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Removing artefacts 
and periodically retraining 
improve performance of neural 
network‑based seizure prediction 
models
Fábio Lopes 1,2*, Adriana Leal 1, Mauro F. Pinto 1, António Dourado 1, 
Andreas Schulze‑Bonhage 2, Matthias Dümpelmann 2 & César Teixeira 1

The development of seizure prediction models is often based on long-term scalp 
electroencephalograms (EEGs) since they capture brain electrical activity, are non-invasive, and come 
at a relatively low-cost. However, they suffer from major shortcomings. First, long-term EEG is usually 
highly contaminated with artefacts. Second, changes in the EEG signal over long intervals, known 
as concept drift, are often neglected. We evaluate the influence of these problems on deep neural 
networks using EEG time series and on shallow neural networks using widely-used EEG features. 
Our patient-specific prediction models were tested in 1577 hours of continuous EEG, containing 91 
seizures from 41 patients with temporal lobe epilepsy who were undergoing pre-surgical monitoring. 
Our results showed that cleaning EEG data, using a previously developed artefact removal method 
based on deep convolutional neural networks, improved prediction performance. We also found 
that retraining the models over time reduced false predictions. Furthermore, the results show that 
although deep neural networks processing EEG time series are less susceptible to false alarms, they 
may need more data to surpass feature-based methods. These findings highlight the importance of 
robust data denoising and periodic adaptation of seizure prediction models.

Epilepsy is a chronic neurological disease characterised by brief and recurrent episodes known as seizures1,2. It 
affects 1% of the world’s population. About one-third of people with epilepsy are diagnosed with drug-resistant 
epilepsy (DRE)3. DRE is diagnosed when at least two antiseizure drugs fail to lead the patient to a stable seizure-
free condition4. This condition is often a severe limitation because patients are not allowed to perform regular 
daily tasks such as driving and usually have restrictions in their professional life. Additionally, since these patients 
continue to have seizures, there is a high risk of brain injuries, accidents, and even sudden unexpected deaths 
(SUDEP)5. Therefore, a warning device able to anticipate seizures could improve their lives. As soon as this 
warning device predicts an upcoming seizure, it raises an alarm, enabling the patient to take some measures to 
avoid accidents or even suppress the seizure by taking seizure-suppressing drugs6–9.

Seizure prediction has been an active research theme since 197010. Epileptic electroencephalogram (EEG) 
is normally divided into four periods: preictal, ictal, postictal, and interictal. The preictal period corresponds 
to the interval before the seizure onset; the ictal period concerns the seizure; the postictal period is the period 
right after the ictal interval; and the interictal period is the seizure-free period between the postictal of the pre-
vious seizure and the preictal of the following one. The main goal of seizure prediction is to develop a system 
to anticipate upcoming seizures, i.e., to identify the transition from the interictal to the preictal period. Several 
studies have been published in this research area, typically based on electroencephalogram as it can record the 
electrical brain activity11,12. Initially, seizure prediction models were threshold-based, meaning that when a given 
EEG biomarker (feature) surpassed a pre-defined threshold, seizure alarms would be raised13,14. However, these 
models were linear and based on a single feature, which might not be sufficient to perceive the complexity of the 
pre-seizure activity15,16. Later, shallow machine learning algorithms were employed with acceptable results for 
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some patients12,17,18. These algorithms could establish relations between different EEG biomarkers, improving 
the capability of the models to find pre-seizure patterns19–25. In recent years, deep learning architectures have 
been increasingly used in multiple research areas26. These architectures are not dependent on the computation of 
handcrafted features before classification, as they can extract information directly from the data, i.e., explore the 
patterns present in the data without a prior definition or equation (abstract features). Moreover, as these models 
are able to automatically extract and select the optimal features, less feature engineering and domain knowledge 
are needed to develop intelligent systems. Although these characteristics turn machine learning models into 
black-boxes, they could be advantageous when there is no solid physiological grounding. Therefore, authors 
have started to use them to develop seizure prediction approaches using EEG signals or multidimensional data 
computed from EEG signals27–48. Despite the ability to extract knowledge directly from the data, some research-
ers still extract features using traditional signal processing methods while using deep learning approaches16,49–51.

Even though the increasing complexity of seizure prediction algorithms is a significant topic, others are 
equally important. An example is the EEG preprocessing18,52. Researchers are moving towards non-invasive 
EEG to develop seizure prediction approaches53. However, these signals usually present artefacts. EEG artefacts 
may be responsible for the increase of false alarms and should be removed before creating the seizure prediction 
models40,54,55. Researchers mostly consider simple digital filters to remove unwanted frequency bands47,48,56,57, 
such as high-pass filters to remove the DC component and low-pass filters to diminish the influence of high-
frequency noise. However, these filters suppress whole frequency bands and can not remove physiological arte-
facts, such as eye and muscle artefacts, which often overlap with important brain activity spectra58,59. Conse-
quently, other techniques have been used to reduce the influence of this noise on seizure prediction. Myers 
et al.60 removed all segments containing artefacts. Despite being accurate in removing artefacts, this technique 
implies discarding a significant amount of EEG data. Bandarabadi et al.21 reduced the influence of the artefacts 
using a moving average to compute the features and a regularisation method on the classifier’s output. Also, 
Parvez et al.61 smoothed the classifier’s output to mitigate the effect of artefacts. Islam et al.62 used independent 
component analysis (ICA) to remove artefacts. Borhade et al.51 removed artefacts using a preprocessing module 
capable of separating them from the neural activity. Das et al.63 used wavelet decomposition to remove noise. 
Usman et al.64 employed empirical mode decomposition to reduce the influence of the artefacts. Prathaban et al.41 
reported a custom method to reconstruct EEG signals based on sparsity. Although different methods were used, 
all the aforementioned authors reported that removing artefacts improved seizure prediction. However, none of 
the presented studies compared the prediction performance of models developed using noisy data with models 
developed using denoised data.

Typically, researchers train seizure prediction models using the first chronological seizures and evaluate 
them on the following seizures without considering concept drifts that occur over time. These changes in data 
distribution may occur as a result of the seizure events, an alteration of antiepileptic drug type and/or dosage, 
and biological cycles (e.g., circadian rhythms), which might alter the dynamics of the brain65–71. Dealing with 
concept drifts requires a different approach for training computational models. Several authors proposed solu-
tions based on simply periodically refitting the models25,37,70–72. Kiral-Kornek et al.72, Nejedly et al.37, and Chen et 
al.25 used EEG data collected over several months. They retrained their models every month and eliminated 
past data after a certain amount of months, enabling the models to re-adapt over time. Pinto et al.70,71 used EEG 
signal collected under pre-surgical conditions. Therefore, they did not use data from several months, but only 
from a few days. They retrained their models after testing on a new seizure. Although those studies tried to deal 
with concept drifts, only Nejedly et al.37 verified that there was an improvement in the prediction performance.

The present study addresses some important aspects faced when developing seizure prediction models. We 
explored the effect of using a deep convolutional neural network-based EEG artefact removal model, able to 
mimic manual preprocessing made by experts, on the prediction performance. Furthermore, we evaluated the 
influence of retraining the models over time to handle possible concept drifts. Both comparisons were per-
formed using a deep convolutional neural network connected to a bidirectional long short-term memory layer 
(CNN-BiLSTM) using EEG time series as input and a shallow artificial neural network trained using established 
handcrafted features. In summary, our study comprehensively assesses the impact of denoising and dealing with 
the presence of concept drifts in deep learning models fed with EEG time series and in handcrafted feature-
based ones.

Methods
Database.  In this study, we used data from the European Epilepsy Database, also known as the EPILEPSIAE 
database (www.epilepsy-database.eu), which was developed by the FP7 EPILEPSIAE project (www.epilepsiae.
eu). The EPILEPSIAE database consists of long-term EEG signals acquired from 275 patients with epilepsy who 
underwent pre-surgical monitoring over several days7. The data were collected at Universitätsklinikum Freiburg 
(Germany), Centro Hospitalar e Universitário de Coimbra (Portugal), and Hôpital de la Pitié-Salpêtrière, Paris 
(France). The use of these data for research purposes has been authorised by the Ethical Committee of the three 
hospitals involved in the EPILEPSIAE database development (Ethik-Kommission der Albert-Ludwigs-Univer-
sität, Freiburg; Comité consultatif sur le traitement de l’information en matière de recherche dans le domaine 
de la santé, Pitié- Salpêtrière University Hospital; and Comité de Ética do Centro Hospitalar e Universitário de 
Coimbra). All studies were performed following relevant guidelines and regulations, and informed written con-
sent was obtained from the patients.

For this study, we considered scalp EEG data collected from 41 patients (24 males, mean age: 41.41 ± 15.67 
years) with temporal lobe epilepsy (TLE), the most common type of focal epilepsy73, at Universitätsklinikum 
Freiburg. The data were acquired using a sampling rate of 256 Hz and 19 electrodes placed according to the 10-20 
international system. We selected only those patients who had at least three leading seizures74, separated by no 
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less than 4 hours and 30 minutes. These data comprise approximately 5,600 hours of recording time containing 
227 seizures. More details about the dataset can be found in Table S1, which is available in the supplementary 
material.

Seizure prediction pipeline.  The seizure prediction pipeline begins by preprocessing the EEG signals 
using digital frequency filters and removing experimental errors. Afterwards, the pipeline presents two branches: 
one in which the physiological artefacts are removed (denoised EEG time series), and another where they are 
not removed (noisy EEG time series). Then, we extracted features from the resulting datasets (denoised EEG 
features and noisy EEG features). EEG time series are used on models based on deep neural networks, whereas 
EEG features are used to develop shallow neural networks. Next, each dataset is similarly divided into training 
and test sets. The datasets are then used to develop seizure prediction models following two different approaches: 
the standard approach, which consists of training only once and testing on the remaining seizures, and the 
chronological approach, which involves retraining after every new test seizure. Subsequently, we performed 
postprocessing methods on the test set predictions and finally evaluated the performance of the approaches and 
compared them. Figure 1 illustrates the pipeline followed in this study. It is worth noting that this pipeline is 
performed individually for each patient as every model is patient-specific.

Preprocessing.  Signal preprocessing was performed using an algorithm presented in Lopes et al.75, which 
mimics the manual preprocessing made by experts. It is divided into three phases. Firstly, frequency filtering 
was performed using a 0.5–100 Hz fourth-order bandpass filter and a 50 Hz second-order notch filter. After 
that, the algorithm removed experimental errors, such as flatlines, saturated segments, and data with very high 
amplitude. Additionally, segments with too many artefacts were also removed. Afterwards, the artefact removal 
model based on deep convolutional neural networks (CNNs), developed by Lopes et al.75, was used to remove 
physiological artefacts such as eye, muscle, and cardiac artefacts. This model was developed using data from the 
EPILEPSIAE database. Subsequently, we discarded the first 30 minutes of the signal after each seizure onset to 
eliminate the influence of a possible postictal state76. Finally, the EEG segments were divided into 10-second 
windows. After the preprocessing methods, the data comprise approximately 4650 hours of recording time.

Feature extraction.  After preparing EEG data, we extracted established EEG features18 using signal pro-
cessing methods. We used time-domain linear univariate features (mean, variance, skewness, kurtosis, mean 
intensity normalised, Hjorth parameters, and decorrelation time), frequency-domain linear univariate features 
(absolute and relative band powers of the following bands: 0.5–4 Hz (delta), 4–8 Hz (theta), 8–13 Hz (alpha), 
13–30 Hz (beta), 30–47 Hz (gamma 1), 53–75 Hz (gamma 2), and 75-90 Hz (gamma 3); the ratio between every 
spectral band powers, the sum of all absolute band powers, the alpha peak frequency, and the spectral edge fre-
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Figure 1.   Seizure prediction pipeline comprising EEG preprocessing, feature extraction, data partition, training 
approaches, postprocessing, and evaluation procedure. All models were trained following a patient-specific 
approach. Therefore, this pipeline was repeated for each patient, individually.
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quency and spectral edge power for 50%, 75%, and 90%), and time-frequency domain linear univariate features 
(wavelet coefficients computed using mother-wavelet Daubechies 4 with five levels of decomposition). These 
features were computed for every 10-second window and every channel. Only univariate linear features were 
considered due to their fast computation time.

Seizure occurrence period and seizure prediction horizon.  Seizure occurrence period (SOP) and 
seizure prediction horizon (SPH) are fundamental for developing and assessing seizure prediction models. As 
presented in Fig. 2a, the SPH allows the model to provide the patient with a period of time to take countermeas-
ures before a seizure, whereas the SOP is the period when the seizure occurs. During training, preictal samples, 
which are samples taken before the seizure, correspond to an interval with the same duration as the SOP. The 
samples following the training preictal samples and ending at the seizure’s onset correspond to the SPH and are 
not included in the analysis. This ensures that in the case of a true alarm, the patient will have an interval equal 
to the SPH to take countermeasures before the upcoming seizure, which is expected to occur within a period of 
time equal to the SOP.

Over the years, there has been no consensus on the most optimal SOP. Extensive research has been conducted 
to find it, using grid search21,50,70,71 or unsupervised procedures77–79. According to the aforementioned papers, 
the optimal SOP is typically between 30 and 60 minutes. Recently, researchers have been using an SOP of 30 
minutes not only because it falls within the optimal range of SOPs observed in previous findings, but also because 
it is short enough to avoid causing anxiety in patients29,34,38,39,43. As a result, we used an SOP of 30 minutes in 
our study. The SPH was set to 10 minutes, allowing patients to take a seizure-suppression drug to prevent the 
seizure80. Accordingly, all samples located up to 40 minutes before the seizure onset were labelled as interictal 
(class 0). The samples corresponding to the training SOP were considered preictal (class 1). The samples during 
the training SPH were discarded. Figure 2b–d show a true alarm and two false alarms, respectively.

Training and test sets.  The training set was composed of 60% of the available data, and the remaining 
40% was allocated to the test set. This division was performed chronologically using the first 60% of the seizures 
for training. Data preprocessing, as explained above, involved the removal of some data that could not be used. 
Therefore, there was insufficient preictal data for some seizures to be correctly predicted during testing. As a 
result, one test seizure from patient 52302 had to be removed, and both sets from that patient were updated to 
maintain the 60/40 ratio. Finally, to reduce the training computation time, we only used the four hours before 
each seizure’s onset during the training phase. In the case of the test set, for each seizure, it included all the data 
from 30 minutes after the previous seizure onset until the onset of the seizure under analysis. Ultimately, the 
training set contained 540 hours of EEG data and 135 seizures, whereas the test set comprised approximately 

Figure 2.   Representation of how to train a seizure prediction model and the requirements needed to be 
considered a true alarm.
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1577 hours of EEG data and 91 seizures. Details of the training and test sets can be found in Table S2 in the sup-
plementary material.

Artificial neural network architectures.  As presented in Fig. 3, we used two distinct neural networks: 
a deep neural network, based on the CNN-BiLSTM architecture, which is capable of automatically processing 
EEG time series (deep classifier), and a shallow neural network based on fully connected (FC) layers with hand-
crafted features as input (shallow classifier).

The architecture presented in Fig. 3a is a CNN-BiLSTM model. It consists of three blocks of convolutional 
layers and a bidirectional LSTM layer. Each block contains two convolutional layers, one of which has a stride 
of 2 and is used as a learnable pooling layer. Additionally, each block contains a spatial dropout layer with a 50% 
rate, an activation layer with the swish function, and a batch normalisation layer. The swish function is described 
by Eq. 1 where x is the input vector.

The number of filters starts at 128 and doubles with every new block. The filter size for every layer is 3. After the 
convolutional blocks, the samples are processed by the bidirectional LSTM layers, each containing 64 units. A 
dropout layer with a 50% rate is then applied. Finally, the samples are classified using an FC layer with two neu-
rons and an activation layer with the softmax function, which is described by Eq. 2, where x is the input vector.

(1)f (x) = x × sigmoid(x)

Figure 3.   Neuronal network architectures used to develop seizure prediction models. (a) Deep neural network, 
which takes 10-second EEG time series as input. (b) Shallow neural network, which is based on EEG features.
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The input dimension is 2560x19, which means that each sample consists of 10 seconds of EEG acquired at 256 
Hz and 19 channels. All hyperparameter values were obtained from a grid search process. Specifically, the grid 
search for the deep classifier was performed to find the best hyperparameters out of the following ones:

•	 Number of filters of the first block: [32, 64, 128];
•	 Filter size: [3, 5, 7];
•	 LSTM units: [32, 64, 128].

The architecture presented in Fig. 3b consists of four layers: an input layer, a dropout layer with a 50% rate, an 
FC layer with two neurons, and an activation layer with the softmax function. The input dimension is 1045x1, 
which means that it comprises 55 features computed over 19 channels. The grid search for the shallow classifier 
was conducted to identify the optimal hyperparameters among the following:

•	 Number of neurons in the FC layer: [None, 8, 16, 32, 64, 128, 256].

No feature selection was performed before classification to enable the shallow neural network to determine 
which features could contribute more to the prediction performance. Both neural networks comprise dropout 
layers with a 50% rate, which was selected to address overfitting caused by the limited number of training sam-
ples. Both grid searches were conducted using the training set of ten randomly selected patients. To evaluate the 
hyperparameters, we used the data of the last seizure from the training set and computed the geometric mean 
of sensitivity and specificity. The grid search was repeated three times for each combination and each patient 
training set, and the results were averaged to compare the performance and select the best hyperparameters. The 
selected hyperparameters were used in all patient-specific models. Detailed results can be found in Tables S3 
and S4 in the supplementary material.

Training methodologies.  We used two methodologies to train our patient-specific models: standard and 
chronological. In the standard training, seizure prediction models were trained using a static training set and 
tested on subsequent seizures. The chronological training involved training seizure prediction models using 
the first set of seizures, testing on the following seizure, concatenating it (EEG signal and labels) to the previ-
ous training set, and repeating the process until all seizures were tested. Data partitioning and standardisation 
were performed each time the training set was updated. We repeated both methodologies 31 times, resulting 
in 31 models that were used to perform a majority voting ensemble, whereby an odd number of models avoids 
ties. Furthermore, in a real-life scenario 31 different performances per patient are unfeasible. A majority vot-
ing ensemble helped to mitigate the variability of each trained seizure prediction model and produced a single 
model for each approach instead of 31 different models.

We trained the neural networks using batches of 64 samples, with each batch containing 32 interictal samples 
and 32 preictal samples. To address the imbalance between the classes, we oversampled the minority class by 
replicating preictal samples. We considered 500 training epochs and used early stopping regularisation with a 
patience of 50 epochs to prevent overfitting. We used the adaptive moment estimation (Adam)81 as the optimisa-
tion algorithm, with an initial learning rate of 3e−4 . The loss function was binary cross-entropy. Early stopping 
requires a validation set to constantly verify whether the model is overfitting. Therefore, we randomly divided 
the training set into a new training set and a validation set according to an 80/20 ratio. In contrast to the data 
partition step, which was performed on a seizure level, the 80/20 division was performed on the samples. Train-
ing, validation, and test sets were normalised using z-score calculated based on the training samples. Table 1 
provides a summary of the training settings.

Postprocessing.  Firing power regularisation82 was used to reduce the number of possible false alarms. The 
method consists of applying a moving window with a size equal to SOP, which accumulates the predicted output 
of several samples. The mathematical formulation of this regularisation method is given by

(2)f (x) =
exi

∑
j e

xj

Table 1.   Hyperparameters used to train the neural networks.

Hyperparameter Value

Dataset partition Holdout validation 80/20

Optimisation function Adam

Learning rate 3e−4

Loss function Binary cross-entropy

Epochs 500

Patience epochs (early stopping) 50

Runs 31
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where fp[n] is the firing power regularisation output, τ is the number of samples of the moving window, and o[k] 
is the seizure prediction model output at time k. An alarm is triggered as soon as the ratio of preictal instants 
in the moving window exceeds a threshold of 0.521,50. After each alarm, we applied a refractory period70,71 of 
40 minutes, which corresponds to the concatenation of the SPH and SOP intervals. During this period, the 
models could not raise any alarm. The refractory periods were implemented to prevent the patient from being 
overwhelmed with successive alarms in a short period of time. It is worth noting that our implementation of 
the firing power is an adaptation of the method proposed by Teixeira et al.82. We adapted the method to handle 
temporal gaps resulting from unconnected windows after preprocessing. Thus, when there is a gap, the firing 
power considers it as several windows with a null value, decreasing until reaching zero when the gap is too long.

Performance evaluation.  To evaluate the performance of the seizure prediction models, we used three 
metrics: seizure sensitivity, false alarm rate per hour (FPR/h), and the number of patients with performance 
above chance level through surrogate analysis. Seizure sensitivity and FPR/h were computed using the Eqs. 4 
and 5.

Seizure sensitivity measures the ratio between the number of true alarms ( #True Alarms ) and the number 
of testing seizures ( #Test Seizures).

FPR/h is defined as the ratio between the number of false alarms ( # False Alarms ) and the total duration of the 
interictal period ( InterictalDuration ) without the periods right after false alarms when there could not be triggered 
any new alarm ( # False Alarms × RefractoryDuration).

The surrogate analysis is based on the Monte Carlo method and consists of randomly shifting seizure times70,71,83. 
This method is used to verify if the models perform above chance level. Seizure prediction models are consid-
ered to perform above chance if their performances are higher than the surrogate performances with statistical 
significance, considering a significance level of 0.05.

We also performed pairwise hypothesis testing (with a significance level of 0.05) to compare the different 
approaches that were developed. These comparisons include:

•	 Understanding the effect of removing physiological artefacts on the seizure prediction models;
•	 Comparing standard training with retraining the models over time;
•	 Comparing deep neural networks using EEG time series with shallow neural networks using handcrafted 

EEG features.

System specifications.  All calculations were performed on a computer with two Intel Xeon Silver 4214 
12-core 2.2 GHz, ten graphics (five NVIDIA Quadro RTX 5000 and five NVIDIA Quadro P5000), 768 GB of 
RAM, and Linux Ubuntu 16.04 LTS operating system. We developed the models using the Tensorflow 2.4.1 and 
Keras 2.4.3 libraries for Python 3.8.

Results
We begin by analysing the results for each patient for every approach. Afterwards, we analyse the overall results 
and compare the approaches. To facilitate readability, we present the approaches in the following format:

•	 Denoised EEG Standard : Deep neural network, with denoised EEG time series as input, trained using the 
standard procedure;

•	 Denoised EEG Chronological : Deep neural network, with denoised EEG time series as input, trained using the 
chronological procedure;

•	 Denoised Features Standard : Shallow neural network, with handcrafted EEG features, computed from denoised 
EEG time series, as input, trained using the standard procedure;

•	 Denoised Features Chronological : Shallow neural network, with handcrafted EEG features, computed from 
denoised EEG time series, as input, trained using the chronological procedure;

•	 Noisy EEG Standard : Deep neural network, with noisy EEG time series as input, trained using the standard 
procedure;

•	 Noisy EEG Chronological : Deep neural network, with noisy EEG time series as input, trained using the chrono-
logical procedure;

•	 Noisy Features Standard : Shallow neural network, with handcrafted EEG features, computed from noisy EEG 
time series, as input, trained using the standard procedure;

•	 Noisy Features Chronological : Shallow neural network, with handcrafted EEG features, computed from noisy 
EEG time series, as input, trained using the chronological procedure.

(3)fp[n] =

∑n
k=n−τ o[k]

τ

(4)Seizure Sensitivity =
#True Alarms

#Test Seizures

(5)FPR/h =
# False Alarms

InterictalDuration − # False Alarms × RefractoryDuration
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Individual performance of seizure prediction models.  Figure 4 shows the seizure sensitivities and the 
FPR/h of the patient-specific models evaluated on the test seizures of each patient. This figure also shows which 
models performed above chance level.

Inspection of the results obtained for each patient leads to the following conclusions:

•	 For several patient-specific models, all approaches performed similarly. For example, performance above 
chance level was obtained for all approaches for four patients (9.8%), whereas for twelve (29.3%), no approach 
performed above chance level.

•	 For three patients (7.3%), only models trained with denoised data performed above chance level.
•	 The transition from standard to chronological training decreased the number of false alarms for six patients 

(14.6%).
•	 For some patients, only one type of neural network obtained performance above chance level: Ten patients 

(24.4%) in the case of shallow neural networks using features and two patients (4.9%) in the case of deep 
neural networks.

•	 The Noisy FeaturesStandard approach obtained a very high FPR/h for one patient (2.4%).

Detailed results are presented in Tables S5 and S6 in the supplementary material.

Overall performance of seizure prediction models.  Table  2 summarises the overall results of all 
developed approaches. Boxplots with the overall seizure sensitivities and FPR/h for all approaches, as well as 
the distributions of the results, are displayed in Fig. 5. Additionally, it contains a bar chart with the number of 
patients with a performance above chance level for each approach. Table 3 presents the p-values obtained for 

Figure 4.   Results for each patient for DES (Denoised EEGStandard ), DEC (Denoised EEGChronological ), DFS 
(Denoised FeaturesStandard ), DFC (Denoised FeaturesChronological ), NES (Noisy EEGStandard ), NEC (Noisy 
EEGChronological ), NFS (Noisy FeaturesStandard ), and NFC (Noisy FeaturesChronological ) approaches. The top 
subfigure presents the seizure sensitivity obtained for each patient-specific model, while the bottom figure 
shows the FPR/h. The diamond symbol indicates that the model performed above chance level. The scales of the 
colours are on the right side of the subfigures.

Table 2.   Average results of the seizure prediction models for all approaches, for all 41 patients.

Approach Seizure sensitivity FPR/h Above chance level (%)

Denoised EEG Standard 0.15±0.24 0.31±0.48 12 (0.29)

Denoised EEG Chronological 0.18±0.22 0.24±0.23 17 (0.42)

Denoised Features Standard 0.34±0.35 0.90±0.96 21 (0.51)

Denoised Features Chronological 0.37±0.36 0.86±0.77 22 (0.54)

Noisy EEG Standard 0.13±0.24 0.35±0.58 8 (0.20)

Noisy EEG Chronological 0.16±0.23 0.25±0.26 14 (0.34)

Noisy Features Standard 0.36±0.38 0.93±1.09 20 (0.49)

Noisy Features Chronological 0.33±0.36 0.83±0.65 21 (0.51)
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pairwise statistical comparisons. Comparisons were made for seizure sensitivity and FPR/h metrics using one-
tail Mann-Whitney U test84 considering an α value of 0.05.

Figure 5.   Boxplots with the overall seizure sensitivity and FPR/h for the DES (Denoised EEGStandard ), DEC 
(Denoised EEGChronological ), DFS (Denoised FeaturesStandard ), DFC (Denoised FeaturesChronological ), NES (Noisy 
EEGStandard ), NEC (Noisy EEGChronological ), NFS (Noisy FeaturesStandard ), and NFC (Noisy FeaturesChronological ) 
approaches. Continuous black lines represent medians, dashed grey lines correspond to the averages, diamonds 
symbolise outliers, and the distributions of the results for each patient are presented as blue circles. Bar charts 
show the number of patients’ models with performance over chance using surrogate analysis.

Table 3.   P values obtained for the statistical comparisons performed between all developed approaches 
using seizure sensitivity and FPR/h values. The comparisons were performed using one-tail Mann-Whitney, 
considering an alpha of 0.05. For seizure sensitivity, the p-values correspond to the probability of the 
distribution of group B being greater than the distribution of group A. For FPR/h, the p-values correspond 
to the probability of the distribution of group B being lower than the distribution of group A, except for the 
comparison between deep neural networks (EEG time series) and shallow neural networks (EEG features). 
In this particular case, the FPR/h values obtained for group B were higher, so the p-values correspond to the 
probability of group B being greater than group A. Significant values are in bold.

Approaches Group A Group B

P values

Seizure sensitivity FPR/h

Noisy EEG/Denoised EEG

Noisy EEG Standard Denoised EEG Standard 0.273 0.435

Noisy EEG Chronological Denoised EEG Chronological 0.349 0.533

Noisy Features Standard Denoised Features Standard 0.580 0.554

Noisy Features Chronological Denoised Features Chronological 0.327 0.465

Standard training/Chronological train-
ing

Denoised EEG Standard Denoised EEG Chronological 0.213 0.746

Noisy EEG Standard Noisy EEG Chronological 0.183 0.678

Denoised Features Standard Denoised Features Chronological 0.360 0.682

Nois Features Standard Noisy Features Chronological 0.616 0.693

Deep neural networks (EEG time series)/
Shallow neural networks (EEG features)

Denoised EEG Standard Denoised Features Standard 0.003 < 0.001

Denoised EEG Chronological Denoised Features Chronological 0.005 < 0.001

Noisy EEG Standard Noisy Features Standard 0.001 < 0.001

Noisy EEG Chronological Noisy Features Chronological 0.012 < 0.001
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Some approaches based on EEG time series results in seizure sensitivities with null medians (Fig. 5), as those 
approaches scored null seizure sensitivities for more than half of the patients.

With the exception of the Denoised FeaturesStandard approach, all models developed with denoised data 
obtained higher average seizure sensitivities compared to those using noisy data. Furthermore, the average 
FPR/h values were mostly lower in models based on denoised data. However, these comparisons did not show 
statistically significant differences.

Except for the Noisy FeaturesChronological approach, all models developed following a chronological methodol-
ogy performed higher average seizure sensitivities compared to the ones following the standard procedure. The 
average FPR/h values obtained for models based on the chronological methodology were lower than those for 
the standard training, whereas the medians showed the opposite behaviour. This was due to the high number 
of outliers occurring on the approaches based on standard training. Nevertheless, all comparisons did not yield 
statistically significant differences.

Models based on deep neural networks returned lower average seizure sensitivities than those obtained for 
the models based on shallow neural networks. However, these lower seizure sensitivities were combined with low 
FPR/h values, meaning that, on average, deep learning models were more conservative on triggering an alarm. 
All the comparisons yielded statistically significant differences for both metrics.

The number of patients with performance above chance level increased when shifting from noisy to denoised 
data and from the standard to chronological training. The increase was greater in deep neural networks using 
EEG time series compared to the shallow neural networks using handcrafted features. However, the shallow 
neural networks obtained a higher number of patients performing above chance level.

In addition to the machine learning architectures used in this study, we evaluated the effectiveness of denois-
ing data and chronological training using algorithms presented by other researchers, including a CNN using 
spectrograms proposed by Truong et al.30 and a logistic regression using handcrafted features proposed by 
Karoly et al.24. We selected these architectures to verify whether our findings were observed in other types of 
classifiers. The results obtained using the model proposed by Truong et al.30 were similar to those obtained in our 
study. In the case of the model proposed by Karoly et al.24, we also found that using denoised data improved the 
performance. However, transitioning from standard to chronological training did not result in any improvement. 
The implementation details and results are described in Sect. 3.4 of the supplementary material.

Discussion
We analysed the impact of two essential aspects for developing patient-specific seizure prediction models: denois-
ing EEG signals and retraining the models over time. The prediction models were developed using deep neural 
networks with EEG time series as input and shallow neural networks using widely used EEG features.

The EEG artefact removal model was already proposed and evaluated in Lopes et al.75 regarding its capacity to 
reconstruct EEG signals. As a next step, we wanted to evaluate how far the artefact removal method can improve 
the results for seizure prediction. For most cases, using the artefact removal model to denoise EEG signals before 
developing the seizure prediction models resulted in an improvement in seizure sensitivities, FPR/h values and 
the number of patients with performance above chance level. In the case of deep neural networks, removing 
artefacts using the automatic denoising model led to a small reduction in the number of outliers regarding 
FPR/h. This was expected since artefacts can change signal characteristics and mask some patterns that could 
be important to assess seizure susceptibility40,54,55.

Concerning retraining over time, we observed different behaviours for different metrics. Seizure sensitivity 
did not always increase from standard to chronological training. However, FPR/h and the number of patients 
with a performance above chance level improved after retraining. Thus, we conclude that the models benefited 
from chronological training, either by having more training data available or by adapting to possible concept 
drifts that occur over time (see Fig. S1 of the supplementary material). This resulted in a reduction in the number 
of false alarms and an increase of the number of patients with performance above chance level25,37,72.

Comparing both model types, although deep learning models returned lower seizure sensitivities, they also 
yielded lower FPR/h values by being more conservative in firing alarms. The number of patients performing 
above chance level was also lower for the deep learning models, which is mainly attributed to their lower sensi-
tivity. Models that did not predict any test seizure could not be validated using surrogate analysis, thus leading 
to a lower number of patients with performance above chance level.

It is worth noting that although both neural network types improved after denoising and chronological 
training, the improvement was more evident for deep learning models than for shallow neural networks. Deep 
neural networks are data-driven architectures26. Consequently, features are automatically extracted from the 
EEG time series. On the other hand, feature-based models are trained using values obtained from established 
equations based on research knowledge acquired over the years. For this reason, each retraining only adapts the 
model weights used for the classification. Therefore, deep learning architectures, adapting to the input training 
data distribution, may be more affected by the quantity and quality of input data and the temporal proximity 
to the next seizure.

After analysing the results, we compared them with other studies that used scalp EEG data from the EPI-
LEPSIAE database to develop seizure prediction models23,34,70,71. In this paragraph, we focus on the ones for 
which we did not have access to patient identification23,34. Direito et al.23 applied a simple preprocessing method 
using digital filtering and developed a seizure prediction model based on multiclass SVM using handcrafted 
features. They used firing power regularisation with a threshold of 0.5 to smooth the output of the classifiers. 
They considered a set of SOPs between 10 and 40 minutes and an SPH of only 10 seconds. They reported a seizure 
sensitivity of 39% and an average FPR/h of 0.21. The percentage of patients performing above chance level was 
approximately 10%. Nevertheless, it is worth noting that they validated their models using the analytical random 
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predictor85 instead of the surrogate analysis. Although their seizure sensitivity and FPR/h are better than ours, 
it should be noted that they considered an SPH of just 10 seconds, which may not be sufficient time for a patient 
to take countermeasures before an upcoming seizure. Truong et al.34 also performed a simple preprocessing 
method using digital filtering. They developed a generative adversarial network using EEG time series as input 
and considered an SOP of 30 minutes and an SPH of 5 minutes. They reported an average AUC of 0.65 for 30 
patients and performance above chance level for 23 patients using the Hanley-McNeil AUC Test to compare 
AUC scores with an AUC of 0.5. Since the authors did not make these metrics available, we can not compare their 
study with ours regarding seizure sensitivity and FPR/h. In terms of the number of patients with performance 
above chance level, they obtained a better result than ours. However, it should be pointed out that they did not 
use the same statistical evaluation method, which precludes fair comparisons.

Concerning the studies with detailed patient information, Pinto et al.70,71 published two papers with seizure 
prediction models based on evolutionary algorithms, with a different number of patients analysed in each one. 
In both studies, the algorithms were trained following a chronological approach. In this paper, we used data from 
some patients who were also included in both Pinto et al. studies. In both of their experiments the preprocessing 
was simple, using only digital filters. In the first study70, they used data from 19 patients and obtained an average 
seizure sensitivity of 0.38 ± 0.19 and an average FPR/h of 1.03 ± 0.84, using an SOP of 30 minutes and an SPH 
of 10 minutes. Performance above chance level was obtained for 32% of the patients. In the second study71, they 
used data from 93 patients and obtained an average seizure sensitivity of 0.16 ± 0.11 and an average FPR/h of 
0.21 ± 0.08 using a set of SOPs between 20 and 50 minutes and a SPH of 10 minutes. 32% of the patients obtained 
performance above chance level. Both studies used firing power regularisation with a threshold of 0.7. When 
analysing individual patients, we found twelve patients (29.3%) that performed above chance in both Pinto et 
al. studies and some of our approaches. These patients should be selected to further explore preictal changes, as 
different methods performed similarly. Our approaches and Pinto et al. models did not perform above chance 
level for six patients (14.6%). Common failed predictions could mean no preictal changes at least 10 minutes 
before the onset of any tested seizures. Pinto et al. obtained performance above chance for four patients (9.8%) in 
at least one of their studies, whereas none of our approaches performed above chance level for them. Also, there 
were thirteen patients (31.7%) for whom we obtained models performing above chance level, whereas none of 
Pinto et al. studies obtained significant results. These differences could be related to data preparation details or 
the type of algorithm used. In any case, the results of the seizure prediction studies seem to be coherent regarding 
the obtained statistics, even if the approaches were different, which supports the statements reported by Müller et 
al.86 about the high number of false positives generated by different types of seizure prediction models. Detailed 
results obtained by Pinto et al.70,71 are presented in Table S7 in the supplementary material.

Our study has some limitations that should be highlighted. The first one concerns the use of EEG signals 
acquired in pre-surgical conditions. Pre-surgical conditions involve drug type and/or dosage alteration and 
possible sleep deprivation as part of the clinical evaluation process, which may cause more concept drifts than 
expected. Additionally, if the signals are acquired outside the hospital for months, they may contain even more 
artefacts than the ones seen in the analysed data because there are no technicians to constantly check the equip-
ment. Therefore, pre-surgical data do not fully simulate the daily behaviour of the patients15, and care should be 
taken before generalising these results to real-life situations.

Another limitation is the number of seizures per patient. The average number of total seizures per patient was 
5.51, whereas the average number of tested seizures was 2.21. The low number of seizures limited the evaluation 
of the approaches since some patients had only one testing seizure restricting the obtained seizure sensitivity 
to 0.00 or 1.00. This large difference in possible seizure sensitivities produced large standard deviations which 
may have restricted the results of the statistical comparisons. Furthermore, as the amount of data was low, the 
improvement obtained by training periodically may have been due to the increase in available information rather 
than the change in concept. Thus, a higher number of seizures would allow for a better evaluation of the effect 
of retraining over time or even to test other different approaches to handle concept drifts87.

The seizures used in this study were manually annotated by experts. In real-time scenarios, manual annota-
tion of seizures can be challenging since it is difficult for physicians to review all the acquired EEG signals. The 
solution to this restriction could be the one presented by Pal Attia et al.88, where data would be sent to a cloud 
along with the outputs of a seizure prediction model, a seizure detection model, and annotations sent by the 
patient. In this way, the technicians could quickly review only the events that were noted and eliminate all those 
that were not seizures. Then, the model could be retrained using data from the new seizure events.

The fixed duration of the SOP for all patients was also a constraint. In our case, we used a fixed SOP of 30 
minutes for all patients, which is in line with the SOP duration used in other studies21,29,34,38,39,43,50. SOP and 
SPH determine the considered preictal samples. Therefore, we also limited the considered preictal interval. The 
preictal interval of seizures could last from few minutes to several hours. Thus, EEG characteristics should be 
carefully inspected in order to not consider preictal patterns as interictal data78,79. However, the inspection of 
the optimal SOP was not in the focus of this study.

The fifth limitation was the number of hours used to train our prediction models. In our case, we only used 
four hours per seizure to train the models. We selected this time to overcome the high imbalance between 
interictal and preictal periods as well as to reduce computation time. However, it could limit the training of the 
models because they might not be able to learn critical long-term patterns such as the circadian cycle65,66. Lastly, 
our models are trained to trigger alarms once they detect any preictal changes in the data. Therefore, they can 
not measure seizure susceptibility over time and decide if one alarm is more important than others. Addition-
ally, the brain has its own regulatory system. There may be some scenarios in which the model predicts a seizure 
due to the high seizure susceptibility state, but the brain triggers seizure control mechanisms before reaching 
the ”point of no return”89,90. This new perspective has prompted the change from developing seizure prediction 
models to designing seizure forecasting frameworks. The latter allows researchers to better understand what is 
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happening in the brain because forecasting approaches output seizure risk instead of just alarms. Furthermore, 
forecasting models are generally less penalised during evaluation since their response is continuous and not 
based on ”all-or-nothing”. For example, in our approaches, if an alarm were raised 41 minutes before the seizure 
onset, it would be evaluated as a false alarm even if it was essentially a correct prediction53.

This paper explores two essential aspects that should be taken into consideration before developing seizure 
prediction models: the impact of performing a robust preprocessing to remove noisy artefacts, such as ocular 
artefacts, from EEG signals; and the importance of periodically retraining the seizure prediction models to 
address the possible presence of concept drifts. We investigated the importance of these two variables using two 
models: one based on deep neural networks with EEG time series as input and another based on shallow neural 
networks using handcrafted EEG features computed using signal processing techniques. The results evidenced 
that the performance of deep learning approaches improved after denoising the data and periodically retrain-
ing the models. On shallow neural networks with handcrafted features as input, the effect of denoising and/or 
retraining was barely noticeable, which may indicate that handcrafted features were more robust to changes in 
the data. The results also showed that shallow neural networks using handcrafted features were able to predict 
twice as many seizures as deep learning models. However, the number of false alarms was generally approximately 
four times higher as compared to deep neural networks. Therefore, when comparing both types of models, we 
can not conclude which performs better. As future work, these approaches should be tested with more patients 
and prospective data. Furthermore, it would be beneficial to test these approaches with more test seizures and 
with data collected over longer periods than just a few days, such as signals obtained by ultra long-term acquisi-
tion systems69.

Data availability
The data supporting the findings of this study are not publicly available due to restrictions from the EPILEPSIAE 
Consortium, who provided the data under license for this study. However, the data can be made available from 
the authors upon reasonable request and with permission from the EPILEPSIAE Consortium. The code used 
in this study is available for public use at https://​github.​com/​fabio​acl/​Seizu​re-​Predi​ction---​Artif​act-​Remov​al-​
and-​Chron​ologi​cal-​Train​ing.
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