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Video action recognition 
collaborative learning 
with dynamics via PSO‑ConvNet 
Transformer
Huu Phong Nguyen * & Bernardete Ribeiro 

Recognizing human actions in video sequences, known as Human Action Recognition (HAR), is a 
challenging task in pattern recognition. While Convolutional Neural Networks (ConvNets) have shown 
remarkable success in image recognition, they are not always directly applicable to HAR, as temporal 
features are critical for accurate classification. In this paper, we propose a novel dynamic PSO‑ConvNet 
model for learning actions in videos, building on our recent work in image recognition. Our approach 
leverages a framework where the weight vector of each neural network represents the position of 
a particle in phase space, and particles share their current weight vectors and gradient estimates 
of the Loss function. To extend our approach to video, we integrate ConvNets with state‑of‑the‑art 
temporal methods such as Transformer and Recurrent Neural Networks. Our experimental results on 
the UCF‑101 dataset demonstrate substantial improvements of up to 9% in accuracy, which confirms 
the effectiveness of our proposed method. In addition, we conducted experiments on larger and more 
variety of datasets including Kinetics‑400 and HMDB‑51 and obtained preference for Collaborative 
Learning in comparison with Non‑Collaborative Learning (Individual Learning). Overall, our dynamic 
PSO‑ConvNet model provides a promising direction for improving HAR by better capturing the spatio‑
temporal dynamics of human actions in videos. The code is available at https:// github. com/ leonl ha/ 
Video‑ Action‑ Recog nition‑ Colla borat ive‑ Learn ing‑ with‑ Dynam ics‑ via‑ PSO‑ ConvN et‑ Trans former.

List of symbols
X  Input frame in video sequences for ConvNet
Oi  Output for layer ith
fi  Weight operation for convolution, pooling or fully connected layers at layer ith
gi  Activation function at layer ith
xt  Input sequence of RNN at time step t
Wh,Wx , b, σ  Weight matrices, bias, sigmoid function
ht  Hidden cell state at time step t
yt , ŷt  Output of a cell at time step t
ft , it , ot , ct , c

′
t  Forget gate, input gate, output gate and cell states at time step t

xn(t), vn(t)  Position and velocity vector of particle n at time t
φ(n)(t),ψ(n)(t)  Intermediate position and intermediate velocity of particle n at time t
Pn(t)  Best position visited up until time t by particle n
Png (t)  Best position across all previous positions of the particle n jointly with its nearest-neighbors 

up until time t
L  Loss function
c, c1, c2  Accelerator coefficients
r(t)  Random uniform within the interval [0,1]
M,β  Constants

Human action recognition plays a vital role for distinguishing a particular behavior of interest in the video. It has 
critical applications including visual surveillance for detection of suspicious human activities to prevent the fatal 
 accidents1,2, automation-based driving to sense and predict human behavior for safe  navigation3,4. In addition, 
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there are large amount of non-trivial applications such as human–machine  interaction5,6, video  retrieval7, crowd 
scene  analysis8 and identity  recognition9.

In the early days, the majority of research in Human Activity Recognition was conducted using hand-crafted 
 methods10–12. However, as deep learning technology evolved and gained increasing recognition in the research 
community, a multitude of new techniques have been proposed, achieving remarkable results.

Action recognition preserves a similar property of image recognition since both of the fields handle visual 
contents. In addition, action recognition classifies not only still images but also dynamics temporal informa-
tion from the sequence of images. Built on these intrinsic characteristics, action recognition’s methods can be 
grouped into two main approaches namely recurrent neural networks (RNN) based approach and 3-D ConvNet 
based approach. Besides of the main ones, there are other methods that utilize the content from both spatial and 
temporal and coined the name two-stream 2-D ConvNet based  approach13.

Initially, action recognition was viewed as a natural extension of image recognition, and spatial features 
from still frames could be extracted using ConvNet, which is one of the most efficient techniques in the image 
recognition field. However, traditional ConvNets are only capable of processing a single 2-D image at a time. To 
expand to multiple 2-D images, the neural network architecture needs to be re-designed, including adding an 
extra dimension to operations such as convolution and pooling to accommodate 3-D images. Examples of such 
techniques include  C3D14,  I3D15,  R3D16,  S3D17,  T3D18,  LTC19, among others

Similarly, since a video primarily consists of a temporal sequence, techniques for sequential data, such as 
Recurrent Neural Networks and specifically Long Short Term Memory, can be utilized to analyze the temporal 
information. Despite the larger size of images, feature extraction is often employed. Long-term Recurrent Con-
volutional Networks (LRCN)20 and Beyond-Short-Snippets21 were among the first attempts to extract feature 
maps from 2-D ConvNets and integrate them with LSTMs to make video predictions. Other works have adopted 
bi-directional  LSTMs22,23, which are composed of two separate LSTMs, to explore both forward and backward 
temporal information.

To further improve performance, other researchers argue that videos usually contain repetitive frames or 
even hard-to-classify ones which makes the computation expensive. By selecting relevant frames, it can help to 
improve action recognition performance both in terms of efficiency and  accuracy24. A similar concept based 
on attention mechanisms is the main focus in recent researches to boost overall performance of the ConvNet-
LSTM  frameworks25,26.

While RNNs are superior in the field, they process data sequentially, meaning that information flows from one 
state to the next, hindering the ability to speed up training in parallel and causing the architectures to become 
larger in size. These issues limit the application of RNNs to longer sequences. In light of these challenges, a new 
approach, the Transformer,  emerged27–31.

There has been a rapid advancement in action recognition in recent years, from 3-D ConvNets to 2-D Con-
vNets-LSTM, two-stream ConvNets, and more recently, Transformers. While these advancements have brought 
many benefits, they have also created a critical issue as previous techniques are unable to keep up with the rapidly 
changing pace. Although techniques such as evolutionary computation offer a crucial mechanism for architecture 
search in image recognition, and swarm intelligence provides a straightforward method to improve performance, 
they remain largely unexplored in the realm of action recognition.

In our recent  research32, we developed a dynamic Particle Swarm Optimization (PSO) framework for image 
classification. In this framework, each particle navigates the landscape, exchanging information with neighboring 
particles about its current estimate of the geometry (such as the gradient of the Loss function) and its position. 
The overall goal of this framework is to create a distributed, collaborative algorithm that improves the optimiza-
tion performance by guiding some of the particles up to the best minimum of the loss function. We extend this 
framework to action recognition by incorporating state-of-the-art methods for temporal data (Transformer and 
RNN) with the ConvNet module in an end-to-end training setup.

In detail, we have made the following improvements compared to our previous publication.
We have supplemented a more comprehensive review of the literature on Human Action Recognition. We 

have implemented the following enhancements and additions to our work: 

(1) We have introduced an improved and novel network architecture that extends a PSO-ConvNet to a PSO-
ConvNet Transformer (or PSO-ConvNet RNN) in an end-to-end fashion.

(2) We have expanded the scope of Collaborative Learning as a broader concept beyond its original application 
in image classification to include action recognition.

(3) We have conducted additional experiments on challenging datasets to validate the effectiveness of the 
modified model.

These improvements and additions contribute significantly to the overall strength and novelty of our research.
The rest of the article is organized as follows: In Sect. 2, we discuss relevant approaches in applying Deep 

Learning and Swarm Intelligence to HAR. In addition, the proposed methods including Collaborative Learning 
with Dynamic Neural Networks and ConvNet Transformer architecture as well as ConvNet RNN model are 
introduced in Sects. 3.1, 3.2 and  3.3, respectively. The results of experiments, the extension of the experiments 
and discussions are presented in Sects. 4,  5 and 6. Finally, we conclude our work in Sect. 7.

Related works
In recent years, deep learning (DL) has greatly succeed in computer vision fields, e.g., object detection, image 
classification and action  recognition24,30,33. One consequence of this success has been a sharp increase in the 
number of investments in searching for good neural network architectures. An emerging promising approach 
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is changing from the manual design to automatic Neural Architecture Search (NAS). As an essential part of 
automated machine learning, NAS automatically generates neural networks which have led to state-of-the-art 
 results34–36. Among various approaches for NAS already present in the literature, evolutionary search stands out 
as one of the most remarkable methods. For example, beginning with just one layer of neural network, the model 
develops into a competitive architecture that outperforms contemporary  counterparts34. As a result, the efficacy 
of the their proposed classification system for HAR on UCF-50 dataset was  demonstrated33 by initializing the 
weights of a convolutional neural network classifier based on solutions generated from genetic algorithms (GA).

In addition to Genetic Algorithms, Particle Swarm Optimization—a population-based stochastic search 
method influenced by the social behavior of flocking birds and schooling fish—has proven to be an efficient 
technique for feature  selection37,38. A novel approach that combines a modified Particle Swarm Optimization with 
Back-Propagation was put forth for image recognition, by adjusting the inertia weight, acceleration parameters, 
and  velocity39. This fusion allows for dynamic and adaptive tuning of the parameters between global and local 
search capability, and promotes diversity within the swarm. In catfish particle swarm optimization, the particle 
with the worst fitness is introduced into the search space when the fitness of the global best particle has not 
improved after a number of consecutive  iterations40. Moreover, a PSO based multi-objective for discriminative 
feature selection was introduced to enhance classification  problems41.

There have been several efforts to apply swarm intelligence to action recognition from video. One such 
approach employs a combination of binary histogram, Harris corner points, and wavelet coefficients as features 
extracted from the spatiotemporal volume of the video  sequence42. To minimize computational complexity, the 
feature space is reduced through the use of PSO with a multi-objective fitness function.

Furthermore, another approach combining Deep Learning and swarm intelligence-based metaheuristics for 
Human Action Recognition was  proposed43. Here, four different types of features extracted from skeletal data—
Distance, Distance Velocity, Angle, and Angle Velocity—are optimized using the nature-inspired Ant Lion Opti-
mizer metaheuristic to eliminate non-informative or misleading features and decrease the size of the feature set.

The ideas of applying pure techniques of Natural Language Processing to Computer Vision have been seen in 
recent  years29,30,44. By using the sequences of image patches with Transformer, the  models29 can perform specially 
well on image classification tasks. Similarly, the approach was extended to HAR with sequence of  frames30. In 
“Video Swin Transformer”31, the image was divided into regular shaped windows and utilize a Transformer block 
to each one. The approach was found to outperform the factorized models in efficiency by taking advantage of the 
inherent spatiotemporal locality of videos where pixels that are closer to each other in spatiotemporal distance 
are more likely to be relevant. In our study, we adopt a different approach by utilizing extracted features from 
a ConvNet rather than using original images. This choice allows us to reduce computational expenses without 
compromising efficiency, as detailed in Sect. 3.2.

Temporal Correlation Module (TCM)45 utilizes fast-tempo and slow-tempo information and adaptively 
enhances the expressive features, and a Temporal Segment Network (TSN) is introduced to further improve the 
results of the two-stream  architecture46. Spatiotemporal vector of locally aggregated descriptor (ActionS-ST-
VLAD) approach designs to aggregate relevant deep features during the entire video based on adaptive video 
feature segmentation and adaptive segment feature sampling (AVFS-ASFS) in which the key-frame features are 
 selected47. Moreover, the concept of using temporal difference can be found in the  works48–50. Temporal Differ-
ence Networks (TDN) approach proposes for both finer local and long-range global motion information, i.e., 
for local motion modeling, temporal difference over consecutive frames is utilized whereas for global motion 
modeling, temporal difference across segments is integrated to capture long-range  structure48. SpatioTemporal 
and Motion Encoding (STM) approach proposes an STM block, which contains a Channel-wise SpatioTemporal 
Module (CSTM) to present the spatiotemporal features and a Channel-wise Motion Module (CMM) to efficiently 
encode motion features in which a 2D channel-wise convolution is applied to two consecutive frames and then 
subtracts to obtain the approximate motion  representation49.

Other related approaches that can be mentioned include Zero-Shot Learning, Few-Shot Learning, and Knowl-
edge Distillation  Learning51–53. Zero-Shot Learning and Few-Shot Learning provide techniques for understanding 
domains with limited data availability. Similar to humans, who can identify similar objects within a category 
after seeing only a few examples, these approaches enable the model to generalize and recognize unseen or 
scarce classes. In our proposed approach, we introduce the concept of Collaborative Learning, where particles 
collaboratively train in a distributed manner.

Despite these advances, the field remains largely uncharted, especially with respect to recent and emerging 
techniques.

Proposed methods
Collaborative dynamic neural networks. Define N(n, t) as the set of k nearest neighbor particles of 
particle n at time t, where k ∈ N is some predefined number. In particular,

where i1 , i2, . . . ik are the k closest particles to n and x(ik)(t) and v(ik)(t) ∈ R
D represent the position and velocity 

of particle ik at time t. Figure 1 illustrates this concept for k = 4 particles.
Given a (continuous) function L : RD −→ R and a (compact) subset S ⊂ R

D , define

as the subset of points that minimize L in S, i.e., L(z) ≤ L(w) for any z ∈ Y ⊂ S and w ∈ S.

(1)N(n, t) = {(x(n)(t), v(n)(t)), (x(i1)(t), v(i1)(t)), (x(i2), v(i2))(t), . . . , (x(ik)(t), v(ik)(t))}

(2)Y = argmin
{

L(y) : y ∈ S
}
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Dynamic 1 We investigate a set of neural networks that work together in a decentralized manner to minimize 
a Loss function L. The training process is comprised of two phases: (1) individual training of each neural network 
using (stochastic) gradient descent, and (2) a combined phase of SGD and PSO-based cooperation. The weight 
vector of each neural network is represented as the position of a particle in a D-dimensional phase space, where 
D is the number of weights. The evolution of the particles (or neural networks) is governed by Eq. (3), with the 
update rule specified by the following dynamics:

where v(n)(t) ∈ R
D is the velocity vector of particle n at time t; ψ(n)(t) is an intermediate velocity computed 

from the gradient of the Loss function at x(n)(t) ; φ(n)(t) is the intermediate position computed from the inter-
mediate velocity ψ(n)(t) ; r(t) i.i.d.∼ Uniform([0, 1]) is randomly drawn from the interval [0, 1] and we assume 
that the sequence r(0), r(1), r(2), . . . is i.i.d.; P(n)(t) ∈ R

D represents the best position visited up until time 
t by particle n, i.e., the position with the minimum value of the Loss function over all previous positions 
x(n)(0), x(n)(1), . . . , x(n)(t) ; P(n)g (t) represents its nearest-neighbors’ counterpart, i.e., the best position across all 
previous positions of the particle n jointly with its corresponding nearest-neighbors 

⋃

s≤t N(n, s) up until time t:

The weights wnℓ are defined as

with ||·|| being the Euclidean norm and f : R → R being a decreasing (or at least non-increasing) function. In 
Dynamic 1, we assume that

for some constants M,β > 0 . This strengthens the collaboration learning between any of two particles by pushing 
each particle against each other.

Dynamic 2 An alternative to Eq. (3) is to pull back a particle instead of pushing it in the direction of the gra-
dient. In the previous section, the assumption was that all particles were located on the same side of a valley in 

(3)

ψ(n)(t + 1) = − η∇L
(

x(n)(t)
)

φ(n)(t + 1) = x(n)(t)+ ψ(n)(t + 1)

v(n)(t + 1) =
∑

ℓ∈N(n,t)

wnℓψ
(ℓ)(t + 1)+ c1r(t)

(

P(n)(t)− φ(n)(t + 1)
)

+ c2r(t)
(

P
(n)
g (t)− φ(n)(t + 1)

)

x(n)(t + 1) = x(n)(t)+ v(n)(t)

(4)

P(n)(t + 1) ∈ argmin
{

L(y) : y = P(n)(t), x(n)(t)
}

P
(n)
g (t + 1) ∈ argmin

{

L(y) : y = P
(n)
g (t), x(k)(t);

k ∈ N(n, t)
}

.

(5)wnℓ = f
(∣

∣

∣

∣

∣

∣
x(n)(t)− x(ℓ)(t)

∣

∣

∣

∣

∣

∣

)

,

(6)f (z) = M

(1+ z)β
,

Figure 1.  A demonstration of the N(n, t) neighborhood, consisting of the positions of four closest particles 
and particle n itself, is shown. The velocities of the particles are depicted by arrows.
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the loss function. However, if one particle is on the opposite side of the valley relative to the rest of the particles, 
it will be pulled further away from the minimum using the first dynamic. To address this issue, we introduce a 
second dynamic (Dynamic 2) that pulls the particle back. The formula for this dynamics is as follows:

where x(i)(t) ∈ R
D is the position of particle i at time t; M, β and c are constants set up by experiments with ||·|| 

being the Euclidean norm; r(t) i.i.d.∼ Uniform([0, 1]) randomly drawn from the interval [0, 1] and we assume that 
the sequence r(0), r(1), r(2), . . . is i.i.d.; Pnbest(i)(t) ∈ R

D represents nearest-neighbors’ best , i.e., the best position 
across all previous positions of the particle n jointly with its corresponding nearest-neighbors 

⋃

s≤t N(n, s) up 
until time t.

ConvNet transformer architecture for action recognition. In this section, we discuss a hybrid Con-
vNet-Transformer architecture that replaces the traditional ConvNet-RNN block for temporal input to classify 
human action in videos. The architecture is composed of several components, including a feature extraction 
module using ConvNet, a position embedding layer, multiple transformer encoder blocks, and classification and 
aggregation modules. The overall diagram of the architecture can be seen in Fig. 2. The goal of the architecture 
is to effectively capture the temporal information present in the video sequences, in order to perform accurate 
human action recognition. The hybrid ConvNet-Transformer design leverages the strengths of both ConvNets 
and Transformers, offering a powerful solution for this challenging task.

Features extraction via ConvNet and position embedding. In the early days of using Transformer for visual 
classification, especially for images, the frames were typically divided into smaller patches and used as the pri-
mary  input31,54,55. However, these features were often quite large, leading to high computational requirements 
for the Transformer. To balance efficiency and accuracy, ConvNet can be utilized to extract crucial features from 
images, reducing the size of the input without sacrificing performance.

We assume that, for each frame, the extracted features from ConNet have a size of (w, h, c) where w and h 
are the width and height of a 2D feature and c is the number of filters. To further reduce the size of the features, 
global average pooling is applied, reducing the size from w × h× c to c.

The position encoding mechanism in Transformer is used to encode the position of each frame in the 
sequence. The position encoding vector, which has the same size as the feature, is summed with the feature and 
its values are computed using the following formulas. This differs from the sequential processing of data in the 
RNN block, allowing for parallel handling of all entities in the sequence.

where pos, i and PE are the time step index of the input vector, the dimension and the positional encoding matrix; 
dmodel refers to the length of the position encoding vector.

(7)x(i)(t + 1) = x(i)(t)+
∑N

j=1
Mij

(1+||xi(t)−xj(t)||2)β (xj(t)−∇L(xj(t)))+ cr
(

Pnbest(i)(t)− xi(t)
)

(8)
PE(pos,2i) = sin(pos/100002i/dmodel )

PE(pos,2i+1) = cos(pos/100002i/dmodel )

Figure 2.  Rendering end-to-end ConvNet-Transformer architecture.
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Transformer encoder. The Transformer Encoder is a key component of the hybrid ConvNet-Transformer archi-
tecture. It consists of a stack of N identical layers, each comprising multi-head self-attention and position-wise 
fully connected feed-forward network sub-layers. To ensure the retention of important input information, resid-
ual connections are employed before each operation, followed by layer normalization.

The core of the module is the multi-head self-attention mechanism, which is composed of several self-
attention blocks. This mechanism is similar to RNN, as it encodes sequential data by determining the relevance 
between each element in the sequence. It leverages the inherent relationships between frames in a video to 
provide a more accurate representation. Furthermore, the self-attention operates on the entire sequence at once, 
resulting in significant improvements in runtime, as the computation can be parallelized using modern GPUs.

Our architecture employs only the encoder component of a full transformer, as the goal is to obtain a clas-
sification label for the video action rather than a sequence. The full transformer consists of both encoder and 
decoder modules, however, in our case, the use of only the encoder module suffices to achieve the desired result.

Assuming the input sequence ( X = x1, x2, . . . , xn ) is first projected onto these weight matrices Q = XWQ , 
K = XWK , V = XWV  with WQ,WK and WV  are three trainable weights, the query ( Q = q1, q2, . . . , qn ), key 
( K = k1, k2, . . . , kn ) of dimension dk , and value ( V = v1, v2, . . . , vn ) of dimension dv , the output of self-attention 
is computed as follows:

As the name suggested, multi-head attention is composed of several heads and all are concatenated and fed into 
another linear projection to produce the final outputs as follows:

where parameter matrices WQ
i ∈ R

dmodel×dk , WK
i ∈ R

dmodel×dk , WV
i ∈ R

dmodel×dv and WO ∈ R
hdv×dmodel , 

i = 1, 2, . . . , h with h denotes the number of heads.

Frame selection and data pre‑processing. Input videos with varying number of frames can pose a challenge for 
the model which requires a fixed number of inputs. Put simply, to process a video sequence, we incorporated a 
time distributed layer that requires a predetermined number of frames. To address this issue, we employ several 
strategies for selecting a smaller subset of frames.

One approach is the “shadow method,” where a maximum sequence length is established for each video. 
While this method is straightforward, it can result in the cutting of longer videos and the loss of information, 
particularly when the desired length is not reached. In the second method, we utilize a step size to skip some 
frames, allowing us to achieve the full length of the video while reducing the number of frames used. Addition-
ally, the images are center-cropped to create square images. The efficacy of each method will be evaluated in 
our experiments.

Layers for classification. Assuming, we have a set of videos S(S1, S2, . . . , Sm) with corresponding labels 
y(y1, y2, . . . , ym) where m is the number of samples. We select l frames from the videos and obtain g features 
from the global average pooling 2-D layer. Each transformer encoder generates a set of representations by con-
suming the output from the previous block. After N transformer encoder blocks, we can obtain the multi-level 
representation HN (hN1 , h

N
2 , . . . , h

N
l ) where each representation is 1-D vector with the length of g (see Fig. 2 block 

(A) → (D)).
The classification module incorporates traditional layers, such as fully connected and softmax, and also 

employs global max pooling to reduce network size. To prevent overfitting, we include Gaussian noise and 
dropout layers in the design. The ConvNet-Transformer model is trained using stochastic gradient descent and 
the categorical cross entropy loss is used as the optimization criterion.

ConvNet‑RNN. Recent studies have explored the combination of ConvNets and RNNs, particularly LSTMs, 
to take into account temporal data of frame features for action recognition in  videos20–23,56,57.

To provide a clear understanding of the mathematical operations performed by ConvNets, the following is 
a summary of the relevant formulations:

where X represents the input image; Oi is the output for layer ith ; Wi indicates the weights of the layer; fi(·) 
denotes weight operation for convolution, pooling or FC layers; gi(·) is an activation function, for example, 
sigmoid, tanh and rectified linear (ReLU) or more recently Leaky  ReLU58; The symbol ( ⊛ ) acts as a convolution 

(9)Attention(Q,K ,V) = softmax(
QK

T

√
dk
)V .

(10)MultiHead(Q,K ,V) =Concat(head1, head2, . . . , headh)W
O .

(11)where headi = Attention(QW
Q

i
,KWK

i ,VW
V

i )

(12)

{

Oi = X if i = 1
Yi = fi(Oi−1,Wi) if i > 1
Oi = gi(Yi)

(13)

{

Yi = Wi ⊛ Oi−1 ith layer is a convolution
Yi = ⊞n,mOi−1 ith layer is a pool
Yi = Wi ∗ Oi−1 ith layer is a FC
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operation which uses shared weights to reduce expensive matrix  computation59; Window ( ⊞n,m ) shows an average 
or a max pooling operation which computes average or max values over neighbor region of size n×m in each 
feature map. Matrix multiplication of weights between layer ith and the layer (i − 1)th in FC is represented as ( ∗).

The last layer in the ConvNet (FC layer) acts as a classifier and is usually discarded for the purpose of using 
transfer learning. Thereafter, the outputs of the ConvNet from frames in the video sequences are fed as inputs 
to the RNN layer.

Considering a standard RNN with a given input sequence x1, x2, . . . , xT , the hidden cell state is updated at 
a time step t as follows:

where Wh and Wx denote weight matrices, b represents the bias, and σ is a sigmoid function that outputs values 
between 0 and 1.

The output of a cell, for ease of notation, is defined as

but can also be shown using the softmax function, in which ŷt is the output and yt is the target:

A more sophisticated RNN or LSTM that includes the concept of a forget gate can be expressed as shown in the 
following equations:

where the ⊙ operation represents an elementwise vector product, and f, i, o and c are the forget gate, input gate, 
output gate and cell state, respectively. Information is retained when the forget gate ft becomes 1 and eliminated 
when ft is set to 0.

For optimization purposes, an alternative to LSTMs, the gated recurrent unit (GRU), can be utilized due to 
its lower computational demands. The GRU merges the input gate and forget gate into a single update gate, and 
the mathematical representation is given by the following equations:

Finally, it’s worth noting that while traditional RNNs only consider previous information, bidirectional RNNs 
incorporate both past and future information in their computations:

where ht−1 and ht+1 indicate hidden cell states at the previous time step ( t − 1 ) and the future time step ( t + 1).

Results
Benchmark datasets. The UCF-101 dataset, introduced in 2012, is one of the largest annotated video 
datasets  available60, and an expansion of the UCF-50 dataset. It comprises 13,320 realistic video clips collected 
from YouTube and covers 101 categories of human actions, such as punching, boxing, and walking. The dataset 
has three distinct official splits (rather than a pre-divided training set and testing set), and the final accuracy in 
our experiments is calculated as the arithmetic average of the results across all three splits.

(14)ht = σ(Whht−1 +Wxxt + b),

(15)yt = ht ,

(16)ŷt = softmax(Wyht + by).

(17)ft = σ(Wfhht−1 +Wfxxt + bf ),

(18)it = σ(Wihht−1 +Wixxt + bi),

(19)c′t = tanh(Wc′hht−1 +Wc′xxt + b′c),

(20)ct = ft ⊙ ct−1 + it ⊙ c′t ,

(21)ot = σ(Wohht−1 +Woxxt + bo),

(22)ht = ot ⊙ tanh(ct),

(23)rt = σ(Wrhht−1 +Wrxxt + br),

(24)zt = σ(Wzhht−1 +Wzxxt + bz),

(25)h′t = tanh(Wh′h(rt ⊙ ht−1)+Wh′xxt + bz),

(26)ht = (1− zt)⊙ ht−1 + zt ⊙ h′t .

(27)ht = σ(Whxxt +Whhht−1 + bh),

(28)zt = σ(WZXxt +WHXht+1 + bz),

(29)ŷt = softmax(Wyhht +Wyzzt + by),
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HMDB-5161 was released around the same time as UCF-101. The dataset contains roughly 5k videos belong-
ing to 51 distinct action classes. Each class in the dataset holds at least 100 videos. The videos are collected from 
a multiple sources, for example, movies and online videos.

Kinetics-40062 was recently made available in 2017. The dataset consists of 400 human action classes with at 
least 400 video clips for each action. The videos were assembled from realistic YouTube in which each clip lasts 
around 10s. In total, the dataset contains about 240k training videos and 20k validation videos and is one of the 
largest well-labeled video datasets utilized for action recognition.

Downloading individual videos from the Kinetics-400 dataset poses a significant challenge due to the large 
number of videos and the fact that the dataset only provides links to YouTube videos. Therefore, we utilize 
 Fiftyone63, an open-source tool specifically designed for constructing high-quality datasets, to address this chal-
lenge. In our experiment, we collected top-20 most accuracy categories according to the  work62 including “rid-
ing mechanical bull”, “presenting weather forecast”, “sled dog racing”, etc. Eventually, we obtained 7114 files for 
training and 773 files for validation with a significant number of files were not collected because the videos were 
deleted or changed to private, etc. In the same manner, we gathered all categories from HMDB-51 and obtained 
3570 files for training and 1530 files for validation. The tool provides one-split for the HMDB-51, but the docu-
ment does not specify which split.

Our experiments were conducted using Tensorflow-2.8.264, Keras-2.6.0, and a powerful 4-GPU system 
 (GeForce® GTX 1080 Ti). We used  Hiplot65 for data visualization. Figure 3 provides snapshot of samples from 
each of the action categories.

Evaluation metric. For evaluating our results, we employ the standard classification accuracy metric, 
which is defined as follows:

Figure 3.  A snapshot of samples of all actions from UCF-101  dataset60.
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Implementation. Training our collaborative models for action recognition involves building a new, dedi-
cated system, as these models require real-time information exchange. To the best of our knowledge, this is the 
first such system ever built for this purpose. To accommodate the large hardware resources required, each model 
is trained in a separate environment. After one training epoch, each model updates its current location, previous 
location, estimate of the gradient of the loss function, and other relevant information, which is then broadcast 
to neighboring models. To clarify the concept, we provide a diagram of the collaborative system and provide a 
brief description in this subsection.

Our system for distributed PSO-ConvNets is designed based on a web client-server architecture, as depicted 
in Fig. 4. The system consists of two main components: the client side, which is any computer with a web browser 
interface, and the server side, which comprises three essential services: cloud services, app services, and data 
services.

The cloud services host the models in virtual machines, while the app services run the ConvNet RNN or 
ConvNet Transformer models. The information generated by each model is managed by the data services and 
stored in a data storage. In order to calculate the next positions of particles, each particle must wait for all other 
particles to finish the training cycle in order to obtain the current information.

The system is designed to be operated through a web-based interface, which facilitates the advanced develop-
ment process and allows for easy interactions between users and the system.

Effectiveness of the proposed method. Table  1 presents the results of Dynamic 1 and Dynamic 
2 on action recognition models. The experiment settings are consistent with our previous research for a fair 
comparison. As shown in Fig. 2, we consider two different ConvNet architectures, namely DenseNet-201 and 
ResNet-152, and select eight models from the  Inception66,  EfficientNet67,  DenseNet68, and  ResNet69 families. In 
the baseline action recognition methods (DenseNet-201 RNN, ResNet-152 RNN, DenseNet-201 Transformer, 
and ResNet-152 Transformer), features are first extracted from ConvNets using transfer learning and then fine-
tuned. However, in our proposed method, the models are retrained in an end-to-end fashion. Pretrained weights 
from the ImageNet  dataset70 are utilized to enhance the training speed. Our results show an improvement in 
accuracy between 1.58% and 8.72% . Notably, the Dynamics 2 for DenseNet-201 Transformer achieves the best 
result. We also report the time taken to run each method. Fine-tuning takes less time, but the technique can lead 
to overfitting after a few epochs.

The experiments described above were conducted using the settings outlined in Tables 2 and 3. The batch 
size, input image size, and number of frames were adjusted to maximize GPU memory utilization. However, it 
is worth noting that in Human Activity Recognition (HAR), the batch size is significantly reduced compared to 

(30)Accuracy = Number of correct predictions

Total numbers of predictions made
.

Figure 4.  Dynamic PSO-ConvNets System Design. The system is divided into two main components, client 
and server. The client side is accessed through web browser interface while the server side comprises of cloud, 
app, and data services. The cloud stores virtual machine environments where the models reside. The app service 
is where the ConvNet-RNN or ConvNet-Transformer runs, and the information generated by each model 
is managed and saved by the data service. The particles in the system update their positions based on shared 
information, including current and previous locations, after completing a training cycle.
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image classification, as each video consists of multiple frames. Regarding the gradient weight M, a higher value 
indicates a stronger attractive force between particles.

Comparison with state‑of‑the‑art methods. 
The comparison between our method (Dynamic 2 for ConvNet Transformer) and the previous approaches is 
shown in Table 4. The second method (Transfer Learning and Fusions) trains the models on a Sports-1M You-
tube dataset and uses the features for UCF-101 recognition. However, the transfer learning procedure is slightly 
different as their ConvNet architectures were designed specifically for action recognition. While it may have 
been better to use a pretrained weight for action recognition datasets, such weights are not readily available as 
the models differ. Also, training the video dataset with millions of samples within a reasonable time is a real 
challenge for most research centers. Despite these limitations, the use of Transformer and RNN seem to provide 
a better understanding of temporal characteristics compared to fusion methods. Shuffle &Learn tries with two 
distinct models using 2-D images (AlexNet) and 3-D images (C3D) which essentially is series of 2-D images. The 
accuracy is improved, though, 3-D ConvNets require much more power of computing than the 2-D counterparts. 

Table 1.  Three-fold classification accuracy (%) on the UCF-101 benchmark dataset. The results of Dynamic 
1 and Dynamic 2 using DenseNet-201 Transformer and Resnet-152 Transformer models and compared to 
baseline models, e.g., Dynamic 1 for DenseNet-201 Transformer versus DenseNet-201 Transformer. The N/A 
is the abbreviation for the phrase not applicable, for instance, the transfer learning is not applicable in the 
Dynamic 2 for DenseNet-201 Transformer as the method uses the end-to-end training instead. Significant 
values are in bold.

Time per fold (h)

Dynamic method Model Accuracy Improve (%) Transfer learning Fine-tune/retrain

–
DenseNet-201 Transformer 0.7741 N/A 26

0.5
ResNet-152 Transformer 0.7679 N/A 24

–
DenseNet-201 RNN 0.8195 N/A 26

0.1
ResNet-152 RNN 0.8118 N/A 24

Dynamic 1

DenseNet-201 Transformer 0.8579 8.38 N/A

5.5

ResNet-152 Transformer 0.8405 7.26 N/A

DenseNet-201 RNN 0.8462 2.67 N/A

ResNet-152 RNN 0.8276 1.58 N/A

Dynamic 2
DenseNet-201 Transformer 0.8613 8.72 N/A

ResNet-152 Transformer 0.8399 7.20 N/A

Table 2.  Hyper-parameter settings for the proposed method.

Hyper-parameters Value Description Hyper-parameters Value Description
General BS 8 Batch size Encoding dense_dim 64 Dense dimension
training epochs 20 Number of iterations layer num_heads 4 Number of heads
ConvNet SIZE (224, 224) Input image size RNN units 2048 Number of memory units

CHANNELS 3 Number of image channels Classification GaussianNoise 0.1 Standard deviation of
layer the noise distribution

NBFRAME 4 Number of frames Dense 1024 Number of neurons
NUM_FEATURES 1920 Number of features of Dropout 0.4 Dropout rate

or 2048 DenseNet-201 or ResNet-512
Augmentation zoom_range 0.1 Zoom range PSO num_neighbors 4 Total particles per group

rotation_range 8 Rotation range c1 0.5 Coefficient accelerator
width_shift_range 0.2 Width shift range c2 0.5 Coefficient accelerator
height_shift_range 0.2 Height shift range
Preprocessing [-1,1] Preprocessing

Table 3.  Settings of gradient weight M.

Gradient

PSO-1 PSO-2 PSO-3 PSO-4

Gradient

PSO-1 – 0.2 0.2 10

PSO-2 0.2 – 0.2 10

PSO-3 0.2 0.2 – 10

PSO-4 0.2 0.2 0.2 –
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There are also attempts to redesign well-known 2-D ConvNet for 3-D data (C3D is built from scratch of a typi-
cal  ConvNet14), e.g., DPC approach and/or pretrained on larger datasets, e.g., 3D ST-puzzle approach. Besides, 
VideoMoCo utilizes Contrastive Self-supervised Learning (CSL) based approaches to tackle with unlabeled 
images. The method extends image-based MoCo framework for video representation by empowering temporal 
robustness of the encoder as well as modeling temporal decay of the keys. Our Dynamic 2 method outperforms 
VideoMoCo by roughly 9% . SVT is a self-supervised method based on the TimeSformer model that employs 
various self-attention  schemes79. On pre-trained of the entire Kinetics-400 dataset and inference on UCF-101, 
the SVT achieves 90.8% and 93.7% for linear evaluation and fine-tuning settings, respectively. When pre-trained 
on a subset of Kinetics-400 with 60,000 videos, the accuracy reduces to 84.8%. Moreover, the TSN methods apply 
ConvNet and achieves an accuracy of 84.5% using RGB images (2% less than our method) and 92.3% using a 
combination of three networks (RGB, Optical Flow and Warped Flow). Similarly, the STM approach employs 
two-stream networks and pre-trained on Kinetics that enhances the performance significantly. Designing a two-
stream networks or multi-stream networks would require a larger resource, due to the limitations, we have not 
pursued this approach at this time. Furthermore, using optical  flow80 and pose  estimation81 on original images 
may improve performance, but these techniques are computationally intensive and time consuming, especially 
during end-to-end training. The concept of Collaborative Learning, on the other hand, is based on a general 
formula of the gradient of the loss function and could be used as a plug-and-play module for any approach. 
Finally, the bag of words method was originally used as a baseline for the dataset and achieved the lowest rec-
ognition accuracy ( 44.5%).

Hyperparameter optimization. In these experiments, we aimed to find the optimal settings for each 
model. Table 5 presents the results of the DenseNet-201 Transformer and ResNet-152 Transformer using trans-
fer learning, where we varied the maximum sequence length, number of frames, number of attention heads, and 
dense size. The number of frames represents the amount of frames extracted from the sequence, calculated by 
step = (maximum sequence length)/(number of frames) . The results indicate that longer sequences of frames 
lead to better accuracy, but having a large number of frames is not necessarily the best strategy; a balanced 
approach yields higher accuracy. Furthermore, we discovered that models performed best with 6 attention heads 
and a dense size of either 32 or 64 neurons.

Figures 5 and  6 show the results for ConvNet RNN models using transfer learning. In the experiments, 
we first evaluated the performance of eight ConvNets (Inception-v3, ResNet-101, ResNet-152, DenseNet-121, 
DenseNet-201, EfficientNet-B0, EfficientNet-B4, and EfficientNet-B7). The two best performers, DenseNet-121 
and ResNet-152 ConvNet architectures, were selected for further experimentation. The results of varying the 
number of frames showed a preference for longer maximum sequence lengths.

Extension
In this Section, we extend our experiments to perform on more challenge datasets, i.e., Kinetics-400 and HMDB-
51. In our methods, ConvNets are retrained to improve accuracy performance when compared to Transfer 
 Learning32,44, but these processes can take a long time on the entire Kinetics-400 dataset. As a result, we decided 
to obtain only a portion of the entire dataset in order to demonstrate our concept. As shown in Table 6, our main 
focus in this study is to compare Non-Collaborative Learning (or Individual Learning) and Collaborative Learn-
ing approaches. In each experiment, we conduct two repetitions and record both the mean accuracy and the best 
accuracy (Max) achieved. All settings are the same as in the experiments with UCF-101 dataset. The learning 
rate range is obtained by running a scan from a low to a high learning rate. As a consequence, the learning rates 
of particles PSO-1, PSO-2 and PSO-3 are set at 10−2 , 10−3 and 10−4 , respectively, whereas the learning rates of 

Table 4.  Comparisons of the proposed method and previous methods on the UCF-101 benchmark dataset. 
The information of pretrained dataset (if any) are also displayed. Significant values are in bold.

Method Network Dataset Accuracy (%)

Bag of  words60 (arXiv’12) – UCF-101 44.5

Transfer Learning and  Fusions71 (CVPR’14) ConvNet Sports-1M 65.4

Shuffle &Learn72 (ECCV’16) AlexNet UCF-101 50.2

Shuffle &Learn72 (ECCV’16) C3D 55.8

TSN RGB  image46 (ECCV’16)
ConvNet UCF-101

84.5

TSN RGB + optical flow + warped  flow46 (ECCV’16) 92.3

DPC73 (ICCV’19) 3D-ResNet34 Kinetics-400 75.7

Clip  Order74 (CVPR’19) C3D UCF-101 65.6

3D ST-puzzle75 (AAAI’19) C3D Kinetics-400 60.6

STM49 (ICCV’19) ResNet-50 ImageNet+Kinetics 96.2

P-ODN76 (SR’20) ConvNet UCF-101 78.6

VideoMoCo77 (CVPR’21) R(2+1)D Kinetics-400 78.7

SVT slow-fast78 (CVPR’22) TimeSformer Kinetics-400 (60K) 84.8

Our model (Dynamics 2 for DenseNet-201 Transformer) DenseNet-201 Transformer UCF-101 86.1
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the wilder particle PSO-4 has a range of [10−5, 10−1] . The results show a preference for the Collaborative Learn-
ing methods as the Dynamic 1 and Dynamic 2 outperform the Individual Learning through both datasets, e.g., 
an improvement of 0.7% can be seen on Kinetics-400 using DenseNet-201 Transformer. The results obtained 
in our experiments clearly demonstrate the superiority of our proposed Collaborative Learning approach for 
video action recognition.

Table 5.  Three-fold classification accuracy results (%) on the UCF-101 benchmark dataset for DenseNet-201 
transformer and ResNet-152 transformer with transfer learning training. Significant values are in bold.

Accuracy (%)

 Model
Maximum sequence 
length Number of frames

Number of attention 
heads Dense size Set 1 Set 2 Set 3 Avg

DenseNet-201 Trans-
former

100

2

1
4 69.94 69.42 69.21 69.52

128 69.57 69.68 68.51 69.25

4
64 74.36 75.39 75.43 75.06

128 76 75.15 74.81 75.32

8
128 74.57 74.75 74.65 74.66

256 74.94 74.75 75.05 74.91

4 1

4 70.92 69.47 71.67 70.69

8 70.02 69.63 70.32 69.99

16 69.87 68.53 68.29 68.90

32 70.37 71 69.1 70.16

64 70.08 69.52 67.99 69.20

128 69.26 69.42 70.54 69.74

10

4
64 76.71 76 75.3 76.00

128 77.43 75.33 76.46 76.41

6

8 77.08 76.57 76.95 76.87

16 77.64 76.62 76.06 76.77

32 77.4 76.73 77.08 77.07

64 76.87 77.16 78.19 77.41

1024 74.94 73.57 72.48 73.66

20 6

8 76 77.34 77.25 76.86

32 76.71 75.99 75.3 76.00

64 77.16 76 76.46 76.54

128 77.4 75.87 77.03 76.77

40

2

4

32 74.65 74.53 74.3 74.49

64 74.94 74.26 73.54 74.25

128 74.46 74.29 74.46 74.40

1024 71.03 70.73 70.45 70.74

6

16 73.38 74.48 73.97 73.94

32 74.39 73.43 73.97 73.93

64 75.34 74.37 73.57 74.43

128 73.96 74.21 74.03 74.07

10 6

32 76.37 74.64 74.35 75.12

64 75.73 75.55 74.81 75.36

128 76.08 76 75.08 75.72

ResNet-154 Transformer 100

2

1
4 71.08 70.65 68.59 70.11

128 70.05 71.51 68.89 70.15

4
128 75.02 76.03 74.73 75.26

256 74.76 75.66 75.19 75.20

6
64 75.39 75.52 74.65 75.19

128 75.57 75.6 75.78 75.65

10 6

4 76.55 76.78 75.65 76.33

8 77.08 76.35 76.14 76.52

16 76.55 76.25 76.33 76.38

32 77.24 76.49 76.65 76.79

64 75.84 77.53 76.54 76.64
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Discussion
The performance of action recognition methods such as ConvNet Transformer and ConvNet RNN is largely 
dependent on various factors, including the number of attention heads, the number of dense neurons, the 
number of units in RNN, and the learning rate, among others. Collaborative learning is an effective approach 
to improve the training of neural networks, where multiple models are trained simultaneously and both their 
positions and directions, as determined by the gradients of the loss function, are shared. In our previous research, 
we applied dynamics to ConvNets for image classification and in this study, we extend the concept to hybrid 
ConvNet Transformer and ConvNet RNN models for human action recognition in sequences of images. We first 
aim to identify the optimal settings that lead to the highest accuracy for the baseline models. As seen in Table 1, 
the ConvNet Transformer models did not perform as well as the ConvNet RNN models with transfer learning, 
which could be due to the limited data available for training, as transformers typically require more data than 
RNN-based models. However, our proposed method, incorporating dynamics and end-to-end training, not 
only outperforms the baseline models, but also results in the ConvNet Transformer models outperforming their 
ConvNet RNN counterparts. This can be attributed to the additional data provided to the transformer models 
through data augmentation and additional noise.

Conclusion
Recognizing human actions in videos is a fascinating problem in the art of recognition, and while Convolutional 
Neural Networks provide a powerful method for image classification, their application to HAR can be complex, 
as temporal features play a critical role.

In this study, we present a novel video action recognition framework that leverages collaborative learning 
with dynamics. Our approach explores the hybridization of ConvNet RNN and the recent advanced method 

Figure 5.  Hyperparameter optimization results for ConvNet RNN models with transfer learning. the models 
are numbered as follows: 1. Inception-v3, 2. ResNet-101, 3. ResNet-152, 4. DenseNet-121, 5. DenseNet-201, 
6. EfficientNet-B0, 7. EfficientNet-B4, 8. EfficientNet-B7. The abbreviations acc, gn, and lr stand for accuracy, 
Gaussian noise, and learning rate, respectively.

Figure 6.  Impact of varying the number of frames on the three-fold accuracy of DenseNet-201 RNN and 
ResNet-152 RNN using transfer learning on the UCF-101 benchmark dataset.
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Transformer, which has been adapted from Natural Language Processing for video sequences. The experi-
ments include the exploration of two dynamics models, Dynamic 1 and Dynamic 2. The results demonstrate a 
round improvement of 2–9% in accuracy over baseline methods, such as an 8.72% increase in accuracy for the 
DenseNet-201 Transformer using Dynamic 2 and a 7.26% increase in accuracy for the ResNet-152 Transformer 
using Dynamic 1. Our approach outperforms the previous methods, offering significant improvements in video 
action recognition.

In summary, our work makes three key contributions: (1) We incorporate Dynamic 1 and Dynamic 2 into a 
hybrid model that combines ConvNet with two popular sequence modeling techniques—RNN and Transformer. 
(2) We extend the distributed collaborative learning framework to address the task of human action recognition. 
(3) We conducted extensive experiments on the challenging datasets including UCF-101, Dynamics-400 and 
HMDB-51 over a period of 2–3 months to thoroughly evaluate our approach. To validate its effectiveness, we 
compared our method against state-of-the-art approaches in the field.

Data availability
The datasets generated and/or analysed during the current study are available in the UCF101 repository, https:// 
www. crcv. ucf. edu/ data/ UCF101. php. All data generated or analysed during this study are included in this pub-
lished article [and its supplementary information files].
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