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Abstract
In this work, we develop a method for generating targeted hit compounds by applying deep reinforcement learning and atten-
tion mechanisms to predict binding affinity against a biological target while considering stereochemical information. The 
novelty of this work is a deep model Predictor that can establish the relationship between chemical structures and their cor-
responding pIC

50
 values. We thoroughly study the effect of different molecular descriptors such as ECFP4, ECFP6, SMILES 

and RDKFingerprint. Also, we demonstrated the importance of attention mechanisms to capture long-range dependencies in 
molecular sequences. Due to the importance of stereochemical information for the binding mechanism, this information was 
employed both in the prediction and generation processes. To identify the most promising hits, we apply the self-adaptive 
multi-objective optimization strategy. Moreover, to ensure the existence of stereochemical information, we consider all the 
possible enumerated stereoisomers to provide the most appropriate 3D structures. We evaluated this approach against the 
Ubiquitin-Specific Protease 7 (USP7) by generating putative inhibitors for this target. The predictor with SMILES notations 
as descriptor plus bidirectional recurrent neural network using attention mechanism has the best performance. Additionally, 
our methodology identify the regions of the generated molecules that are important for the interaction with the receptor’s 
active site. Also, the obtained results demonstrate that it is possible to discover synthesizable molecules with high biological 
affinity for the target, containing the indication of their optimal stereochemical conformation.

Keywords Deep reinforcement learning · De novo drug design · Attention mechanism · Stereochemical information · 
Interpretability

Introduction

The development of effective and safe candidate drugs is 
becoming an increasingly complex, time-consuming and 
expensive process. On average, it takes 12 years and $2.6 
billion to bring a new drug into the market [1]. Despite 
the breakthroughs in computational methods and a better 
understanding of biological processes related to the onset 
of diseases, the approval rate of candidate drugs by regula-
tory authorities remains low. When researching therapeutic 
responses to cancer, the paradigm is no different. Cancer is 
still a major concern worldwide, as demonstrated by the high 
incidence and mortality rates [2]. As a result, it is essential 
to devise effective computational methods to promote the 
efficient discovery of safe therapeutical solutions for cancer 
treatment.

Obtaining a limited but promising initial set of hit com-
pounds is a significant aspect that can contribute to the effi-
ciency of the drug development process. In this regard, it is 
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necessary to find molecules that exhibit a strong affinity for 
the target and that have physicochemical properties ensuring 
their bioavailability while minimizing toxicity to the organ-
ism [3]. As a result of this task’s complexity, the selection 
of drug precursors is predominantly based on trial and error, 
expert intuition, and serendipity-based methods [4]. There-
fore, by combining domain expertise with data-driven meth-
ods, computational methods can play a pivotal role in the 
early stages of the drug development process, specifically 
through the focused identification of promising compounds.

One of the most widely adopted computational 
approaches is the virtual high-throughput screening, which 
allows the identification of interesting compounds from the 
analysis of vast libraries of known compounds [5]. Recently, 
this procedure has been enhanced with the advent of com-
puter-aided drug design (CADD) applying deep learning [6], 
tools such as molecular docking [7], and molecular dynamic 
simulations [8]. Nevertheless, its efficiency and usefulness 
remain limited to a few specific contexts due to the vastness 
of the drug-like chemical space. The alternative approach 
is the de novo generation of chemical structures. In this 
case, CADD strategies explore the chemical space freely 
to generate new compounds from scratch. There are several 
approaches for implementing de novo generation, such as 
inverse quantitative structure-activity relationship (QSAR) 
[9], evolutionary algorithms [10], or generative models 
based on machine learning and deep learning architectures 
[11, 12].

Machine-learning-based methods have become popular 
in this field due to the greater availability of cheminformatic 
data and to the development of models adept at extracting 
hidden patterns from these raw data [13]. There are different 
ways to represent molecules computationally, but the most 
used are the simplified molecular-input line-entry system 
(SMILES) and graph notation. SMILES notation encodes 
the molecule into a sequence of characters, while graphs 
store the atom, bond type, and connectivity information of 
a molecule in multidimensional arrays [14]. Regarding the 
data-driven methods, we can highlight the generative mod-
els based on deep learning. Generative models are applied 
in hit compound discovery due to their ability to learn the 
distributions embedded in training data, which then allows 
the generation of similar novel instances with bespoken 
molecular properties. An illustrative example is the genera-
tive adversarial network (GAN), whose generative compo-
nent seeks to learn how to generate new molecules that are 
similar to the given molecular set [15]. This set contains 
molecules with optimized properties, and the generator 
tries to create compounds that mimic the same distribution 
while the discriminator attempts to determine the origin of 
the sampled compounds [16, 17]. Variational autoencoders 
(VAE) have been used to generate optimized hits by bidirec-
tionally mapping molecules to latent subspaces where it is 

easier to improve their drug-likeness, and physicochemical 
properties [18]. Another widely explored approach is the 
recurrent neural networks (RNNs) because of their capacity 
to learn the syntax for constructing valid molecules using 
SMILES notation [14]. Moreover, RNN-based models are 
easily integrable with different optimization strategies, such 
as reinforcement learning (RL), to produce compounds with 
optimized properties [12, 19].

These methodologies were able to deliver effective results 
when generating compounds with individual properties 
optimized, especially considering physicochemical objec-
tives. Nevertheless, most approaches fall short in critical 
aspects for the successful progression of the drug develop-
ment process. Firstly, candidate drugs must satisfy a set of 
fundamental characteristics to become viable drugs. For 
instance, to be considered a promising hit, a molecule must 
be synthesizable in the laboratory and have a significant bio-
logical affinity for the target. Therefore, the generation of 
candidate hits has an inherently multi-objective nature that 
is often neglected. Other common problems in the output of 
molecular generative frameworks are the absence of stereo-
chemical information and the lack of explanation on how the 
drug-target interaction will possibly occur. Stereochemistry 
encodes important information for the biological activity 
of molecules, and, as a result, it must be considered when 
designing small molecules to interact with targets. The lack 
of explicability provided by the computational methods is 
noticeable as it is not possible to specify which regions of 
the molecule will be involved in binding. This information 
would be valuable in the compound’s further optimization 
steps as well as in validating the proposed model’s quality.

Herein, we propose a generative framework of com-
pounds with optimized properties by applying prominent 
deep-learning methodologies such as RNNs and attention 
mechanisms. In short, the RNN-based generator model will 
explore the chemical space through RL, guided by a drug-
target biological affinity predictor incorporating an attention 
layer. Also, the novelty of this approach is the implemented 
self-adaptive multi-objective optimization strategy, the 
incorporation of the spatial arrangement of atoms around 
the identified hit molecules and the indication of the most 
important zones for interaction with the target using the 
attention mechanism. The practical case explored was the 
generation of putative hit compounds that can inhibit the 
USP7 target due to the importance of this target for the 
proliferation of different types of tumours [20]. USP7 is 
a cysteine protease whose catalytic domain conformation 
shows significant structural flexibility upon substrate bind-
ing. The deubiquitination catalyzed by USP7 is a multi-step 
process in which cysteine 223 (Cys223) is at the core of a 
nucleophilic attack [21]. More precisely, through the estab-
lishment of a hydrogen bond between aspartic acid 481 
(Asp481) and histidine 464 (His464), Asp481 will assist the 
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orientation of the imidazole ring of His464 into a favourable 
location toward Cys223. This results in the deprotonation of 
the thiol of Cys223, revealing a nucleophile that will per-
form a nucleophilic attack toward the carbonyl group of the 
isopeptide bond between the substrate N-terminal lysine and 
the ubiquitin C-terminal glycine to give rise to a tetrahedral 
intermediate with ubiquitin. Lastly, Cys223 and ubiquitin are 
released through hydrolysis of the thioester bond between 
USP7 and ubiquitin C-terminal glycine [21, 22].

The main objective of this work is to employ the state-
of-the-art de novo molecular generation methodologies and 
narrow the most significant gaps related to the synthesizabil-
ity of compounds, stereochemical organization and interpret-
ability of the results.

Materials and methods

The proposed framework consists of a Generator of molecu-
lar structures and a Predictor, which estimates the biological 
activity of the compounds against the USP7 target. As indi-
cated in Fig. 1, the two DL models are combined to imple-
ment a conditioned generation dynamic through RL. The 
objective is for the Generator to learn how to explore the 
most promising zones of the chemical space while consider-
ing the properties to be optimized. At the end of the process, 
it will be possible to identify the spatial configuration of 

the atoms and the most important interaction regions for 
the best hits generated. Nevertheless, before integrating 
the RL dynamics, the Generator and the Predictor will be 
pre-trained. The former is trained to generate chemically 
valid compounds, i.e., it will acquire knowledge about the 
vast chemical space, whereas the latter will learn to predict 
the binding affinity between the sampled molecules and the 
USP7 target. At the end of the optimization process, we per-
formed docking experiments using the best compounds, i.e., 
the ones with higher biological affinity against the USP7, 
to simulate the potential interactions and validate the entire 
framework.

Pretraining of the generator

Dataset

The dataset of chemical information used to train the Gen-
erator was obtained from the ChEMBL database. We assem-
bled 1,179,477 SMILES from the ChEMBL22 version. To 
ensure that the initial chemical space was within the drug-
like region, the selected small molecules had a molecular 
weight ranging from 200 to 600 g/mol and a partition coef-
ficient (logP) ranging from − 2 to 6. Additionally, the input 
dataset was filtered using the RDKit library, to exclude the 
molecules that could not be parsed and canonicalized by 
this tool.

Fig. 1  General workflow. Implementation steps of the model for generating molecules with desired properties, stereochemical information, and 
indication of the key active sites
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The generator architecture

The Generator is built with recurrent architectures due to 
their ability to operate with sequential inputs, as is the case 
of the SMILES notation [23]. The pre-processing steps 
required for this input include tokenization and padding of 
each sequence. The training compounds are then encoded 
using an embedding layer and processed by a set of two 
long short-term memory (LSTM) layers. After the extraction 
of the main features by these layers, the next token of the 
sequence is predicted based on the output of a softmax-acti-
vated dense layer. Hence, the sequence analysis is performed 
token-by-token, which means that the model should learn 
how to maximize the probability of the true token given the 
preceding context. The optimal implementation parameters 
of the Generator are indicated in Table S1 of the Support-
ing Information. As shown in Eq. 1, the loss function is the 
categorical cross-entropy since we intend to minimize the 
distance between the distribution predicted by the model ( ̂yt ) 
and the true output ( yt).

The model’s performance is evaluated through its capacity 
to generate syntactically valid molecules, that is, molecules 
that respect the SMILES notation rules for considering a 
molecule as synthesizable. This evaluation is performed 
using the RDKit tool after generating each instance. In addi-
tion to validity, it is important to assess whether the model 
can generate unique and novel instances compared to the 
training dataset. Furthermore, we employed the Tanimoto 
diversity metric to evaluate the molecular similarity in the 
set of generated molecules (internal) and in the training set 
(external). This metric involves obtaining the extended con-
nected fingerprints (ECFP) of the molecules, which are bit 
vectors that contain structural and functional information 
about the compounds. To obtain these descriptors, the neigh-
bourhood of each non-hydrogen atom of the molecule is 
analyzed up to a user-defined radius and mapped into integer 
codes using a hashing procedure [24].

Pretraining of the biological affinity predictor

Datasets and preprocessing

The dataset used to train the Predictor includes the SMILES 
of the compounds and their corresponding biological affin-
ity for the USP7 target. The parameter that measured the 
biological affinity was the negative logarithm of the half-
maximal inhibitory concentration ( pIC50 ). Nevertheless, one 
of the problems related to the USP7 target is the scarcity of 

(1)J(𝜃) = −
1

T

T
∑

t=1

[

yt log ŷt +
(

1 − yt
)

log
(

1 − ŷt
)]

biological affinity information to train DL models properly. 
As a result, as the existing datasets contain few examples, it 
is challenging to implement robust models with generaliza-
tion capability. In this case, the following approach was to 
add novel instances to the USP7 dataset. However, these 
novel instances relate compounds with the biological affin-
ity for other targets that are similar to the USP7. In this 
sense, several targets were selected based on their catalytic 
domain similarity with the USP7. We assembled a final data-
set containing 1453 molecules (see Table S2 of the Sup-
porting Information for more details). The reasoning behind 
augmenting the dataset is that if the catalytic domains of two 
targets are similar, then the active groups of two molecules 
interacting with each target will also be similar. Still, despite 
the model being trained with the assembled dataset, we per-
formed a fine-tuning step with the compounds especially 
related to the USP7 target after the initial training step. The 
objective was to achieve a valid training process and to cre-
ate a model that could provide meaningful predictions for 
the USP7 target.

Model

We aim to obtain a model that learns to establish the relation-
ship between chemical structures and their corresponding 
pIC50 values. Therefore, it was analyzed the best approach 
to implement this model regarding the molecular descriptor 
and DL architecture. The studied combinations are summa-
rized in Table 1. Following that, we have designed reward 
functions for each objective in order to map each predicted 
property to the respective reward based on how the property 
should be optimized (see Fig. S1 of the Supporting Infor-
mation). Hence, it will be possible to explore the chemical 
space and identify the molecules with the highest potential 
to interact with the target.

As previously stated, ECFPs are molecular descrip-
tors that represent the structural features of molecules. 
Hence, these descriptors allow us to verify the presence 

Table 1  Tested models for the Predictor implementation

Model Descriptor DL architecture Attention

A ECFP4 Multi-layer FCNN No
B ECFP6 Multi-layer FCNN No
C RDKit fingerprint Multi-layer FCNN No
D SMILES RNN No
E SMILES RNN Yes
F SMILES Bidirectional RNN No
G SMILES Bidirectional RNN Yes
H SMILES Bidirectional RNN + RNN No
I SMILES Bidirectional RNN + RNN Yes
J SMILES Separated Bidirectional RNN Yes
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or absence of substructures in molecules, making ECFPs 
well-suited for problems of biological activity prediction 
[25]. The radius used to analyze the neighbourhood of 
each atom can be adjusted, and, in this work, we tested 
ECFP4 and ECFP6 that apply radii of 2 and 3 atoms, 
respectively. Additionally, the RDKFingerprint imple-
mented by the RDKit tool (http:// www. rdkit. org/http://
www.rdkit.org/) was also tested as the molecular descrip-
tor. This algorithm starts by identifying all subgraphs in 
a molecule containing a number of bonds within a pre-
defined range, then it applies a hashing procedure to the 
subgraphs and finally transforms it to generate a bit vec-
tor of fixed length.

One of the aspects that we aim to study in this model 
is the effect of attention mechanisms on the Predictor 
performance. Attention mechanisms were initially used 
in encoder-decoder models with recurrent architectures. 
The rationale associated with the application of attention 
is to be able to analyze a sequence and ensure that the 
output of this analysis has a direct influence on all ele-
ments of that sequence [26]. Without attention, the out-
put is just the result of the last hidden state of the RNN, 
that is, all intermediate hidden states would be ignored. 
Although LSTM layers are able to capture long-range 
dependencies, for longer inputs, important parts may be 
overlooked using this architecture. Attention mechanisms 
were designed to address this problem since they manage 
to keep all the relevant information of the input in the 
context vector by assigning different relative importance 
to each processed element [26].

Hence, the attention capabilities can be applied to the 
Predictor implementation. In this scenario, rather than 
analyzing the significance of each word in the sentence, 
we aim to assess the relative importance of each molecu-
lar token to the pIC50 value associated with the molecule. 
In practice, the RNN context vector for the molecule m 
( Cm ) will be calculated as a weighted average of all pre-
ceding hidden states ( hi ), as indicated in Eq. 2.

The weights �i are the score calculated by a feedforward 
neural network (e) that extracts the alignment between the 
input token and the output ( Om ). A hyperbolic tangent trans-
formation, followed by a softmax activation, is applied to 
this score so that the values can be normalized between 0 
and 1. Thus, the score has a dimension (T,1), and each ele-
ment represents the importance of the token for the output.

(2)
Cm =

T
∑

i=1

�ihi

�i = softmax
[

tanh
(

e(Om, hi)
)]

Conditioned molecular generation dynamics 
through RL

After pre-training the Generator and the Predictor, both 
models will be integrated into an iterative process compris-
ing the generation and evaluation of compounds to identify 
an interesting set of hit compounds. Throughout this pro-
cess, the Generator will be trained with RL using the reward 
assigned by the Predictor. The Predictor should indicate to 
the Generator the regions of the chemical space that have a 
higher probability of interacting with the USP7 target and 
adequate physicochemical properties.

Formally, the implementation of this method is based 
on the Markov Decision Problem (MDP) setting. In this 
work, the MDP setup was adapted to the molecular gen-
erative dynamics. The actions selected by the agent will be 
the sampling of new molecules by the Generator. Then, the 
external environment evaluating the actions will coincide 
with the Predictor’s evaluation of the molecular properties. 
The Generator will learn by experience throughout the pro-
cess and the RL setting implemented in this work was the 
REINFORCE algorithm [27]. As a result, the policy used 
to select the actions corresponded directly to the weights 
of the Generator, which are updated through the gradient 
descent algorithm. The ultimate goal of this policy-gradient 
algorithm is to select the actions that maximize the scalar 
reward assigned to the agent, as stated in Eq. 3.

where Rt is the reward, t is the time step, T is the final time 
step, and � is a parameter ranging from 0 to 1, denoting how 
much the future reward is worth in the present. This meth-
odology allows the Generator to learn the more appropriate 
behaviour through trial and error, that is, without applying 
supervised learning. In practice, the policy ( � ) will choose 
the next action based on the distribution of probabilities 
derived from the previous context. The objective of the 
RL training is to improve the policy successively, i.e., the 
parameters of the Generator.

The Generator starts the dynamics by sampling a batch of 
molecules. Afterwards, we analyze each molecule by disas-
sembling it into its separate tokens. Each token represents a 
taken action, and the loss function evaluates the probability 
of choosing each action. At each step, the cumulative loss 
is calculated by summing the probability analysis for the 
batch of molecules. As described in Eq. 4, Rt is the reward 
assigned to the Generator by selecting the action At when 
it was in the state St , following the policy parameters �t , 
where � is the learning rate. This reward value is multiplied 
by the natural logarithm of the corresponding probability of 
taking that action, allowing the agent to learn which actions 

(3)Rt =

T
∑

k=0

�krt+k+1

http://www.rdkit.org/
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should be chosen more or less frequently in future similar 
situations. Thus, whenever the agent returns to the same 
state throughout the generation process, it will select the 
actions that previously brought it more reward and avoid 
the others. After following this procedure for the batch of 
molecules, the gradient of the loss function is computed, 
and the weights of the Generator are updated accordingly to 
minimize the loss function.

Self‑adaptive molecular optimization strategy

USP7 is a cysteine protease that is involved in several sig-
nalling pathways. Its substrates and binding partners influ-
ence functions such as cell cycle regulation (e.g. cyclins), 
transcription factors (e.g. c-jun, NF-KB), immunological 
response, tumour suppression, epigenetic control, and DNA 
repair [28]. Therefore, this protein plays an important role 
in crucial post-translational mechanisms for cell dynamics, 
specifically through ubiquitination/deubiquitination in the 
p53-MDM2 pathway, which has been linked to cancer-pro-
tection mechanisms [29, 30]. Furthermore, the USP7 gene 
was found to be overexpressed in various cancers, which 
generally indicates poor tumour prognosis [28]. For this rea-
son, small molecules that can inhibit the USP7 target may 
function as anticancer agents with significant therapeutic 
potential. Despite this possible impact, it has not yet been 
possible to identify a sufficiently effective and selective 
USP7 inhibitor capable of reaching the late phase of clini-
cal trials.

In this work, it is expected that the generated molecules 
have the potential to inhibit USP7. Therefore, the objective 
is to maximize the pIC50 of the generated molecules and to 
promote the inhibitory interaction between the sampled mol-
ecule and the catalytic domain of the USP7 target. Nonethe-
less, during the generation of the molecules, another prop-
erty will be considered to ensure that the identified hits are 
drug-like and synthesizable in the laboratory. In other words, 
we intend to optimize a property that considers factors such 
as large rings, non-standard ring fusions, stereocomplexity, 
and molecule size throughout the synthesis process. This 
property is the synthetic accessibility score (SAS), and it 
condenses the evaluation of the mentioned properties into 
a single scalar ranging from 1 (easy to synthesize) to 10 
(impossible to synthesize) [31].

Thus, the computational task is to maximize the pIC50 
while minimizing the SAS of the generated molecules. In 
the RL setting, this scenario can be seen as the optimiza-
tion of two potentially competing reward values, i.e., the 
Generator should learn how to select actions that assure 
the optimization of both properties at the same time. The 

(4)�t+1 = �t + �� tRt∇ ln �
(

At ∣ St, �t
)

followed approach was to design a single reward func-
tion composed of these two terms. Therefore, the multi-
objective formulation of the problem is transformed into a 
single-objective optimization task by constructing a single, 
scalar, additive reward function that considers the influ-
ence of both parameters. In this scenario, each objective 
is associated with a weight (w) that indicates the relative 
importance attributed by the RL agent. This numerical 
weight is assigned beforehand, and it can be arbitrarily 
selected as long as each weight ranges between 0 and 1 and 
the sum of all assigned weights equal 1. There are several 
strategies to implement this method that vary according 
to the specific problem and user’s preferences. This work 
provides an intuitive method for determining these pref-
erences based on the individual rewards obtained during 
the optimization process. The first step is to normalize the 
rewards associated with each property between 0 and 1 
to compare each objective’s optimization level. We then 
determine the initial weight assignment according to the 
desired preference. From this starting point, the weights 
are updated, taking into account the rewards registered for 
each property: if one objective becomes more favoured by 
the Generator than the other, the algorithm will adjust its 
weights to reverse this tendency and preserve the fair bal-
ance between the two. This self-adaptive method is based 
on the analysis of the last reward (f) and also on the vari-
ation ratio of the reward in a five-batch window (VR(f)). 
Pseudocode 5 describes the rationale for updating the pref-
erence weights throughout the optimization method.

It should be stressed that in real-world problems with com-
peting objectives to consider, it is impossible to find an 
ideal solution that optimizes both. Hence, it is necessary to 
determine a compromise that meets the demands of the task. 
In this context, the solutions obtained in the optimization 
process correspond to molecules. We employed the Pareto 
diagram visualization tool to visualize and help identify the 
most promising molecules. It is a method for representing a 
set of solutions that describes the trade-off between compet-
ing objectives [32]. This diagram distinguishes between non-
dominated and dominated solutions. The former solutions 
have all the objectives better optimized than any dominated 
solution, i.e., all dominated solutions are worse than the non-
dominated ones considering each objective. After identify-
ing the non-dominated solutions, a comparative analysis will 
be performed to determine the most promising molecular 

(5)

f(x) = w1f1(x) + w2f2(x)

�� (w1 ⋅ f1(x) > w2 ⋅ f2(x)) ��� VR(f2) < 0.05

w1 = w1 − 0.1; w2 = w2 + 0.1;

���� (w1 ⋅ f1(x) < w2 ⋅ f2(x)) ��� VR(f1) < 0.05

w1 = w1 + 0.1; w2 = w2 − 0.1;
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hits based on the biological affinity for the target and its 
synthesizability.

Molecular docking calculations

The crystal structure of the human USP7 was retrieved from 
the Research Collaboratory for Structural Bioinformat-
ics (RCSB) Protein Data Bank (PDB) database (PDB ID: 
5NGF) with a resolution of 2.33 Å elucidated through X-ray 
crystallography. Employing Molecular Operating Environ-
ment (MOE) software package (v. 2022.02) [33], chain B, 
the respective crystallographic ligand, 1,2-ethanediol and 
water molecules were removed from the system. The recep-
tor structure (chain A) was protonated (at pH 7.4 and 310.15 
K) using the Protonate 3D tool, and hydrogen atoms were 
added. Amber10:EHT forcefield was used to assign atom 
types in the receptor structure, which was further energy 
minimized using the same forcefield. Using the triangle 
matcher method in the placement phase and rigid receptor 
for refinement, self-docking experiments were conducted to 
predict the best scoring functions from all the available scor-
ing functions in MOE. The best self-docking results were 
achieved for the GBVI/WSA dG scoring function in both 
the placement and refinement stages. These settings repro-
duce the binding pose of the co-crystallized ligand (8wn) in 
the USP7 crystal structure with a root-mean-square devia-
tion (RMSD) of 1187 Å. Non-docking calculations of the 
dataset were performed. The ligands were prepared using 
Amber10:EHT forcefield to assign atom types and proto-
nated at pH 7.4 and 310.15 K with the Protonate 3D tool, 
followed by energy minimization. The prepared dataset was 
docked into the catalytic domain of USP7, directing the 
docking for the crystallographic ligand atoms site. Thirty 
poses were generated for each molecule using the triangle 
matcher method in the placement stage and scored by the 
GBVI/WSA dG scoring function. Subsequently, the five 
best-scored poses were submitted to rigid receptor refine-
ment using GBVI/WSA dG scoring function. After the 
docking simulations, the compounds were sorted according 
to their docking scores. The binding poses and the protein-
ligand interactions of the top-ranked compounds were visu-
ally inspected. Images of the compound’s interactions with 

USP7 and surrounding residues were produced using MOE 
(v. 2022.02) software.

Results and discussion

Performance of the pre‑trained generator

The evaluation of the pre-trained Generator aims to deter-
mine whether the model was able to learn the chemical rules 
for constructing molecules based on the SMILES notation 
through the generation of new molecular instances. Addi-
tionally, it is also crucial to verify other properties, such 
as molecular diversity and the novelty rate of the new mol-
ecules sampled. We have employed the Guacamole bench-
mark framework to rigorously evaluate these essential 
aspects of the unbiased Generator. This quantitative assess-
ment allows us to gauge the performance of our model and 
compare it to the current state of the art. In this sense, 10,000 
molecules were generated, and properties such as the rates of 
valid, novel and unique molecules were evaluated, as well as 
the Fréchet ChemNet Distance (FCD) and Kullback–Leibler 
divergence (KLD) [34]. We also compared the pre-trained 
Generator with the most well-known molecular generative 
models, including SMILES LSTM [35], VAE [18], AAE 
[36], Graphs with Monte Carlo Tree Search (MCTS) [37] 
and ORGAN [16]. The results are summarized in Table 2, 
with the best approaches for each metric highlighted in bold.

The high validity rate suggests that the unbiased Genera-
tor has effectively learned the fundamental principles for 
building molecules using SMILES notation. Simultane-
ously, the small values of FCD and KL divergences demon-
strate that the unbiased Generator model has successfully 
captured the underlying molecular distribution within the 
training data. Furthermore, the model’s ability to generate 
novel and unique instances is demonstrated by the high lev-
els of novelty and uniqueness, respectively. Therefore, the 
results allow us to conclude that the pre-trained Generator 
reflects a promising compromise between learning to con-
struct molecules based on the training dataset and exploring 
new regions within the chemical space. Also, it is worth 
highlighting the similarity between the achieved results by 

Table 2  Evaluation of 
pre-trained and optimized 
Generators and comparison 
with the state-of-the-art 
approaches

Method pIC50 SAS Validity Uniqueness Novelty FCD KLD

Unbiased 5.27 ± 0.62 2.55 ± 0.64 0.966 0.984 0.982 0.905 0.914
Biased 6.35 ± 0.41 2.03 ± 0.26 0.918 0.956 0.913 0.926 0.956
ORGAN – 2.51 ± 0.65 0.379 0.841 0.687 0.000 0.267
VAE – 2.76 ± 0.71 0.870 0.999 0.974 0.863 0.982
AAE – 2.43 ± 0.47 0.822 1.000 0.998 0.529 0.886
Graph MCTS – 2.72 ± 0.82 1.000 1.000 0.994 0.015 0.522
SMILES LSTM – 2.65 ± 0.67 0.959 1.000 0.912 0.913 0.991
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the proposed models and state-of-the-art approaches, par-
ticularly in terms of the novelty of the generated molecules. 
These findings are particularly encouraging since the non-
optimized Generator is the starting point for all subsequent 
experiments.

Performance of the predictor

The Predictor was implemented to map the SMILES of a 
compound to its capacity to inhibit the USP7 target. This 
inhibitory potency was estimated using the pIC50 metric. 
Thus, the objective was to implement a regressive model that 
minimizes the distance between the actual pIC50 of the mol-
ecules and the value predicted by the model by minimizing 
the mean-squared error (MSE). In the generation dynamics 
proposed by this work, the role of the Predictor is funda-
mental because it is this model that will guide the process 
of exploring the chemical space of the Generator. In other 
words, the zones indicated by the Predictor as having the 
highest reward will be more thoroughly explored by the Gen-
erator, and, as a result, it is important that the model learns 
to identify these zones with the preceding training process.

It should be emphasized that for each model mentioned 
in Table 1, we studied the best parameters to establish the 
configuration that would extract the best performance from 
each architecture. Although different versions of Predictor 
have been implemented, some aspects of its training pro-
cess have been established for all. The data division was 
performed using cross-validation to identify the best con-
figuration, and the molecules were split into five folds. For 
each fold, 85% of the compounds were employed in train-
ing and the remaining 15% as validation. A hold-out set 
was also defined to verify the performance of the models 
in previously unseen instances. Regarding the final model, 
the applied optimizer was Adam, and the model was trained 
during 50 epochs. Nonetheless, in order to mitigate potential 

overfitting, two callbacks were applied during the training 
process, namely, early stopping with a patience of 15 epochs 
without improvements and also model checkpoint. Addition-
ally, we applied a method to standardize the pIC50 values 
using the interquartile range to ensure a faster and more 
accurate convergence of the learning process.

As indicated in 1, configuration I employed SMILES 
notation and an attention mechanism in its architecture to 
predict the pIC50 . The model consisted of an embedding 
layer, followed by a bidirectional gated recurrent unit (GRU) 
layer and another GRU layer. Then, attention was applied to 
the hidden states obtained from the GRU layer before the 
dense output layer. As indicated in Fig. 2, the dimension of 
the embedding vectors was 256, and 128 units were used in 
the layers with recurrent architectures. A dropout of 0.3 was 
applied to minimize overfitting, and a dense layer linearly 
activated was applied as the output layer. The role of the 
bi-directional GRU layer is critical for an efficient feature 
extraction procedure. It combines forward, and backwards 
hidden layers to be able to access the sequence’s preceding 
and succeeding contexts. Nevertheless, while this architec-
ture provided the best result, it is clear that the performance 
might be improved if more examples were used to train the 
model.

The metrics used to analyze the performance of the 
Predictor are intended to evaluate the quality of the imple-
mented regression. Thus, in addition to the MSE, we 
evaluated the coefficient of determination ( Q2 ), root-mean-
squared error (RMSE), and concordance correlation coef-
ficient (CCC). Figure 3 shows the obtained results for each 
implemented Predictor.

Figure 3 depicts a significant difference in the perfor-
mance between models implemented using SMILES and 
those trained with fingerprint-based descriptors. Predictors 
built with ECFP4, ECFP6, and RDKit fingerprints perform 
worse when analyzing all metrics, that is, they are less 

Fig. 2  Configuration I Predictor. Identification of the RNN-based architecture with an attention layer before the output
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informative descriptors when compared with raw SMILES. 
Another interesting aspect of this study is the fact that mod-
els containing the attention mechanism in their architecture 
outperform similar models without attention. This finding 
confirms the benefits of this conceptually simple yet effec-
tive DL layer. In this scenario, it is noticeable that the AM 
helps the Predictor identify the tokens in the molecule that 
will be decisive for determining whether or not an interac-
tion can occur.

Additionally, it is possible to confirm that configuration I 
provided the best results. Figure 4 depicts the predictions of 
the model against the true pIC50 values for the hold-out set, 
where it is possible to observe a considerable density around 
the reference line for all ranges of pIC50.

Conditioned molecular generation with optimized 
properties

The conditioned generation of compounds was based on the 
application of an RL optimization procedure combined with 
a self-adaptive method of updating the preferences associ-
ated with each objective. Before obtaining the Pareto front 
disposing of the solutions, it was necessary to determine the 
best hyperparameters for applying the framework. Table 3 
indicates the optimal values obtained for the number of 

epochs, softmax temperature, initial weight assignment, and 
the weight update step to apply throughout the process. We 
implemented a grid search to find the most suitable model 
configuration for biasing the two properties in the desired 
direction while maintaining the validity rate of the SMILES. 

Fig. 3  Results Predictor. Identification of the best model configuration through the evaluation of MSE, Q2 , RMSE, and CCC 

Fig. 4  Predictor evaluation. Predictions for the hold-out set against 
the true pIC

50
 values. The diagonal line (predicted = true value) illus-

trates what would be the perfect model. The color of each point indi-
cates whether the instance is a true USP7 instance (blue) or whether 
it was obtained through the data augmentation strategy (red)
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The defined search spaces as well as the results of all experi-
ments, are shown in Table S3 of the Supporting Information.

We applied the optimal configuration to re-train the Gen-
erator with the policy-gradient algorithm. The obtained pol-
icy generated molecules with high biological affinity for the 
USP7 target and the SAS biased as desired. To demonstrate 
the effect of the RL training procedure, we have generated 
200 molecules with both the optimized and the non-opti-
mized Generators. Figure 5 illustrates the transformations 
in the distributions for both molecular properties.

Afterwards, the objective was to identify specifically the 
best molecular hits generated by the optimized policy, con-
sidering the trade-off between the two properties. As repre-
sented in Fig. 6, the Pareto Front was designed to identify 
the most promising non-dominated solutions. The non-dom-
inated solutions, described in red, were identified, and their 
molecular properties were evaluated more thoroughly as 
they were the solutions that provided the best compromises 
between the optimization of pIC50 and SAS.

Analysis of the optimized compounds

One of the purposes of this work was to discover compounds 
with the potential to become promising hits while including 
information about the spatial arrangement of their atoms. In 
fact, this information is essential for the biological activity of 
the molecule and for the presence or absence of potentially 
undesired effects. Although some drug-like molecules don’t 
have any stereoisomers or the most suitable conformation is 

evident, there are examples where the indication of stereo-
chemistry is absolutely fundamental for understanding the 
potential of the candidate drug. When the molecules have a 
natural origin and contain multiple chiral centres, the stereo-
chemical information plays a relevant role. In this sense, the 
goal was to use the canonical SMILES of each previously 
identified molecular hit to determine the corresponding ste-
reoisomer with the most promising inhibitory potential. The 
Predictor was developed for this purpose since the training 
compounds contained stereochemical information and the 
applied SMILES vocabulary included the symbols required 
to represent this chemical aspect. Therefore, an RDKit 
method was used to enumerate all the possible stereoiso-
mers from each previously identified candidate hit with the 
Pareto diagram, allowing the Predictor to identify the most 
suitable configuration. Figure 7 illustrates this process for 
some examples. The number of stereoisomers obtained for 
each candidate hit depends on the number of chiral centres 
of its molecular structure (c) under the condition of 2c . For 
this reason, hit compounds with multiple chiral centres can 
have a wide variety of stereoisomers. Although the proposed 

Table 3  Implementation parameters of the self-adaptive conditioned 
generation framework

Epochs Softmax Temp. Inital weights 
( pIC

50
 , SAS)

Weights update step

90 0.80 [0.6, 04] 0.05

Fig. 5  Biased Generator evaluation. Comparison of pIC
50

 and SAS from molecular samples obtained by the pre-trained Generator (unbiased) 
and optimized Generator (biased)

Fig. 6  Pareto front. Representation and identification of dominated 
and non-dominated solutions
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method intends to identify the best configuration in terms 
of biological affinity, the indicated compound may be unre-
alistically difficult to synthesize. Hence, when selecting the 
best molecular hits, it is critical to take into account the 
trade-off between biological affinity and synthesizability of 
each stereoisomer.

Demonstrating the drug-like properties of the generated 
compounds is a fundamental step for validating the imple-
mented method. One of the ways to demonstrate the qual-
ity of the generated hits is by showing their similarity to 
existing drugs, i.e., molecules which have already passed 
the tight sieve of evaluations to become approved drugs. 
In this work, we applied two metrics to assess molecular 
similarity: Tanimoto distance and Tanimoto maximum com-
mon substructure. Both are chemically intuitive methods for 
measuring the similarity between molecules, but the latter 
is useful to compare bioactive molecules since it allows the 
identification of local similarities within the molecular struc-
tures. Figure 8 demonstrates the similarities between gener-
ated molecules and known anti-cancer drugs. For each pair 
of molecules, it is noticeable a high similarity between their 
scaffolds, even analyzing the potential active sites of the 
compounds. These findings demonstrate that the Generator 
could explore pharmacologically interesting regions of the 
chemical space.

The model’s explainability is another crucial factor for 
the validation of the molecular generative framework. In 
this context, explainability implies specifying the parts of 
the molecules that the model considers as most important 

to determine the affinity with the target, i.e., which active 
groups will be directly involved in the drug-target inter-
action. Herein, this analysis is possible by exploring the 
potential of the AM embedded in the Predictor’s architec-
ture, specifically through the analysis of the attention scores. 
According to the output, the AM was trained to adjust the 
context vector computed by the recurrent architecture. The 
attention weights perform this adjustment since they are cal-
culated to express the relative importance of each token to 
the pIC50 of the molecule. We analyzed the attention weights 
across the structure of a sampled molecule, and the result 
is depicted in Fig. 9A. Additionally, it was performed a 
simulation of the interaction of this structure with the USP7 
enzyme through molecular docking (Fig. 10B) to compare 
the findings. According to the distribution of the weights 
described in Fig. 9B, the molecule exhibits four essential 
subregions for the interaction. We highlight these molecular 
subregions through the dashed green. The functional group 
1 is hydrazine, while 2, 3 and 4 are amides. As a result, 
Predictor considers these four regions as important func-
tional groups in interacting with USP7. These assumptions 
were later confirmed by the docking simulation. Figure 10B 
depicts the ligand in yellow, with the nitrogen atoms in blue 
and the oxygen atoms in red. The green dashed line indicates 
the linguistic functional groups involved in the interaction. 
The interaction analysis reveals that these functional groups 
are the same as those previously identified in Fig. 9, which 
demonstrates that the attention spikes clearly identify FGs 
that establish interactions with key amino acids of the USP7. 

Fig. 7  Stereochemistry of the generated molecules. Enumeration of the all stereoisomers for each hit candidate and identification of the best spa-
tial conformation of atoms
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Thus, the Predictor’s ability to detect these potential inter-
action zones was confirmed, as they were also identified 
in the drug-target binding process indicated by the docking 
simulation.

Virtual screening validation

The virtual screening protocol was implemented to dem-
onstrate the potential of the generated molecules to inhibit 

USP7 enzymatic activity. Molecules capable of interact-
ing with one or more key residues of the catalytic domain, 
such as aspartic acid 295 (Asp295), valine 296 (Val296), 
glutamine 297 (Gln297), arginine 408 (Arg408), phenyla-
lanine 409 (Phe409) and tyrosine 465 (Tyr465), were privi-
leged due to their key role stabilizing the inhibitor within 
the binding pocket. The molecular docking simulations 
retrieved some compounds with a docking score compara-
ble to that of the crystallographic inhibitor (S = − 10,1878). 

Fig. 8  Molecular similarity analysis. Comparison of generated molecules with known anti-cancer compounds using Tanimoto similarity ( TS ) and 
Tanimoto maximum common substructure ( Tmcs)

Fig. 9  Attention analysis. A Visualization of regions considered as most important for the Predictor. B Attention weights across the molecular 
structure
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Compounds with lower docking scores were predicted to 
establish stronger interactions with USP7 on specific bind-
ing sites and, therefore, considered potentially good inhibi-
tors of USP7 enzymatic activity. Figures 10 and 11 uncover 
three of the most representative protein-ligand interactions 
predicted by molecular docking calculations for the novel 
generated molecules and for the generated molecules with 
scaffolds similar to known anticancer drugs, respectively. As 
illustrated, hydrogen bonds and polar hydrogen-pi interac-
tions were established between the ligands and key amino 
acid residues, including Gln297, Asp295, Arg408 and 
Phe409. Hydrogen bonds are established when a hydro-
gen atom bonded to a strongly electronegative atom inter-
acts with another electronegative atom with a lone pair of 
electrons, creating a fundamental attractive force that will 
actively contribute to the interaction. In the polar hydrogen-
pi interactions, the polar hydrogen atoms bonded to strongly 

electronegative atoms interact with aromatic molecules and 
conjugate pi-groups, creating a comparable or even larger 
attractive force than common hydrogen bonds. These results 
demonstrate the model’s potential to generate compounds 
that can establish strong interactions with key amino acid 
residues for the USP7 catalytic activity, potentially blocking 
the combination of ubiquitin with USP7 and revoking USP7 
enzymatic activity.

Final remarks

The obtained results suggest that, besides possessing a high 
biological affinity for the target, the molecules are synthesiz-
able, drug-like, and contain relevant stereochemical infor-
mation. Furthermore, the framework was able to indicate 
which parts of the compounds are most likely to be directly 

Fig. 10  Schematic representation of three of the most representa-
tive protein-ligand interactions predicted by the molecular docking 
simulations for the novel generated molecules with USP7 catalytic 

domain. A, B and C Two-dimensional compound interactions and 
surrounding residues represented according to their chemical proper-
ties

Fig. 11  Schematic representation of three of the most representative 
protein-ligand interactions predicted by the molecular docking simu-
lations for the generated molecules with scaffolds similar to known 

anticancer drugs with USP7 catalytic domain. A, B and C Two-
dimensional compound interactions and surrounding residues repre-
sented according to their chemical properties
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involved in the drug-target interaction. The validation of the 
proposed model was supported by the significant similarity 
of the small molecules generated compared to the existing 
USP7 inhibitors and with the insightful docking results.

One of the advantages of this framework is its versatility, 
which allows it to be easily adaptable to other targets or drug 
development tasks. The exclusive application of raw descrip-
tors, such as SMILES notation, is an eloquent demonstration 
of this versatility. The applied deep learning architectures 
were able to extract the most pertinent information from this 
sequential input, allowing for the generation of molecules 
with bespoken properties. As a result, the reliability of the 
conditioned generation dynamics proves that both the Pre-
dictor and the Generator have learned non-abstract features 
about the chemical space and the USP7 target.

The stereochemistry and synthetizability of the com-
pounds were also key elements addressed in this work. 
Although it is essential for some molecules to specify the 
relative positions in the space of their atoms, this informa-
tion is often disregarded in computational generation frame-
works. In this work, we sought to integrate stereochemical 
information in the most promising candidate hits to avoid 
situations where canonical SMILES can have two or more 
stereoisomers with differing biological characteristics or 
even harmful side effects. On the other hand, we worked 
to generate molecules that can be synthesized in the labo-
ratory, and this objective was incorporated into the deep 
reinforcement learning setting alongside the drug-target 
biological affinity. The proposed strategy was to implement 
a self-adaptive linear weighted sum method to dynamically 
condense the influence of the two competing objectives 
into a single reward function. The self-adaptive nature of 
the weights selection allowed the RL agent to consider both 
objectives fairly throughout the optimization process and 
to determine the most suitable solutions according to the 
user’s preferences.

The Predictor architecture contained an embedded AM 
that identified sub-molecular regions with varying degrees 
of importance for the interaction between the candidate 
drug and the target. The AM proposed by Bahdanau et al. 
has been applied with recurrent architectures to help them 
learn the temporal dependencies present in molecular 
structures. While RNNs such as LSTM can understand 
these dependencies, the longer the sequences of atoms, 
the more difficult it is to learn them correctly. In this case, 
the AM technique was applied to learn a set of attention 
weights that conditioned the context vector of the RNN 
architecture according to the target, which in this task 
was the biological affinity. Attention coefficients represent 
varying degrees of importance for different sections of the 
molecule, allowing the model to locate the key active sites. 
This information is helpful for the implemented framework 
as it enables a more focused and orientated exploration of 

the regions of the chemical space that are important for 
the target. Also, the visualization of the attention coeffi-
cients enabled the validation of the Predictor’s robustness 
since the model was able to identify with great precision 
the critical zones of the molecule. Hence, in addition to 
confirming the potential inhibitory interaction between the 
best compounds and the USP7, the docking experiments 
corroborate the accurate identification of the molecular 
regions most involved in this interaction by the Predictor. 
Identifying these zones is also essential in the subsequent 
steps of optimization of the candidate drug because it 
indicates which regions of the molecule can be altered to 
ensure the desired physicochemical properties and which 
parts cannot be altered as they are strongly related to their 
biological affinity.

Despite the encouraging results obtained, the number of 
molecules used to train the Predictor was restricted due to 
the number of USP7 inhibitors reported in the literature thus 
far. The main advantage of the DL models is the capac-
ity to extract hidden patterns from many examples. There-
fore, it would be important to assemble a dataset with more 
molecular diversity to exploit the potential of the architec-
ture in pIC50 prediction fully. Although we gathered biologi-
cal affinities of targets with high similarity in the catalytic 
domain compared to the USP7 target, this data augmenta-
tion step may introduce dubious information into the model. 
Nevertheless, the selected option optimized the threshold 
between the quantity of data and the selectivity of the com-
pounds against the USP7 target.

Conclusions

The implemented model allowed us to generate potentially 
inhibitory hit molecules for the USP7 target. We applied 
deep learning architectures to streamline the early steps of 
the drug development process while also addressing criti-
cal issues of current computational generative state-of-the-
art models. Hence, it was possible to implement a robust, 
self-explanatory, and useful de novo deep generative frame-
work to identify putative inhibitors for a target with high 
biological interest, such as USP7. We expect this work to 
be a step forward to making USP7 inhibition an alterna-
tive and effective therapeutic pathway in cancer. Also, we 
demonstrated that it is possible to apply the capabilities of 
attention to identify the most promising regions of chemical 
space, allowing to shorten the period of time and the efforts 
required to discover new bioactive compounds of interest.
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