators are,
in particular, compact.

Already in the early years there was a strong interest to study examples
of nuclear operators beyond diagonal operators in �p sequence spaces, where
a complete answer was obtained in [50]. Concentrating on embedding oper-
ators in spaces of Sobolev type, first results can be found, for instance, in
[43,48]. We noticed an increased interest in studies of nuclearity in the last
years. Dealing with the Sobolev embedding for spaces on a bounded domain,
some of the recent papers we have in mind are [11,12,16,17,23,27,28,54] using
quite different techniques however.

There might be several reasons for this. For example, the problem to
describe a compact operator outside the Hilbert space setting is a partly
open and very important one. It is well known from the remarkable Enflo
result [20] that there are compact operators between Banach spaces which
cannot be approximated by finite-rank operators. This led to a number of
– meanwhile well-established and famous – methods to circumvent this dif-
ficulty and find alternative ways to ‘measure’ the compactness or ‘degree’ of
compactness of an operator. It can be described, for instance, by the asymp-
totic behaviour of its approximation and entropy numbers, which are basic
tools for many different problems nowadays like the eigenvalue distribution
of compact operators in Banach spaces, optimal approximation of Sobolev-
type embeddings, but also for numerical questions. In all these problems, the
decomposition of a given compact operator into a series is an essential proof
technique. It turns out that in many of the recent contributions studying
nuclearity as mentioned above, a key tool in the arguments are new decom-
position techniques as well, adapted to the different spaces. Inspired by the
nice paper [11] we also used such arguments in our papers [23,26,27], and
intend to follow this strategy here again.
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It is well-known that function spaces of Besov or Triebel–Lizorkin type,
also in the setting of generalised smoothness, defined on R

d never admit a
compact, let alone nuclear embedding. But replacing R

d by a bounded Lip-
schitz domain Ω ⊂ R

d, then the question of nuclearity in the scale of Besov
and Triebel–Lizorkin spaces has already been solved, cf. [43] (with a fore-
runner in [48]) for the sufficient conditions, and [54] with some forerunner
in [43] and partial results in [16,17] for the necessity of the conditions. More
precisely, for Besov spaces on bounded Lipschitz domains, Bs

p,q(Ω), it is well
known that

id∗Ω : B
s1
p1,q1(Ω) ↪→ Bs2

p2,q2(Ω)

is nuclear if and only if

s1 − s2 > d− dmax
( 1

p2
− 1

p1
, 0
)
,

where 1 ≤ pi, qi ≤ ∞, si ∈ R, i = 1, 2. The counterpart for spaces of type
Bσ

p,q(Ω), reads now as follows, see Theorem 4.8 below: let 1 ≤ pi, qi ≤ ∞,
i = 1, 2, and σ = (σj)j∈N0

, τ = (τj)j∈N0
be admissible sequences. Then the

embedding

idΩ : B
σ
p1,q1(Ω) ↪→ Bτ

p2,q2(Ω)

is nuclear if and only if

(σ−1
j τj 2

jd( 1

p1
− 1

p2
)
2
jd 1

t(p1,p2) )j∈N0
∈ �t(q1,q2),

where for t(q1, q2) = ∞ the space �∞ has to be replaced by c0. Here the
number t(r1, r2) is defined via

1

t(r1, r2)
=

{
1, if 1 ≤ r2 ≤ r1 ≤ ∞,

1− 1
r1

+ 1
r2
, if 1 ≤ r1 ≤ r2 ≤ ∞.

Clearly the two above-mentioned results for id∗Ω and idΩ coincide in case of
σj = 2js1 , τj = 2js2 . We obtained parallel results in the context of spaces
F σ
p,q(Ω), see Corollary 4.11 below.
Aiming finally at nuclearity results, we reviewed the many existing par-

tial results about compactness of the operator idΩ which exist in the liter-
ature. Applying the same technique as later for the nuclearity outcome, we
unified many of the partial results in Theorem 3.7 below: idΩ is compact if
and only if

(
σ−1
j τj 2

jd( 1

p1
− 1

p2
)
2jd

1

p∗
)
j∈N0

∈ �q∗,
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where the space �∞ has to be replaced by c0 if q∗ = ∞. Here p∗ and q∗ are
the numbers given by

1

p∗
= max

( 1

p2
− 1

p1
, 0
)
,

1

q∗
= max

( 1

q2
− 1

q1
, 0
)
,

where we may admit 0 < pi, qi ≤ ∞, i = 1,2, here. We also obtain a result on
the asymptotic behaviour of the entropy numbers ek(idΩ), see Theorem 3.7
below. It is interesting to note that, parallel to some earlier findings, we
observe the same phenomenon again: the criterion for compactness and nu-
clearity become literally the same, when p∗ is replaced by t(p1, p2), and q

∗
by t(q1, q2).

As already indicated, we follow here the general ideas presented in [11]
which use decomposition techniques and benefit from Tong’s result [50] about
nuclear diagonal operators acting in sequence spaces of type �p. This has
been extended in [23] to vector-valued sequence spaces which paves the way
for our present argument.

The paper is organised as follows. In Section 2 we introduce the concept
of spaces of generalised smoothness, recall essential findings, and discuss sev-
eral approaches which one can find in the literature. In Section 3 we present
criteria for the embedding of type (1.1) to be compact, cf. Theorem 3.7.
This generalises a number of special results which we recall below. In par-
ticular, we can also provide some general results concerning the asymptotic
behaviour of entropy numbers. We discuss some special limiting situations
not yet covered by that result, in contrast to different special settings. Our
main result about the nuclearity of idΩ can be found in Section 4.

2. Function spaces of generalised smoothness – basic properties
and different approaches

First we fix some notation. By N we denote the set of natural numbers,
by N0 the set N ∪ {0}. For a ∈ R, let a+ := max{a, 0}. All unimportant
positive constants will be denoted by c, occasionally with subscripts. By the
notation

ak ∼ bk or ϕ(x) ∼ ψ(x)

we always mean that there are two positive numbers c1 and c2 such that

c1 ak ≤ bk ≤ c2 ak or c1 ϕ(x) ≤ ψ(x) ≤ c2 ϕ(x)

for all admitted values of the discrete variable k or the continuous variable x,
where (ak)k, (bk)k are non-negative sequences and ϕ, ψ are non-negative
functions. Such sequences or functions are called to be equivalent. The
symbol ↪→ is used for a continuous embedding from one space into another.
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2.1. Admissible sequences. We will define function spaces of gener-
alised smoothness based on the Fourier-analytic characterisation of function
spaces that use a suitable resolution of unity on the Fourier side and a suit-
able weighted summation of the resulting parts. We will follow the approach
from [21]. To control the support of elements of the resolution of unity and
describe the smoothness weights we will use some sequences, therefore we
start with a definition of sequences that will be used as parameters.

Definition 2.1. A sequence σ = (σj)j∈N0
, with σj > 0, is called an ad-

missible sequence if there are two constants 0 < d0 = d0(σ) ≤ d1 = d1(σ)<∞
such that

(2.1) d0 σj ≤ σj+1 ≤ d1σj for any j ∈ N0.

If d0 > 1, then the sequence will be called strongly increasing admissible se-
quence.

Examples 2.2. To illustrate the flexibility of (2.1) we refer the reader
to some examples discussed in [21] or [3, Ch. 1]. We give here only the

standard example σ(1) = (σ
(1)
j )j∈N with

σ
(1)
j = 2sj log(1 + j)b, j ∈ N,

where s, b ∈ R. A second, more elaborate example can be found in [36, Ex-
ample 3]. Let 0 ≤ s0 < s1. Consider the subsequence jl = 2l and a sequence

(σ
(2)
j )j∈N0

defined by

(2.2)⎧
⎨

⎩

σ
(2)
j2l

:= 2j2l
2s1+s0

3 , and σ
(2)
j := σj2l 2

(j−j2l)s0 if j2l ≤ j < j2l+1,

σ
(2)
j2l+1

:= 2j2l+1
s1+2s0

3 , and σ
(2)
j := σj2l+1

2(j−j2l+1)s1 if j2l+1 ≤ j < j2l+2.

To describe properties of admissible sequences Bricchi and Moura intro-
duced in [5] the following notion of Boyd indices of admissible sequences.

Definition 2.3. Let σ = (σj)j∈N0
be an admissible sequence and let

σj := sup
k≥0

σj+k

σk
and σj := inf

k≥0

σj+k

σk
, j ∈ N0.

Then the expressions
(2.3)

ασ := inf
j∈N

log2 σj
j

= lim
j→∞

log2 σj
j

and βσ := sup
j∈N

log2 σj
j

= lim
j→∞

log2 σj
j

define, respectively, the upper and the lower Boyd index of the sequence σ.
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Remark 2.4. Plainly,

log2 d0 ≤ βσ ≤ ασ ≤ log2 d1,

and for each ε > 0 there exist constants c0,ε > 0 and c1,ε > 0 such that for
all j ∈ N,

(2.4) c0,ε 2
(βσ−ε)j ≤ σj ≤ σj ≤ σj ≤ c1,ε 2

(ασ+ε)j .

Moreover, it is easy to see that the Boyd indices of an admissible sequence σ
remain unchanged when replacing σ by an equivalent sequence.

Examples 2.5. We return to Examples 2.2. For σ(1) = (σ
(1)
j )j with

σ
(1)
j = 2sj log(1 + j)b, s, b ∈ R, one obviously obtains ασ(1) = βσ(1) = s. But

in the second example (2.2), we find that

σ
(2)
j = sup

k≥0

σ
(2)
j+k

σ
(2)
k

= 2js1 and σ
(2)
j = inf

k≥0

σ
(2)
j+k

σ
(2)
k

= 2js0,

consequently ασ(2) = s1 > βσ(2) = s0 .

2.2. Function spaces of generalised smoothness. Now we define
the function spaces we will work with in the sequel. In what follows let
S(Rd) denote the Schwartz space of all complex-valued rapidly decreasing
infinitely differentiable functions on R

d equipped with the usual topology
and S ′(Rd) be its topological dual, the space of all tempered distributions
on R

d. Moreover, let F and F−1 stand respectively for the Fourier transform
and its inverse. We choose two admissible sequences σ = (σj)j∈N0

and N =
(Nj)j∈N0

such that

(2.5) d0 σj ≤ σj+1 ≤ d1σj for d1 ≥ d0 > 0 and any j ∈ N0,

and

(2.6) λ0Nj ≤ Nj+1 ≤ λ1Nj for λ1 ≥ λ0 > 1 and any j ∈ N0,

i.e., we assume the sequence N not only to be admissible, but also strongly
increasing.

Now we can define the suitable resolution of unity.

Definition 2.6. For a fixed admissible sequence N = (Nj)j∈N0
satis-

fying assumption (2.6) let ΦN be the collection of all function systems
ϕN = (ϕN

j )j∈N0
satisfying the following conditions:

(i) ϕN
j ∈ C∞

0 (Rd) and ϕN
j (ξ) ≥ 0 if ξ ∈ R

d, for any j ∈ N0;
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(ii) there exists a number κ0 ∈ N with 2 ≤ λκ0

0 such that

{
suppϕN

j ⊂ {ξ ∈ R
d : |ξ| ≤ Nj+κ0

}, j = 0, 1, . . . , κ0 − 1,

suppϕN
j ⊂ {ξ ∈ R

d : Nj−κ0
≤ |ξ| ≤ Nj+κ0

}, j ≥ κ0;

(iii) for any γ ∈ N
d
0 there exists a constant cγ > 0 such that for any j ∈ N0

|DγϕN
j (ξ)| ≤ cγ (1 + |ξ|2)−|γ|/2 for any ξ ∈ R

d;

(iv) there exists a constant cϕ > 0 such that

0 <
∞∑

j=0

ϕN
j (ξ) = cϕ <∞ for any ξ ∈ R

d.

Remark 2.7. If Nj = 2j , j ∈ N0, then the function system ϕN =
(ϕN

j )j∈N0
is a classical smooth dyadic resolution of unity. In that situation

we will omit the superscript N and will write (ϕj)j∈N0
instead of (ϕN

j )j∈N0
.

Definition 2.8. Let σ = (σj)j∈N0
and N = (Nj)j∈N0

be admissible
sequences and assume that N = (Nj)j∈N0

satisfies (2.6). Moreover, let
ϕN ∈ ΦN .

(i) Let 0 < p ≤ ∞ and 0 < q ≤ ∞. The Besov space of generalised

smoothness Bσ,N
p,q (Rd) is defined as

{

f ∈ S ′(Rd) :

∥
∥f |Bσ,N

p,q (Rd)
∥
∥ :=

( ∞∑

j=0

σqj ‖F−1 (ϕN
j Ff) |Lp(R

d)‖q
)1/q

<∞
}

,

with the usual modification when q = ∞.

(ii) Let 0 < p <∞ and 0 < q ≤ ∞. The Triebel–Lizorkin space of gener-

alised smoothness F σ,N
p,q (Rd) is defined as

{

f ∈ S ′(Rd) :

∥
∥f |F σ,N

p,q (Rd)
∥
∥ :=

∥
∥
∥
∥

( ∞∑

j=0

σqj |F−1 (ϕN
j Ff)(·)|q

)1/q

|Lp(R
d)

∥
∥
∥
∥ <∞

}

,

with the usual modification when q = ∞.

Analysis Mathematica 49, 2023



NUCLEAR AND COMPACT EMBEDDINGS IN FUNCTION SPACES 1015

Remark 2.9. Both Bσ,N
p,q (Rd) and F σ,N

p,q (Rd) are (quasi)-Banach spaces,
Banach if min(p, q) ≥ 1, which are independent of the choice of the system
(ϕN

j )j∈N0
and with respect to equivalent sequences, in the sense of equivalent

quasi-norms. As in the classical case, the embeddings S(Rd) ↪→ Bσ,N
p,q (Rd)

↪→ S ′(Rd) and S(Rd) ↪→ F σ,N
p,q (Rd) ↪→ S ′(Rd) hold true for all admissible val-

ues of the parameters and sequences. If p, q <∞, then S(Rd) is dense in

Bσ,N
p,q (Rd) and in F σ,N

p,q (Rd). Moreover, it is clear that Bσ,N
p,p (Rd) = F σ,N

p,p (Rd).
Note also that if N = (2j)j∈N0

and σ = σs := (2js)j∈N0
with s real, then

the above spaces coincide with the usual function spaces Bs
p,q(R

d) and

F s
p,q(R

d) on R
d, respectively. We shall use the simpler notation Bs

p,q(R
d)

and F s
p,q(R

d) in the more classical situation just mentioned. Even for gen-

eral admissible σ, when N = (2j)j∈N0
we shall write simply F σ

p,q(R
d) and

Bσ
p,q(R

d) instead of F σ,N
p,q (Rd) and Bσ,N

p,q (Rd), respectively.
We refer to [21] for further characterisations of the spaces, in particular,

characterisation by local means and atomic decompositions. There one can
also find some discussion concerning the properties of the sequences we use
in Definition 2.8, in particular, the importance of the assumption (2.6).

We have the following useful relation between generalisedB and F spaces
in analogy to the classical elementary embeddings.

Proposition 2.10. Let 0 < p <∞, 0 < q ≤ ∞. Let N and σ be admis-
sible sequences with N satisfying (2.6). Then

(2.7) Bσ,N
p,min{p,q}(R

d) ↪→ F σ,N
p,q (Rd) ↪→ Bσ,N

p,max{p,q}(R
d).

The proposition can be proved similarly to the classical case, cf. [51,
Proposition 2.3.2/2(iii), p. 47]. For further embedding results we refer also
to [6–8,25].

In [8] Caetano and Leopold used the so-called standardization procedure,
which allows for a given pair of admissible sequences σ and N to define a
new admissible sequence β, such that β together with the standard sequence
(2j)j∈N0

defines the same space with generalised smoothness. More precisely,
let N and σ be admissible sequences and let N satisfy the condition (2.6).
We choose κ0 ∈ N such that λκ0

0 ≥ 2. Define

(2.8) βj := σk(j), with k(j) := min
{
k ∈ N0 : 2

j−1 ≤ Nk+κ0

}
, j ∈ N0.

Then we have

μ0βj ≤ βj+1 ≤ μ1βj, j ∈ N0,

with μ0 = min{1, dκ0

0 }, μ1 = max{1, dκ0

1 }.
Under these conditions it was proved in [8, Theorem 1] the following

result.
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Theorem 2.11. Let N and σ be admissible sequences and let N satisfy
(2.6). Let further 0 < p, q ≤ ∞ (with p <∞ in the F -case). Then

F σ,N
p,q (Rd) = F β

p,q(R
d) and Bσ,N

p,q (Rd) = Bβ
p,q(R

d),

where β := (βj)j∈N0
is determined by (2.8).

Convention. Let σ be an admissible sequence. We adopt the nowadays
usual custom to write Aσ

p,q(R
d) instead of Bσ

p,q(R
d) or F σ

p,q(R
d) when both

scales of spaces are meant simultaneously in some context.

Let us finally mention that generalised spaces on open sets in R
d can

be defined in the standard way by restriction. We recall this definition for
completeness. Let Ω be an open set in R

d, Ω �= R
d. If σ is an admissible

sequence, then

(2.9) Aσ
p,q(Ω) :=

{
f ∈ D(Ω) : ∃ g ∈ Aσ

p,q(R
d) with g|Ω = f

}
.

Equipped with the quotient norm

(2.10) ‖f |Aσ
p,q(Ω)‖ := inf

{‖g |Aσ
p,q(R

d)‖ : g ∈ As
p,q(R

d) with g|Ω = f
}
,

Aσ
p,q(Ω) becomes a (quasi-)Banach space.

2.3. Alternative definitions. Sometimes it is more convenient to use
spaces of generalised smoothness defined by function parameters instead of
admissible sequences. In this section we first give an alternative descrip-
tion of the spaces introduced in Definition 2.8, but now in terms of func-
tion parameters. Afterwards we recall the corresponding definitions given
by Merucci and by Edmunds and Netrusov. We shall prove that they are
covered by our Definition 2.6.

2.3.1. Approach via function parameters. We define a class of
suitable functions, corresponding to admissible sequences, and describe the
spaces of generalised smoothness in terms of these functions.

Definition 2.12. Let ϕ : [1,∞) → (0,∞) be a measurable function. We
say that ϕ belongs to a family V if

ϕ(t) := inf
s∈[1,∞)

ϕ(ts)

ϕ(s)
> 0 for all t ∈ [1,∞),

ϕ(t) := sup
s∈[1,∞)

ϕ(ts)

ϕ(s)
<∞ for all t ∈ [1,∞),

and both functions ϕ and ϕ are measurable.
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Remark 2.13. The above definition was given in [31] in the context of
weighted Besov spaces. However conditions of the above type have been used
earlier e.g. in connection with real interpolation with a function parameter
or with generalised smoothness. We refer to [31] for details, examples and
further references.

If ϕ ∈ V , then for all s ≥ 1 and t ≥ 1 we have obviously

ϕ(t)ϕ(s) ≤ ϕ(ts) ≤ ϕ(t)ϕ(s) .

The functions ϕ(t) and 1/ϕ(t) are submultiplicative. This guarantees
that

αϕ = inf
t>1

log2 ϕ(t)

log2 t

is either a real number or equals −∞ and

βϕ = sup
t>1

log2 ϕ(t)

log2 t

is either a real number or equal to +∞. As stated in [31, Lemma 4.8],
for ϕ ∈ V it turns out that −∞ < βϕ ≤ αϕ <∞ and we have the following
counterpart of (2.4): for any ε > 0 there is a constant cε ≥ 1 such that

(2.11) c−1
ε sβϕ−ε ≤ ϕ(s) ≤ ϕ(s)

ϕ(1)
≤ ϕ(s) ≤ cε s

αϕ+ε for all s ≥ 1.

We call βϕ and αϕ the upper and the lower Boyd index of the function ϕ ∈ V,
respectively.

Remark 2.14. The following relations between functions belonging to
the class V and admissible sequences were noticed in [8].

• For each function Σ ∈ V the sequence σ = (σk)k∈N0
with σk := Σ(2k)

is admissible, with d0 = Σ(2) and d1 = Σ(2), cf. (2.1). Moreover if N ∈ V
is strictly increasing and there exists λ0 > 1 such that λ0N (t) < N (2t) for
any t ≥ 1, then the sequence N = (Nk)k∈N0

with Nk = N (2k) is admissible
and satisfies (2.6).

• Vice versa, for each admissible sequence σ = (σk)k∈N0
there exists a

corresponding function Σ ∈ V , that is, a function such that Σ(t) ∼ σk for
all t ∈ [2k, 2k+1). For example, we can define

Σ(t) = σk + (2−kt− 1)(σk+1 − σk) for t ∈ [2k, 2k+1).

If, in addition, an admissible sequence (Nk)k∈N0
fulfils the condition (2.6),

then there exists a corresponding function N ∈ V , strictly increasing and
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with λ0N (t) ≤ N (2t) for all t ≥ 1. The function N can be defined by the
same formulae as above.

Using the above correspondence one can define spaces F σ,N
p,q (Rd) and

Bσ,N
p,q (Rd) starting from functions Σ,N ∈ V , N with properties as described

above. We can just take the admissible sequences σ = (σk)k∈N0
and N =

(Nk)k∈N0
with σk = Σ(2k) and Nk = N (2k) in Definition 2.8. So both start-

ing points, the sequential one and the functional one, lead us to the same
family of generalised spaces. Moreover, one can even choose functions and
sequences in such a way that the corresponding Boyd indices coincide. In
some abuse of notation we may occasionally write σ(2k) instead of σk, for a
given admissible sequence σ = (σk)k∈N0

, thus denoting also by σ a function
in V corresponding to the admissible sequence σ.

One can also formulate Theorem 2.11 in terms of functional parameters.
Let Σ and N be corresponding functions belonging to V with N strictly
increasing, continuous and such that λ0N (t) < N (2t) for any t ≥ 1. If N−1

is the inverse function to N , defined on [N (1),∞), and

β̂j := Σ(N−1(2j)), for j ∈ N0 large enough,

then (β̂j)j is an admissible sequence, equivalent to the sequence β defined
for the corresponding admissible sequences σ and N by formulae (2.8).

In consequence Bβ̂
p,q(Rd) = Bβ

p,q(Rd) = Bσ,N
p,q (Rd) and F β̂

p,q(Rd) = F β
p,q(Rd) =

F σ,N
p,q (Rd), respectively.

2.3.2. The approach related to interpolation. In connection with
real interpolation with a function parameter Merucci introduced Besov

spaces of generalised smoothness Bφ
p,q(Rd), cf. [38]. Here φ : (0,∞) → (0,∞)

denotes a positive continuous function that satisfies the condition (2.12) be-
low. These spaces were later used by Cobos and Fernandez in [13], Cobos
and Kühn in [14], and many other authors.

Definition 2.15. A continuous function φ : (0,∞) → (0,∞) with φ(1)
= 1 belongs to the class B if

(2.12) φ(t) = sup
u>0

φ(tu)

φ(u)
<∞ for every t > 0.

For φ ∈ B and 0 < p, q ≤ ∞, the Besov space of generalised smoothness

Bφ
p,q(Rd) consists of all f ∈ S ′(Rd) having a finite quasi-norm

∥
∥f |Bφ

p,q(R
d)
∥
∥ :=

( ∞∑

j=0

φ(2j)q‖F−1 (ϕjFf) |Lp(R
d)‖q

)1/q

,

with the usual modification when q = ∞.
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The classes B and V define the same spaces. First of all, due to Theo-
rem 2.11, we can restrict our attention to the spaces defined by the classical
dyadic resolution of unity. For each function φ belonging to B we can de-
fine a function ϕ belonging to V by restriction. It results in φ(2j) = ϕ(2j),
j ∈ N0, and ϕ(t) ≤ φ(t) <∞, t ≥ 1, is obvious. On the other hand, we have
also

ϕ(t) = inf
s≥1

ϕ(ts)

ϕ(s)
=

1

sups≥1
ϕ(s)
ϕ(ts)

=
1

sups≥1
ϕ((ts)t−1)

ϕ(ts)

≥ 1

φ(t−1)
> 0 .

Conversely, an easy calculation shows that the extension of a function ϕ ∈ V ,
normed with ϕ(1) = 1, by the constant 1 for 0 < t < 1 belongs to B. Con-

sequently, the function spaces Bσ
p,q(R

d), Bϕ
p,q(Rd) and Bφ

p,q(Rd) with φ ∈ B,
ϕ ∈ V and σ being an admissible sequence, coincide, cf. also [6, Section 2.2]
and [1, Proposition 3].

Remark 2.16. In [5] Bricchi and Moura consider a class of functions B
that is very close to the class B. They add one more condition. Namely,
a function g belongs to B if it belongs to B and additionally satisfies
g(t−1) = g(t)−1 for any t > 0. But this change is immaterial in the sense
that both classes of function parameters lead to the same function spaces.
The only point is that the Boyd indices of the admissible sequence and of the
corresponding function in B coincide, cf. [5, Proposition 3.6]. The same may
not happen in general for functions in B, in particular when one considers a
function in B defined as being constant in the interval (0, 1), as remarked in
[32]. Note that the Boyd indices of a function in B are defined similarly to
the ones of a function in V (taking now in their definition the infimum and
the supremum over the interval (0,∞) instead of the interval [1,∞)).

2.3.3. Another approach via parameter functions. Edmunds
and Netrusov used in [18] a bit different notation. They considered pa-
rameter functions ω : (0, 1] → (0,∞) that satisfy the following condition:
there exist positive constants L, c > 0 such that for all 0 < t1 ≤ t2 ≤ 1 it
holds

(2.13) ω(t1)t
−L
1 ≥ c ω(t2)t

−L
2 and c ω(t1)t

L
1 ≤ ω(t2)t

L
2 .

For 0 < p, q ≤ ∞, the Besov space of generalised smoothness Bω
p,q(R

d)

consists of all f ∈ S ′(Rd) having a finite quasi-norm

∥
∥f |Bω

p,q(R
d)
∥
∥ :=

( ∞∑

j=0

( 1

ω(2−j)

)q ‖F−1 (ϕjFf) |Lp(R
d)‖q

)1/q

,

with the usual modification when q = ∞. Again the above function spaces
are covered by Definition 2.8. Let ϕ ∈ V and define ω(t) := 1/ϕ(t−1),
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then ω fulfils the condition (2.13) with L = max{αϕ,−βϕ}+ ε and c = c−1
ε ,

cf. (2.11). On the other hand, taking σj := 1/ω(2−j) we get an admissi-
ble sequence with d0 = c 2−L and d1 = c−12L which again defines the same
function space.

Remark 2.17. For the sake of completeness we remark that function
spaces of generalised smoothness also appear as trace spaces for function
spaces on fractals, so-called (α,Ψ)- or h-sets. We do not want to explicate
the details here, but refer to [3,40].

2.4. Wavelet decomposition. We briefly recall the wavelet charac-
terisation of Besov spaces with general smoothness proved in [1]. It will be
essential in our approach. We will assume in this section that (σj)j∈N0

is an
admissible sequence with σ0 = 1 and Σ is a corresponding function belonging
to B.

Let φ̃ be a scaling function on R with compact support and of sufficiently

high regularity. Let ψ̃ be an associated wavelet. Then the tensor-product
ansatz yields a scaling function φ and associated wavelets ψ1, . . . , ψ2d−1,

all defined now on R
d. We suppose φ̃ ∈ Cr(R) and supp φ̃ ⊂ [−ν0, ν0] for

certain natural numbers r and ν0. This implies

(2.14) φ, ψ� ∈ Cr(Rd) and suppφ, suppψ� ⊂ [−ν, ν]d,

for � = 1, . . . , 2d − 1. Moreover

∫

Rd

xαψ�(x) dx = 0 for |α| < r.

We use the same abbreviations for the wavelet system as in [1], that is,

ψ�
j,m(·) :=

{
φ(· −m), j = 0, m ∈ Z

d, � = 1

ψ�(2
j−1 · −m), j ∈ N, m ∈ Z

d, 1 ≤ � ≤ L = 2d − 1.

Let L0 = 1 and Lj = L = 2d − 1 if j ∈ N. Then

{
2jd/2ψ�

jm : j ∈ N0, 1 ≤ � ≤ Lj, m ∈ Z
d
}

is an orthonormal basis in L2(R
d).

We put I = {(�, j,m) : j ∈ N0, 1 ≤ � ≤ Lj , m ∈ Z
d} and I ′ = {(�, j) :

j ∈ N0, 1 ≤ � ≤ L}.
Let 0 < p, q ≤ ∞ an let σ = (σj)j∈N0

be an admissible sequence. We
need first to introduce the appropriate sequence spaces bσp,q which consist
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of all complex-valued sequences λ = (λ�j,m)(�,j,m)∈I such that the following
quasi-norm:

‖λ|bσp,q‖ :=

( ∑

(�,j)∈I′

(σj2
−jd/p)q

( ∑

m∈Zd

|λ�jm|p
)q/p)1/q

(with the usual modifications if p = ∞ and/or q = ∞) is finite.
Now we can formulate the required wavelet decomposition result.

Theorem 2.18 [1, Theorem 13]. Let 0 < p ≤ ∞, 0 < q ≤ ∞, and let
σ = (σj)j∈N0

be an admissible sequence with σ0 = 1. Then there exists a
number r(σ, p) such that, for any r ∈ N with r > r(σ, p), the following holds:

Any given f ∈ S ′(Rd) belongs to Bσ
p,q(R

d) if and only if it can be repre-
sented as

f =
∑

(�,j,m)∈I
λ�j,mψ

�
j,m with λ = (λ�j,m) ∈ bσp,q ,

with unconditional convergence in S ′(Rd). Moreover, the coefficients λ�j,m
are uniquely determined by

λ�j,m = λ�j,m(f) := 2jd〈f, ψ�
j,m〉.

Furthermore,

‖f |Bσ
p,q(R

d)‖ ∼ ‖λ(f) |bσp,q‖
(equivalent quasi-norms), where λ(f) = (λ�j,m(f))(�,j,m)∈I.

Corollary 2.19. Under the same conditions of Theorem 2.18, the map-
ping

I : f �→ λ(f)

establishes a topological isomorphism from Bσ
p,q(R

d) onto bσp,q.

Remark 2.20. [1, Theorem 13] is stated for p finite, however the result
is also valid for p = ∞, as observed in [18, p. 628], see also [18, Theorem
4.1].

In the next sections we shall mainly work with embeddings of spaces
defined on a bounded Lipschitz domain Ω ⊂ R

d. So we need a topologi-
cal isomorphism between the function space and the corresponding sequence
space not only for Bσ

p,q(R
d), but also for Bσ

p,q(Ω). Cobos, Domı́nguez and
Kühn proved in [11] that such an isomorphism exists. We repeat their ar-
gument based on universal extension operators for Besov spaces defined on
Lipschitz domains and the real interpolation with function parameter.
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Let 0 < p, q ≤ ∞ and let σ = (σj)j∈N0
be an admissible sequence with

σ0 = 1. Recall that Σ is assumed to be a function in B corresponding to the
sequence σ, that is with Σ(2j) = σj . Moreover, it can be assumed that σ
and Σ have the same Boyd indices. We follow the same notation as in [13]
and consider s1, s0 ∈ R so that

s1 < βσ ≤ ασ < s0.

Then

(2.15)
(
Bs0

p,q(R
d), Bs1

p,q(R
d)
)
γ,q

= Bσ
p,q(R

d)

with

γ(t) :=
t

s0
s0−s1

Σ
(
t

1

s0−s1

) ,

cf. [13, Theorem 5.3, Remark 5.4].
The restriction operator re(g) = g|Ω is always bounded and linear, both

from Bσ
p,q(R

d) onto Bσ
p,q(Ω) and from Bsk

p,q(R
d) onto Bsk

p,q(Ω), k = 0, 1. But
the interpolation formula (2.15) implies

re : Bσ
p,q(R

d) → (
Bs0

p,q(Ω), B
s1
p,q(Ω)

)
γ,q
,

so Bσ
p,q(Ω) ↪→

(
Bs0

p,q(Ω), B
s1
p,q(Ω)

)
γ,q

.

If Ω ⊂ R
d is a Lipschitz domain, there exists a universal linear and

bounded extension operator ext for all classical Besov spaces, see Rychkov
[49] or [52, pp.64-66]. In particular,

ext: Bsk
p,q(Ω) → Bsk

p,q(R
d), k = 0, 1,

is bounded. Using again the interpolation argument we get

ext :
(
Bs0

p,q(Ω), B
s1
p,q(Ω)

)
γ,q

→ Bσ
p,q(R

d).

For each f ∈ (Bs0
p,q(Ω), B

s1
p,q(Ω))γ,q it follows that ext(f) ∈ Bσ

p,q(R
d) and so

f = re(ext(f)) ∈ Bσ
p,q(Ω). Moreover,

∥
∥f |Bσ

p,q(Ω)
∥
∥ ≤ ∥

∥ext(f) |Bσ
p,q(R

d)
∥
∥ ≤ c ‖f |(Bs0

p,q(Ω), B
s1
p,q(Ω)

)
γ,q

‖.

This yields that Bσ
p,q(Ω) =

(
Bs0

p,q(Ω), B
s1
p,q(Ω)

)
γ,q

with equivalent norms. It

also shows that the linear operator ext maps Bσ
p,q(Ω) into B

σ
p,q(R

d). Now let

Ij =
{
(�,m) : 1 ≤ � ≤ Lj , m ∈ Z

d and suppψ�
jm ∩ Ω �= ∅} .
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Since Ω is bounded with non-empty interior and the wavelets ψ�
jm are com-

pactly supported we get Mj = #Ij ∼ 2jd. Using the extension operator ext
it follows from the wavelet characterisation that

(2.16) Bσ
p,q(Ω) is isomorphic to �q(σj2

−j d

p �Mj

p ) with Mj ∼ 2jd,

0 < p ≤ ∞, 0 < q ≤ ∞, and σ = (σj)j∈N0
being an admissible sequence. Here

�q(βj�
Mj
p ), 0 < p, q ≤ ∞, denotes the space of all complex-valued sequences

λ = (λj,�)j∈N0,�=1,...Mj
such that

‖λ |�q(βj�Mj

p )‖ :=

( ∞∑

j=0

βq
j

( Mj∑

�=1

|λj,�|p
)q/p)1/q

<∞

(with the usual modifications if p = ∞ and/or q = ∞) is finite, where
(βj)j∈N0

is an admissible sequence with βj > 0 and (Mj)j∈N0
is a sequence

of natural numbers.

3. Compact embeddings and their entropy numbers

In this section we want to prove the necessary and sufficient conditions
for the compactness of embeddings of spaces with generalised smoothness on
arbitrary bounded domains. In addition, we want to estimate the asymp-
totic behaviour of the entropy numbers of those compact embeddings. Here
we also collect the various partial results already known for a longer time.
But first we briefly recall the concept of entropy numbers.

Definition 3.1. Let X and Y be two complex (quasi-) Banach spaces,
k ∈ N and let T ∈ L(X,Y ) be a linear and continuous operator from X
into Y . The kth entropy number ek(T ) of T is the infimum of all numbers
ε > 0 such that there exist 2k−1 balls in Y of radius ε which cover the image
T (BX) of the closed unit ball BX := {x ∈ X : ‖x|X‖ ≤ 1}.

Remark 3.2. For details and properties of entropy numbers we refer to
[10,15,30,46] (restricted to the case of Banach spaces), and [19] for some ex-
tensions to quasi-Banach spaces. Note that the sequence (ek(T ))k∈N is non-
increasing and e1(T ) ≤ ‖T‖. One can easily show that T is compact if and
only if limk→∞ ek(T ) = 0. So the asymptotic behaviour of entropy numbers
i.e., their decay, measure ‘how compact’ the operator T is. Moreover, the
asymptotic behaviour has an application to estimate eigenvalues of compact
operators, cf. [10,15,19,30,46] for further details. Among other properties of
entropy numbers we only want to mention the multiplicativity: let X , Y , Z
be complex (quasi-) Banach spaces and T1 ∈ L(X,Y ), T2 ∈ L(Y,Z). Then
(3.1) ek1+k2−1(T2 ◦ T1) ≤ ek1

(T1) ek2
(T2), k1, k2 ∈ N.
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In the classical setting of Besov and Triebel–Lizorkin spaces defined on
bounded Lipschitz domains the compactness of Sobolev embeddings as well
as their entropy numbers are well known.

Proposition 3.3. Let Ω ⊂ R
d be an arbitrary bounded domain, si ∈ R,

and 0 < pi, qi ≤ ∞ (pi <∞ if A=F ), i = 1, 2. Then

(3.2) idΩ : A
s1
p1,q1(Ω) → As2

p2,q2(Ω)

is compact if and only if

(3.3) s1 − s2 > d
( 1

p1
− 1

p2

)

+
.

Moreover

(3.4) ek(idΩ) ∼ k−
s1−s2

d , k ∈ N.

For bounded C∞ domains this goes back to [19, Section 3.3] (and the
references given there), for the result on general bounded domains we refer
to [53, Proposition 4.33]. Nowadays everything can be reduced to wavelet
representations and mapping properties of related sequence spaces, cf. [53,
Theorem 1.20]. In this way also the necessity of (3.3) for the compactness of
idΩ can be shown. This is more or less obvious but not explicitly mentioned
in the quoted literature.

Now we formulate the analogous result for spaces of generalised smooth-
ness. To prove this we use the wavelet decomposition described in Sec-
tion 2.4, cf. (2.16). So first we recall known theorems concerning the com-
pactness of embeddings of corresponding sequence spaces.

The following abbreviations will be useful in describing compactness con-
ditions

(3.5)
1

p∗
=

( 1

p2
− 1

p1

)

+
and

1

q∗
=

( 1

q2
− 1

q1

)

+
,

where 0 < pi, qi ≤ ∞, i = 1,2. Moreover, recall that c0 denotes the subspace
of �∞ containing the null sequences.

Proposition 3.4 [35, Theorem 2]. Let 0 < p1, p2 ≤ ∞, 0 < q1, q2 ≤ ∞,
(βj)j∈N0

be an arbitrary weight sequence and (Mj)j∈N0
be a sequence of nat-

ural numbers. Then the embedding

(3.6) idβ : �q1(βj�
Mj

p1
) → �q2(�

Mj

p2
)

is compact if and only if

(3.7) (β−1
j M

1

p∗
j )j∈N0

∈ �q∗,

where for q∗ = ∞ the space �∞ has to be replaced by c0.
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We recall that a weight sequence σ = (σj)j∈N0
is called almost strongly

increasing if there is a constant κ0,σ ∈ N such that 2σj ≤ σk for every j and
k with k ≥ j + κ0,σ, cf. [35]. Equivalently, one can say that a sequence is
almost strongly increasing if the lower Boyd index βσ of the sequence σ is
larger than zero, βσ > 0, cf. (2.3).

Theorem 3.5 [35, Theorems 3, 4]. Let 0 < p1, p2 ≤ ∞, 0 < q1, q2 ≤ ∞,
(Mj)j∈N0

be an admissible almost strongly increasing sequence of natural

numbers, (βj)j∈N0
be an admissible sequence and

(
βjM

− 1

p∗
j

)
j∈N0

be almost

strongly increasing. Then

(3.8) e2ML

(
idβ : �q1(βj�

Mj

p1
) → �q2(�

Mj

p2
)
) ∼ β−1

L M
−( 1

p1
− 1

p2
)

L .

Remark 3.6. Let us mention that in the paper [34] the sequence is
chosen as Mj ∼ 2jd, hence it also includes some limiting cases.

Now we consider function spaces of generalised smoothness Bσ
p,q(Ω) as

defined in (2.9), (2.10). Our main result reads as follows.

Theorem 3.7. Let Ω be an arbitrary bounded domain in R
d and 0 <

p1, p2 ≤ ∞, 0 < q1, q2 ≤ ∞. Let σ, τ ∈ V and σj = σ(2j), τj = τ(2j), j ∈ N0.

(i) The embedding

(3.9) idΩ : B
σ
p1,q1(Ω) ↪→ Bτ

p2,q2(Ω),

is compact if and only if

(3.10)
(
σ−1
j τj 2

jd( 1

p1
− 1

p2
)
2jd

1

p∗
)
j∈N0

∈ �q∗,

where the space �∗q has to be replaced by c0 if q∗ = ∞.

(ii) Moreover, if the sequence

(3.11) (σjτ−1
j 2

−jd( 1

p1
− 1

p2
)
2−jd 1

p∗ )
j∈N0

is almost strongly increasing,

that is, its lower Boyd index is positive, then we have

(3.12) ek(idΩ : Bσ
p1,q1(Ω) → Bτ

p2,q2(Ω)) ∼
(
σ(k1/d)

τ(k1/d)

)−1

.

Proof. Step 1. We choose δ > 0 and put Ωδ = {x ∈ R
d : d(x,Ω) < δ}.

Let Q be a dyadic cube such that suppψ�
j,m ⊂ Q for any element of the

wavelet basis ψ�
j,m such that suppψ�

j,m ∩ Ωδ �= ∅.
If f ∈ Bσ

p1,q1(Ω) and ‖f |Bσ
p1,q1(Ω)‖ ≤ 1, then one can find some g ∈

Bσ
p1,q1(R

d) such that f = g|Ω, ‖g |Bσ
p1,q1(R

d)‖ ≤ 1+ δ and λ�j,m(g) = 〈g,ψ�
j,m〉
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= 0 if suppψ�
j,m ∩ Ωδ = ∅. Then supp g ⊂ Q and in consequence λ�j,m(g) ∈

�q1
(
σj2

−jd/p1�
Mj

p1

)
, with Mj = |Q|2jd.

On the other hand, one can find a number ν ∈ N such that a dyadic
cube Qν,m0

⊂ Ω for some m0 ∈ Z
d, and suppψ�

j,m ⊂ Ω if j ≥ ν and suppψ�
j,m

∩Qν,m0
�= ∅. Let Iν be a subset of I consisting of all the triples (�, j,m) that

satisfy the following two conditions: j ≥ ν and suppψ�
j,m ∩Qν,m0

�= ∅. Then
any distribution

f =
∑

(�,j,m)∈Iν
λ�j,mψ

�
j,m

belongs to Bσ
p1,q1(Ω). Please note that #{m : suppψ�

j,m ∩Qν,m0
�= ∅} ∼

2(j−ν)d.

Step 2. We prove part (i). The condition (3.10) implies the compactness
of the embedding

(3.13) idβ : �q1
(
βj�

Mj

p1

)
↪→ �q2

(
�Mj

p2

)
, βj = σjτ

−1
j 2

−jd( 1

p1
− 1

p2
)
,

cf. Proposition 3.4. Let Dγ , γ = (γj)j∈N0
= (τj2

−jd/p2)j∈N0
, denote the diag-

onal operator λ�j,m �→ γjλ
�
j,m and let Dγ−1 be its inverse. Then we have the

following commutative diagrams:

(3.14)

�q1
(
σj2

−jd/p1�
Mj
p1

)
�q2

(
τj2

−jd/p2�
Mj
p2

)

�q1
(
βj�

Mj

p1

)
�q2

(
�
Mj

p2

)

Dγ Dγ−1

and

(3.15)

�q1
(
βj�

Mj

p1

)
�q2

(
�
Mj

p2

)

�q1
(
σj2

−jd/p1�
Mj
p1

)
�q2

(
τj2

−jd/p2�
Mj
p2

)
,

Dγ−1 Dγ

with ‖Dγ‖ = ‖Dγ−1‖ = 1. The above argument with the diagonal operators
shows that the compactness of (3.13) is equivalent to the compactness of the
embedding

(3.16) id : �q1
(
σj2

−jd/p1�Mj

p1

)
↪→ �q2

(
τj2

−jd/p2�Mj

p2

)
.

Let fn ∈ Bσ
p1,q1(Ω) be a bounded sequence. We may assume that

‖fn |Bσ
p1,q1(Ω)‖ ≤ 1 for any n ∈ N. Then there exists a sequence (gn)n,
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bounded in Bσ
p1,q1(R

d) such that λ�j,m(gn) ∈ �q1(σj2
−jd/p1�

Mj

p1 ). Moreover

the sequence (λ�j,m(gn))n is bounded in �q1(σj2
−jd/p1�

Mj

p1 ). If the condition

(3.10) is fulfilled, then the embedding (3.16) is compact and we can find a

subsequence (λ�j,m(gnk
))k convergent in �q2(τj2

−jd/p2�
Mj
p2 ). Now the wavelet

decomposition theorem implies that the the sequence (gnk
)k is convergent

in Bτ
p2,q2(R

d) and in consequence (fnk
)k is convergent in Bτ

p2,q2(Ω).
On the other hand, if the condition (3.10) does not hold, then the embed-

ding (3.16) is not compact. One can find a sequence λ(n) = (λ�j,m(n))j,m in

�q1(σj2
−jd/p1�

Mj

p1 ) that has no convergent subsequence in �q2(τj2
−jd/p2�

Mj

p2 ).

We may assume that λ�j,m(n) = 0 if j < ν or suppψ�
j,m ∩Qν,m0

= ∅. Then
the sequence

gn =
∑

(�,j,m)∈Iν
λ�j,m(n)ψ�

j,m

is bounded in Bσ
p1,q1(R

d) and has no subsequence that converges in Bτ
p2,q2(R

d).

But ‖gn |Bσ
p1,q1(Ω)‖=‖gn |Bσ

p1,q1(R
d)‖ and ‖gn |Bτ

p2,q2(Ω)‖=‖gn |Bτ
p2,q2(R

d)‖.
This proves the necessity of the condition (3.10).

Step 3. Now we deal with the asymptotic behaviour of the corresponding
entropy numbers. We may assume that the dyadic cube we have chosen in
Step 1 has a volume bigger than 1. Then the sequence Mj is admissible and
strongly increasing. It follows from the commutative diagrams (3.14) and
(3.15) that

(3.17) ek
(
id : �q1

(
σj2

−jd/p1�Mj

p1

)
↪→ �q2

(
τj2

−jd/p2�Mj

p2

)) ∼ ek(idβ).

So it follows from Theorem 3.5 that

e2ML
= e2ML

(
id : �q1

(
σj2

−jd/p1�Mj

p1

)
↪→ �q2

(
τj2

−jd/p2�Mj

p2

))
(3.18)

∼ β−1
L M

−( 1

p1
− 1

p2
)

L = σ−1
L τL ,

if the sequence (βjM
−1/p∗

j )j∈N0
is almost strongly increasing. We prove

that in that case for any k ∈ N we can find 2k−1 balls of radius r ∼
σ(k1/d)/τ(k1/d) in Bτ

p2,q2(Ω) that cover the unit ball of the space Bσ
p1,q1(Ω).

Let f ∈ Bσ
p1,q1(Ω) with ‖f |Bσ

p1,q1(Ω)‖ ≤ 1. According to Step 1 there is

a function g ∈ Bσ
p1,q1(R

d) with ‖g |Bσ
p1,q1(R

d)‖ ≤ 1 + δ such that f = g|Ω.
Moreover there exists a positive constant Cδ > 0 depending on δ such that

‖λ�j,m(g) |�q1(σj2−jd/p1�
Mj
p1 )‖ ≤ Cδ .

Let B(λ, r) denote the ball in the space �q2(τj2
−jd/p2�

Mj
p2 ) and B̃(λ, r)

denote the ball in the spaces �q1(σj2
−jd/p1�

Mj
p1 ). For any ε > Cδek we can

Analysis Mathematica 49, 2023



1028 D. D. HAROSKE, H-G. LEOPOLD, S. D. MOURA and L. SKRZYPCZAK

find sequences λ(n) = (λ�j,m(n))�,j,m, n = 1, . . . , 2k−1, such that the balls

B(λ(n), ε) cover in �q2(τj2
−jd/p2�

Mj

p2 ) the ball B̃(0, Cδ). Now taking

gn =
∑

(�,j,m)∈I
λ�j,m(n)ψ�

j,m , n = 1, . . . , 2k−1,

we get 2k−1 functions in Bτ
p2,q2(Ω) and 2k−1 balls B(gn, r) with r ∼ ε that

cover in Bτ
p2,q2(R

d) the unit ball of the space Bσ
p1,q1(R

d). In consequence we

get 2k−1 balls in Bτ
p2,q2(Ω) centred at fn = gn|Ω with radius r that cover the

unit ball of the space Bσ
p1,q1(Ω). This results in the estimate from above in

(3.12).
On the other hand, the cube Qν is a bounded Lipschitz domain. So there

is a universal extension operator

extν : B
σ
p1,q1(Qν) → Bσ

p1,q1(R
d), and extν : B

τ
p2,q2(Qν) → Bτ

p2,q2(R
d),

cf. Section 2.4. Moreover, the spaces Bσ
p1,q1(Qν) and B

τ
p2,q2(Qν) are isomor-

phic to �q1(σj2
−jd/p1�

Mj
p1 ) and �q2(τj2

−jd/p2�
Mj
p2 ), respectively, Mj ∼ 2jd, re-

call (2.16). Let T denote this isomorphism. Then we arrive at the following
commutative diagram:

(3.19)

�q1
(
σj2

−jd/p1�
Mj
p1

)
Bσ

p1,q1(Qν) Bσ
p1,q1(Ω)

�q2
(
τj2

−jd/p2�
Mj
p2

)
Bτ

p2,q2(Qν) Bτ
p2,q2(Ω),

T−1

id

reΩ ◦ extν

idΩ

T reν

In view of the multiplicativity of the entropy numbers, this finally yields the
estimate from below in (3.12). �

Remark 3.8. If the assumption (3.10) is satisfied, but (3.11) is not, we
will call such an embedding limiting. Otherwise, i.e., if (3.11) holds, the
embedding will be called non-limiting. Part (ii) of the last above theorem
describes the asymptotic behaviour of entropy numbers in the non-limiting
case. Let us note that in the non-limiting situation the behaviour of en-
tropy numbers of embeddings defined on arbitrary domains is the same as
for embeddings defined on Lipschitz or smooth domains.

First results were obtained in special cases in 1998, still without the use
of sequence space results and wavelet description. We now briefly list them
as examples of our general outcome.

Example 3.9. Let for b ∈ R, s ∈ R, and σj = 2js(1 + j)b, the spaces

Bσ
p,q(Ω) be denoted by Bs,b

p,q(Ω). Assume −∞ < s2 < s1 <∞, b ∈ R, 0 < p1
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≤ p2 ≤ ∞, 0 < q1, q2 ≤ ∞ and suppose that s1 − s2 − d(1/p1 − 1/p2) > 0. It
was proved by Leopold in [33] that

(3.20) ek
(
id : Bs1,b

p1,q1(Ω) ↪→ Bs2
p2,q2(Ω)

) ∼ k−(s1−s2)/d(1 + log k)−b, k ∈ N.

This is what we called the non-limiting case above. In the limiting case for
p1 = p2 = p and s1 = s2 = s it was obtained in [33], that if q1 ≤ q2 and b > 0,
then the embedding

(3.21) id : Bs,b
p,q1(Ω) ↪→ Bs

p,q2(Ω)

is compact and

(3.22) ek
(
id : Bs,b

p,q1(Ω) ↪→ Bs
p,q2(Ω)

) ∼ (1 + log k)−b, k ∈ N.

The result in case of q1 > q2 in [33] was not sharp, but finally improved by
Cobos and Kühn [14, Corollary 4.6], such that the final result reads as

(3.23) ek
(
id : Bs,b

p,q1(Ω) �→ Bs
p,q2(Ω)

) ∼ (1 + log k)−b+1/q∗, k ∈ N,

in all cases.

Example 3.10. Cobos and Kühn considered in [14] also Besov spaces
of generalised smoothness with σj = 2jsΨ(2j), where Ψ is a slowly varying
function, that is, a Lebesgue measurable function Ψ: [1,∞) → (0,∞) so that

lim
t→∞

Ψ(st)

Ψ(t)
= 1 for all s ≥ 1,

cf. e.g. [2,24]. In this case, the space Bσ
p,q(Ω) is denoted by Bs,Ψ

p,q (Ω). Clearly

Bs,b
p,q(Ω) = Bs,Ψb

p,q (Ω), for Ψb(t) = (1+ log t)b, b ∈ R. If Ω is a bounded domain

in R
d so that there exists an extension operator from Bs,Ψ

p,q (Ω) to B
s,Ψ
p,q (Rd),

which is the case if Ω is a bounded Lipschitz domain, cf. Section 2.4, then
by [14, Theorem 4.5] we have the following. For 0 < p ≤ ∞, 0 < q1, q2 ≤ ∞,
s ∈ R and Ψ an increasing slowly varying function, the embedding

id : Bs,Ψ
p,q1(Ω) → Bs

p,q2(Ω)

is compact if and only if
(
Ψ(2j)−1

)
j∈N0

∈ �q∗ (with �q∗ replaced by c0 when

q∗ = ∞), and, moreover,

ek
(
id : Bs,Ψ

p,q1(Ω) → Bs
p,q2(Ω)

) ∼
{
Ψ(k1/d)−1 if q1 ≤ q2,
( ∫∞

k1/d Ψ(t)−q∗ dt/t
)1/q∗

if q1 > q2.

Beyond the example with logarithms Ψb, other examples of slowly varying
functions Ψ were worked out in [14], cf. [14, Corollaries 4.7, 4.8].
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The previous result concerns the limiting case. In the non-limiting case,
accordingly to Theorem 3.7(ii) we can state the following: Let 0 < pi ≤ ∞,
0 < qi ≤ ∞, si ∈ R, Ψi be slowly varying functions, i = 1, 2, and assume

s1 − s2 > d

(
1

p1
− 1

p2

)

+

.

Then

ek
(
id : Bs1,Ψ1

p1,q1 (Ω) → Bs2,Ψ2

p2,q2 (Ω)
) ∼ k−

s1−s2
d

Ψ2(k
1/d)

Ψ1(k1/d)
, k ∈ N.

Obviously this can also be understood as a generalisation of the classical
result recalled in Proposition 3.3.

We return to the spaces defined in Subsection 2.3.3 by Edmunds and
Netrusov.

Example 3.11. Let d ∈ N, Q = (0, 1)d, 0 < q1, q2 ≤ ∞, let 0 < p1 < p2
≤ ∞, put 1/p1 − 1/p2 = α. Then Edmunds and Netrusov found in [18, The-
orem 4.2] the following.

(i) Let σ, τ ∈ V . Suppose that 1/q2 − 1/q1 ≤ −α and for all k ∈ N put

(3.24) A(k) = sup
u≥k

τ(u1/d)

σ(u1/d)
uα

(

min
{ log (uk + 1)

k
, 1
})α

.

Let id : Bσ
p1,q1(Q) ↪→ Bτ

p2,q2(Q) be the continuous embedding. Then, for all
k ∈ N,

(3.25) ek
(
id : Bσ

p1,q1(Q) ↪→ Bτ
p2,q2(Q)

) ∼ A(k).

(ii) Let p1, p2 and σ satisfy the same conditions as in (i), let 0 < q2 ≤ q1
≤ ∞, and β > 1/q∗. Assume that τ(t) = σ(t)t−dα(1+ log t)−β . Then, for all
k ∈ N,

ek
(
id : Bσ

p1,q1(Q) ↪→ Bτ
p2,q2(Q)

)
(3.26)

∼

⎧
⎪⎨

⎪⎩

k−α(1 + log k)−β+2α+1/q∗ if β > 1
q∗ + 2α,

k−α(1 + log k)α+1/q∗ if β = 1
q∗ + 2α,

k−(β+1/q∗)/2 if β < 1
q∗ + 2α.

Remark 3.12. Note that the assumptions in Example 3.11 imply α > 0
and thus, in part (i), q1 < q2, that is, p∗ = q∗ = ∞. Then, according to
(3.25), the embedding id : Bσ

p1,q1(Q) ↪→ Bτ
p2,q2(Q) is compact if and only if

limk→∞A(k) = 0, which coincides with Theorem 3.7(i) in this situation.
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Moreover, if (3.11) is satisfied, this can be understood in the above set-
ting as the supremum in (3.24) being attained in u = k which leads to the
coincidence of (3.25) and (3.12) in this case,

ek
(
id : Bσ

p1,q1(Q) ↪→ Bτ
p2,q2(Q)

) ∼ A(k) ∼ τ(k1/d)

σ(k1/d)
, k ∈ N.

However, without this additional assumption (3.11), we still have the
sharp result (3.25), unlike in case of Theorem 3.7. It would be interesting
to consider further examples which do not satisfy (3.11), but still fit in the
above scheme of the Edmunds–Netrusov result [18, Theorem 4.2].

Concerning part (ii), the special setting refers to σjτ
−1
j 2

−jd( 1

p1
− 1

p2
)
=

(1 + j)β, j ∈ N, where β > 1/q∗. Then (3.26) can be understood as an ex-
tension of (3.23) from the case α = 0, that is, p1 = p2, in Example 3.9 to
the case α > 0, that is, p1 < p2, in Example 3.11. Plainly, when α = 0, the
assumption β > 1/q∗ excludes the second and third case in (3.26).

Remark 3.13. The estimates (3.25) and (3.26) hold for any arbitrary
bounded domain Ω in R

d. If Q1 and Q2 are cubes such that 2Q1 ⊂ Ω ⊂ 1
2Q2,

then using the same general idea as in Step 3 of the proof of Theorem 3.7
we can show that there are constants C1, C2 > 0 such that

C1 ek
(
id : Bσ

p1,q1(Q1) ↪→ Bτ
p2,q2(Q1)

) ≤ ek
(
id : Bσ

p1,q1(Ω) ↪→ Bτ
p2,q2(Ω)

)

≤ C2 ek
(
id : Bσ

p1,q1(Q2) ↪→ Bτ
p2,q2(Q2)

)
.

But, we have obviously

ek(id : B
σ
p1,q1(Q1) ↪→ Bτ

p2,q2(Q1)) ∼ ek(id : B
σ
p1,q1(Q2) ↪→ Bτ

p2,q2(Q2)).

Remark 3.14. Plainly, there are several open problems here, e.g., what
happens in the limiting case of a compact embedding in general, that is, re-
ferring to (ii) in Example 3.11 when q2 ≤ q1, but we do not have the special
coupling of σ and τ by the logarithmic term – can one describe the asymp-
totic behaviour of the entropy numbers more precisely? Another interesting
question would be to study the situation in Theorem 3.7 when the lower
Boyd index equals 0, but the upper one is positive. We discussed similar
problems in case of limiting (continuous) embeddings on R

d in our paper
[25]. But this is out of the scope of the present paper.

Remark 3.15. Let us briefly mention that parallel studies for spaces,
defined as trace spaces on so-called (α,Ψ) or h-sets can be found in [3,4,40].
This concerns compactness results as well as estimates for the corresponding
entropy numbers.
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4. Nuclearity of embeddings

First we recall some fundamentals of the concept and important re-
sults we rely on in the sequel. Let X , Y be Banach spaces, T ∈ L(X,Y )
a linear and bounded operator. Then T is called nuclear, denoted by
T ∈ N (X,Y ), if there exist elements aj ∈ X ′, the dual space of X , and
yj ∈ Y , j ∈ N, such that

∑∞
j=1 ‖aj‖X′‖yj‖Y <∞ and a nuclear representa-

tion Tx =
∑∞

j=1 aj(x)yj for any x ∈ X . Together with the nuclear norm

ν(T ) := inf

{ ∞∑

j=1

‖aj‖X′‖yj‖Y : T =
∞∑

j=1

aj(·)yj
}

,

where the infimum is taken over all nuclear representations of T , the space
N (X,Y ) becomes a Banach space. It is obvious that any nuclear operator
can be approximated by finite rank operators, hence nuclear operators are,
in particular, compact.

Remark 4.1. This concept has been introduced by Grothendieck [22]
and was intensively studied afterwards, cf. [44–46] and also [47] for some
history. There exist extensions of the concept to r-nuclear operators,
0 < r <∞, where r = 1 refers to the nuclearity. It is well known that the
family of all nuclear operators N :=

⋃
X,Y N (X,Y ) is a Banach operator

ideal. In Hilbert spaces H1,H2, the nuclear operators N (H1,H2) coincide
with the trace class S1(H1,H2), consisting of those T with singular numbers
(sn(T ))n ∈ �1.

We collect some more or less well-known facts needed in the sequel.

Proposition 4.2. (i) If X is an n-dimensional Banach space, n ∈ N,
then ν(id : X → X) = n.

(ii) For any Banach space X and any bounded linear operator T : �n∞ → X
we have

ν(T ) =
n∑

i=1

‖Tei‖.

(iii) If T ∈ N (X,Y ) and S ∈ L(Y, Y0) and R ∈ L(X0,X), then STR ∈
N (X0, Y0) and

ν(STR) ≤ ‖S‖ ‖R‖ ν(T ).
Already in the early years there was a strong interest to find interesting

examples of nuclear operators beyond diagonal operators in �p spaces, where
a complete answer was obtained in [50]. We need a more general version of it,
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for vector-valued sequence spaces, and proved it in [23]. Let us introduce
the following notation: for numbers r1, r2 ∈ [1,∞], let t(r1, r2) be given by

(4.1)
1

t(r1, r2)
=

{
1, if 1 ≤ r2 ≤ r1 ≤ ∞,

1− 1
r1

+ 1
r2
, if 1 ≤ r1 ≤ r2 ≤ ∞.

Hence 1 ≤ t(r1, r2) ≤ ∞, and

1

t(r1, r2)
= 1−

( 1

r1
− 1

r2

)

+
≥ 1

r∗
=

( 1

r2
− 1

r1

)

+
,

with t(r1, r2) = r∗ if and only if {r1, r2} = {1,∞}.
As already mentioned, an essential key in our arguments will be the re-

markable result by Tong [50], more precisely, its generalised version obtained
in [23].

Theorem 4.3 [23, Theorem 2.9]. Let 1 ≤ pi, qi ≤ ∞, i = 1, 2, (βj)j∈N0

be an arbitrary weight sequence and (Mj)j∈N0
be a sequence of natural num-

bers. Then the embedding

(4.2) idβ : �q1
(
βj�

Mj

p1

) → �q2
(
�Mj

p2

)

is nuclear if and only if

(4.3) (β−1
j M

1

t(p1,p2)

j )
j∈N0

∈ �t(q1,q2),

where for t(q1, q2) = ∞ the space �∞ has to be replaced by c0. In that case,

ν(idβ)=
∥
∥
∥
(
β−1
j M

1

t(p1,p2)

j

)

j∈N0

|�t(q1,q2)
∥
∥
∥.

Remark 4.4. In case of Mj ≡ 1 this coincides with Tong’s result [50]
dealing with diagonal operators acting between �r spaces.

In Proposition 3.3 we have recalled already the criterion for the com-
pactness of the embedding

idΩ : A
s1
p1,q1(Ω) → As2

p2,q2(Ω).

Triebel proved in [54] the following counterpart for its nuclearity.

Proposition 4.5 [11,26,54]. Let Ω ⊂ R
d be a bounded Lipschitz domain,

1 ≤ pi, qi ≤ ∞ (with pi <∞ in the F -case), si ∈ R, i = 1, 2. Then the em-
bedding idΩ given by (3.2) is nuclear if and only if

(4.4) s1 − s2 > d− d
( 1

p2
− 1

p1

)

+
.
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Remark 4.6. The proposition is stated in [54] for the B-case only, but
due to the independence of (4.4) of the fine parameters qi, i = 1, 2, and in
view of (the corresponding counterpart in the classical case of) (2.7) it can be
extended immediately to F -spaces. The if-part of the above result is essen-
tially covered by [43] (with a forerunner in [48]). Also part of the necessity
of (4.4) for the nuclearity of idΩ was proved by Pietsch in [43] such that
only the limiting case s1 − s2 = d− d( 1

p2
− 1

p1
)+ was open for many decades.

Then Edmunds, Gurka and Lang in [16] (with a forerunner in [17]) obtained
some answer in the limiting case which was then completely solved in [54].
In [43] some endpoint cases (with pi, qi ∈ {1,∞}) were already discussed,
and in our paper [26] we were able to further extend Proposition 4.5 in view
of the borderline cases.

For better comparison one can reformulate the compactness and nuclear-
ity characterisations of idΩ in (3.3) and (4.4) as follows, involving the number
t(p1, p2) defined in (4.1). Let 1 ≤ pi, qi ≤ ∞, si ∈ R, i = 1, 2, and

(4.5) δ := s1 − d

p1
− s2 +

d

p2
.

Then

idΩ : A
s1
p1,q1(Ω) → As2

p2,q2(Ω) is compact ⇐⇒ δ >
d

p∗
and

idΩ : As1
p1,q1(Ω) → As2

p2,q2(Ω) is nuclear ⇐⇒ δ >
d

t(p1, p2)
.

Hence apart from the extremal cases {p1, p2}={1,∞} (when t(p1, p2)= p∗)
nuclearity is indeed stronger than compactness, i.e.,

idΩ : A
s1
p1,q1(Ω) → As2

p2,q2(Ω)

is compact, but not nuclear, if and only if d
p∗ < δ ≤ d

t(p1,p2)
.

Example 4.7. In [11] the authors dealt with the nuclearity of the em-
bedding

(4.6) idb : B
s1,b1
p1,q1(Ω) ↪→ Bs2,b2

p2,q2(Ω),

where Ω is a bounded Lipschitz domain, 1 ≤ pi, qi ≤ ∞, si, bi ∈ R, i = 1,2, re-
call the notation explained in Example 3.9 already. They obtained a charac-
terisation for almost all possible settings of the parameters. Roughly speak-
ing, their findings are as follows, cf. [11, Theorem 4.2]:

(i) If δ > d
t(p1,p2)

, then idb is nuclear.

(ii) If δ < d
t(p1,p2)

, then idb is not nuclear.
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(iii) In the limiting case, that is, if δ = d
t(p1,p2)

, then it depends on the inter-

play between the logarithmic smoothness parameters bi and the fine parame-
ters qi, i = 1,2, in particular, idb is nuclear if and only if b = b1 − b2 >

1
t(q1,q2)

and one of the cases listed in [11, Corollary 4.6] is satisfied.

This paper [11] was indeed the inspiration for our later findings, as we
met here the first time the elegant technique to use Tong’s result [50] in the
sequence space version. Now we are able to generalise the result in [11] and
close some gaps.

Theorem 4.8. Let Ω ⊂ R
d be a bounded Lipschitz domain, 1 ≤ p1, p2

≤ ∞, 1 ≤ q1, q2 ≤ ∞, and σ = (σj)j∈N0
, τ = (τj)j∈N0

be admissible sequences.
Then the embedding

idBΩ : Bσ
p1,q1(Ω) ↪→ Bτ

p2,q2(Ω)

is nuclear if and only if

(4.7) (σ−1
j τj 2

jd( 1

p1
− 1

p2
)
2
jd 1

t(p1,p2) )
j∈N0

∈ �t(q1,q2),

where for t(q1, q2) = ∞ the space �∞ has to be replaced by c0.

Proof. Due to the isomorphism (2.16) and the ideal property, the nu-
clearity of idBΩ is equivalent to the nuclearity of the embedding

id : �q1
(
σj2

−jd/p1�Mj

p1

)
↪→ �q2

(
τj2

−jd/p2�Mj

p2

)
,

which, taking into account (3.14) and (3.15), is equivalent to the nuclearity
of

idβ : �q1
(
βj�

Mj

p1

)
↪→ �q2

(
�Mj

p2

)
, βj = σjτ

−1
j 2

−jd( 1

p1
− 1

p2
)
.

The desired conclusion is then a direct consequence of Theorem 4.3. �
We compare now the achievement in Theorem 4.8 when

σj = 2js1(1 + j)b1 and τj = 2js2(1 + j)b2 ,

with si, bi ∈ R, i = 1, 2, with the results obtained in [11]. In this particular
case, Theorem 4.8 implies the following.

Corollary 4.9. Let Ω ⊂ R
d be a bounded Lipschitz domain, 1 ≤ p1, p2

≤ ∞, 1 ≤ q1, q2 ≤ ∞, si, bi ∈ R, i = 1, 2. Then the embedding idb given by
(4.6) is nuclear if and only if

(4.8) (2j(δ−
d

t(p1,p2)
)
(1 + j)−b)j∈N0

∈ �t(q1,q2),

where δ is given by (4.5), b := b1 − b2, and for t(q1, q2) = ∞ the space �∞
has to be replaced by c0.
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Remark 4.10. Let us explicate (4.8) for better comparison with the
result in [11], cf. Example 4.7. Clearly, we get the following.

(i) If δ > d
t(p1,p2)

, then idb is nuclear.

(ii) If δ < d
t(p1,p2)

, then idb is not nuclear.

(iii) In the limiting case, that is, if δ = d
t(p1,p2)

, then idb is nuclear if and

only if b > 1
t(q1,q2)

for all constellations of the parameters q1, q2.

Therefore we recover the results obtained by Cobos, Domı́nguez and
Kühn in [11], cf. Example 4.7, close some gaps in the limiting case and fully
characterise the nuclearity of the embedding (4.6). Note that, according to
Theorem 3.7, idb is compact if and only if

(4.9) (2j(δ−
d

p∗ )(1 + j)−b)j∈N0
∈ �q∗ .

So parallel to the situation explained at the end of Remark 4.6 for the clas-
sical case (b1 = b2 = 0), also in the logarithmically disturbed case idb the
nuclearity criterion (4.8) and its compactness criterion (4.9) become liter-
ally the same when replacing p∗ by t(p1, p2) and q∗ by t(q1, q2). Moreover,
this also leads to the observation again, that nuclearity and compactness of
idb coincide when {p1, p2} = {1,∞} = {q1, q2}, that is, in the extremal cases
only.

Similarly to Example 3.10, other examples could be given, namely by
perturbing the main smoothness parameter with a slowly varying function.
We remark that even more general weight functions belonging to B and/or
V can be taken.

We conclude with a first result for spaces of type F σ
p,q(Ω) which are

a direct consequence of Theorem 4.8 and elementary embeddings, though
omitting limiting situations at the moment.

Corollary 4.11. Let Ω ⊂ R
d be a bounded Lipschitz domain, 1 ≤ p1, p2

≤ ∞, 1 ≤ q1, q2 ≤ ∞, and σ = (σj)j∈N0
, τ = (τj)j∈N0

be admissible sequences.
Let γ = (γj)j∈N0

with

γj := σ−1
j τj 2

jd( 1

p1
− 1

p2
)
2
jd 1

t(p1,p2) , j ∈ N0,

and consider the embedding

idFΩ : F σ
p1,q1(Ω) ↪→ F τ

p2,q2(Ω).

(i) If the upper Boyd index of γ is negative, then idFΩ is nuclear.

(ii) If the lower Boyd index of γ is positive, then idFΩ is not nuclear.
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Proof. If the upper Boyd index of γ is negative, by (2.4) the condi-
tion (4.7) is satisfied independently of the values of q1 and q2. Then the
nuclearity of idFΩ is a consequence of (2.7) restricted to Ω and Theorem 4.8,
since

F σ
p1,q1(Ω) ↪→ Bσ

p1,max{p1,q1}(Ω) ↪→ Bτ
p2,min{p2,q2}(Ω) ↪→ F τ

p2,q2(Ω).

On the other hand, if the lower Boyd index of γ is positive, the condition
(4.7) is never satisfied. Therefore idFΩ is not nuclear, in consequence, once
again of Theorem 4.8 due to

Bσ
p1,min{p1,q1}(Ω) ↪→ F σ

p1,q1(Ω) ↪→ F τ
p2,q2(Ω) ↪→ Bτ

p2,max{p2,q2}(Ω). �

Remark 4.12. In [12] some further limiting endpoint situations of nu-
clear embeddings like id : Bd

p,q(Ω) → Lp(logL)a(Ω) are studied. For some
weighted results see also [42] and our recent contribution [26]. In [23] we
studied nuclear embeddings of spaces on quasi-bounded domains, using sim-
ilar techniques, that is, adapted wavelet decompositions and suitable se-
quence spaces results, recall Theorem 4.3. In [28] we characterised the nu-
clearity of the Fourier transform acting between spaces of type As

p,q(R
d).
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Math. Soc., 16 (1955), Ch. 1: 196 pp., Ch. 2: 140 pp.

[23] D. D. Haroske, H.-G. Leopold, and L. Skrzypczak, Nuclear embeddings in general
vector-valued sequence spaces with an application to Sobolev embeddings of
function spaces on quasi-bounded domains, J. Complexity, 69 (2022), Paper
No. 01605, 23 pp.

[24] D. D. Haroske and S. D. Moura, Continuity envelopes of spaces of generalised smooth-
ness, entropy and approximation numbers, J. Approx. Theory, 128 (2004),
151–174.

[25] D. D. Haroske and S. D. Moura, Continuity envelopes and sharp embeddings in spaces
of generalized smoothness, J. Funct. Anal., 254 (2008), 1487–1521.

[26] D. D. Haroske and L. Skrzypczak, Nuclear embeddings in weighted function spaces,
Integral Equations Operator Theory, 92 (2020), Paper No. 46, 37 pp.

[27] D. D. Haroske and L. Skrzypczak, Nuclear embeddings of Morrey sequence spaces and
smoothness Morrey spaces, arXiv:2211.02594 (2022).

[28] D. D. Haroske, L. Skrzypczak, and H. Triebel, Nuclear Fourier transforms, J. Fourier
Anal. Appl., 29 (2023), Paper No. 38, 28 pp.

[29] G. A. Kalyabin and P. I. Lizorkin, Spaces of generalized smoothness, Math. Nachr.,
133 (1987), 7–32.

[30] H. König, Eigenvalue Distribution of Compact Operators, Birkhäuser (Basel, 1986).
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Math., vol. 213, Marcel Dekker (New York, Basel, 2000), pp. 323–336.

[34] H.-G. Leopold, Embeddings for general weighted sequence spaces and entropy num-
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